• Show log

    Commit

  • Hash : 83f3bdfd
    Author : angle-autoroll
    Date : 2025-03-07T14:42:29

    Manual roll vulkan-deps from 4f7de8f463f8 to d34de7171c18 (1 revision)
    
    Manual roll requested by ynovikov@google.com
    
    Due to https://github.com/KhronosGroup/Vulkan-Headers/pull/534
    including <vulkan/vulkan.h> now causes <X11/Xlib.h> to be included,
    which breaks the build because of the macros it defines.
    To workaround, undefine these macros after vulkan.h include.
    
    https://chromium.googlesource.com/vulkan-deps.git/+log/4f7de8f463f8..d34de7171c18
    
    Also rolling transitive DEPS:
      https://chromium.googlesource.com/external/github.com/KhronosGroup/Vulkan-Headers/+log/952f776f6573aafbb62ea717d871cd1d6816c387..0f0cfd88d7e6ece3ca6456df692f0055bde94be7
    
    If this roll has caused a breakage, revert this CL and stop the roller
    using the controls here:
    https://autoroll.skia.org/r/vulkan-deps-angle-autoroll
    Please CC angle-team@google.com,solti@google.com,ynovikov@google.com on
    the revert to ensure that a human
    is aware of the problem.
    
    To file a bug in ANGLE:
    https://bugs.chromium.org/p/angleproject/issues/entry
    
    To report a problem with the AutoRoller itself, please file a bug:
    https://issues.skia.org/issues/new?component=1389291&template=1850622
    
    Documentation for the AutoRoller is here:
    https://skia.googlesource.com/buildbot/+doc/main/autoroll/README.md
    
    Bug: chromium:345261080
    Change-Id: Ib229dc03e7b33daf817e3248025fdcab64157e1e
    Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/6334528
    Reviewed-by: Solti Ho <solti@google.com>
    Commit-Queue: Solti Ho <solti@google.com>
    

  • Properties

  • Git HTTP https://git.kmx.io/kc3-lang/angle.git
    Git SSH git@git.kmx.io:kc3-lang/angle.git
    Public access ? public
    Description

    A conformant OpenGL ES implementation for Windows, Mac, Linux, iOS and Android.

    Homepage

    Github

    Users
    thodg_m kc3_lang_org thodg_w www_kmx_io thodg thodg_l
    Tags

  • README.md

  • 🐺 volk Build Status

    ANGLE Integration

    Note that the entirety of the volk README.md is included below. This is an additional section with information on volk’s integration into ANGLE. The volk source files are copied directly from the volk GitHub repo. To update volk in ANGLE, copy the latest volk.h/c files into ANGLE ā€œsrc/third_party/volkā€ dir and push update. If any changes are made to volk source files locally within ANGLE, please also make corresponding PRs so that the changes land in the upstream source volk GitHub repo. Make sure to change tabs to spaces, which clang-format later fixes, after updating the files. Also make sure to update the Revision: field in README.chromium.

    Purpose

    volk is a meta-loader for Vulkan. It allows you to dynamically load entrypoints required to use Vulkan without linking to vulkan-1.dll or statically linking Vulkan loader. Additionally, volk simplifies the use of Vulkan extensions by automatically loading all associated entrypoints. Finally, volk enables loading Vulkan entrypoints directly from the driver which can increase performance by skipping loader dispatch overhead.

    volk is written in C89 and supports Windows, Linux, Android and macOS (via MoltenVK).

    Building

    There are multiple ways to use volk in your project:

    1. You can just add volk.c to your build system. Note that the usual preprocessor defines that enable Vulkan’s platform-specific functions (VK_USE_PLATFORM_WIN32_KHR, VK_USE_PLATFORM_XLIB_KHR, VK_USE_PLATFORM_MACOS_MVK, etc) must be passed as desired to the compiler when building volk.c.
    2. You can use volk in header-only fashion. Include volk.h whereever you want to use Vulkan functions. In exactly one source file, define VOLK_IMPLEMENTATION before including volk.h. Do not build volk.c at all in this case. This method of integrating volk makes it possible to set the platform defines mentioned above with arbitrary (preprocessor) logic in your code.
    3. You can use provided CMake files, with the usage detailed below.

    Basic usage

    To use volk, you have to include volk.h instead of vulkan/vulkan.h; this is necessary to use function definitions from volk. If some files in your application include vulkan/vulkan.h and don’t include volk.h, this can result in symbol conflicts; consider defining VK_NO_PROTOTYPES when compiling code that uses Vulkan to make sure this doesn’t happen.

    To initialize volk, call this function first:

    VkResult volkInitialize();

    This will attempt to load Vulkan loader from the system; if this function returns VK_SUCCESS you can proceed to create Vulkan instance. If this function fails, this means Vulkan loader isn’t installed on your system.

    After creating the Vulkan instance using Vulkan API, call this function:

    void volkLoadInstance(VkInstance instance);

    This function will load all required Vulkan entrypoints, including all extensions; you can use Vulkan from here on as usual.

    Optimizing device calls

    If you use volk as described in the previous section, all device-related function calls, such as vkCmdDraw, will go through Vulkan loader dispatch code. This allows you to transparently support multiple VkDevice objects in the same application, but comes at a price of dispatch overhead which can be as high as 7% depending on the driver and application.

    To avoid this, you have one of two options:

    1. For applications that use just one VkDevice object, load device-related Vulkan entrypoints directly from the driver with this function:
    void volkLoadDevice(VkDevice device);
    1. For applications that use multiple VkDevice objects, load device-related Vulkan entrypoints into a table:
    void volkLoadDeviceTable(struct VolkDeviceTable* table, VkDevice device);

    The second option requires you to change the application code to store one VolkDeviceTable per VkDevice and call functions from this table instead.

    Device entrypoints are loaded using vkGetDeviceProcAddr; when no layers are present, this commonly results in most function pointers pointing directly at the driver functions, minimizing the call overhead. When layers are loaded, the entrypoints will point at the implementations in the first applicable layer, so this is compatible with any layers including validation layers.

    CMake support

    If your project uses CMake, volk provides you with targets corresponding to the different use cases:

    1. Target volk is a static library. Any platform defines can be passed to the compiler by setting VOLK_STATIC_DEFINES. Example:
      if (WIN32)
      set(VOLK_STATIC_DEFINES VK_USE_PLATFORM_WIN32_KHR)
      elseif()
      ...
      endif()
      add_subdirectory(volk)
      target_link_library(my_application PRIVATE volk)
    2. Target volk_headers is an interface target for the header-only style. Example:
      add_subdirectory(volk)
      target_link_library(my_application PRIVATE volk_headers)
      and in the code:
      /* ...any logic setting VK_USE_PLATFORM_WIN32_KHR and friends... */
      #define VOLK_IMPLEMENTATION
      #include "volk.h"

    The above example use add_subdirectory to include volk into CMake’s build tree. This is a good choice if you copy the volk files into your project tree or as a git submodule.

    Volk also supports installation and config-file packages. Installation is disabled by default (so as to not pollute user projects with install rules), and can be disabled by passing -DVOLK_INSTALL=ON to CMake. Once installed, do something like find_package(volk CONFIG REQUIRED) in your project’s CMakeLists.txt. The imported volk targets are called volk::volk and volk::volk_headers.

    License

    This library is available to anybody free of charge, under the terms of MIT License (see LICENSE.md).