Hash :
4f1af784
Author :
Date :
2015-05-25T11:55:07
Handle function calls where returned array is not used This is done by declaring a temporary variable which is passed as the array out parameter defined by ArrayReturnValueToOutParameter. SeparateExpressionsReturningArrays takes care of transforming the rest of the cases where a function call returns an array into form that ArrayReturnValueToOutParameter can handle. BUG=angleproject:971 TEST=WebGL 2 conformance tests, dEQP-GLES3.functional.shaders.arrays.* Change-Id: I70c07712ba5cd91efb4c2e575ecc49b9ef71bfd7 Reviewed-on: https://chromium-review.googlesource.com/273111 Tested-by: Olli Etuaho <oetuaho@nvidia.com> Reviewed-by: Zhenyao Mo <zmo@chromium.org> Reviewed-by: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/IntermNode.h"
#include "compiler/translator/InfoSink.h"
void TIntermTraverser::pushParentBlock(TIntermAggregate *node)
{
if (rightToLeft)
mParentBlockStack.push_back(ParentBlock(node, node->getSequence()->size() - 1));
else
mParentBlockStack.push_back(ParentBlock(node, 0));
}
void TIntermTraverser::incrementParentBlockPos()
{
if (rightToLeft)
--mParentBlockStack.back().pos;
else
++mParentBlockStack.back().pos;
}
void TIntermTraverser::popParentBlock()
{
ASSERT(!mParentBlockStack.empty());
mParentBlockStack.pop_back();
}
void TIntermTraverser::insertStatementsInParentBlock(const TIntermSequence &insertions)
{
ASSERT(!mParentBlockStack.empty());
NodeInsertMultipleEntry insert(mParentBlockStack.back().node, mParentBlockStack.back().pos, insertions);
mInsertions.push_back(insert);
}
TIntermSymbol *TIntermTraverser::createTempSymbol(const TType &type)
{
// Each traversal uses at most one temporary variable, so the index stays the same within a single traversal.
TInfoSinkBase symbolNameOut;
ASSERT(mTemporaryIndex != nullptr);
symbolNameOut << "s" << (*mTemporaryIndex);
TString symbolName = symbolNameOut.c_str();
TIntermSymbol *node = new TIntermSymbol(0, symbolName, type);
node->setInternal(true);
node->getTypePointer()->setQualifier(EvqTemporary);
return node;
}
TIntermAggregate *TIntermTraverser::createTempDeclaration(const TType &type)
{
TIntermAggregate *tempDeclaration = new TIntermAggregate(EOpDeclaration);
tempDeclaration->getSequence()->push_back(createTempSymbol(type));
return tempDeclaration;
}
TIntermAggregate *TIntermTraverser::createTempInitDeclaration(TIntermTyped *initializer)
{
ASSERT(initializer != nullptr);
TIntermSymbol *tempSymbol = createTempSymbol(initializer->getType());
TIntermAggregate *tempDeclaration = new TIntermAggregate(EOpDeclaration);
TIntermBinary *tempInit = new TIntermBinary(EOpInitialize);
tempInit->setLeft(tempSymbol);
tempInit->setRight(initializer);
tempInit->setType(tempSymbol->getType());
tempDeclaration->getSequence()->push_back(tempInit);
return tempDeclaration;
}
TIntermBinary *TIntermTraverser::createTempAssignment(TIntermTyped *rightNode)
{
ASSERT(rightNode != nullptr);
TIntermSymbol *tempSymbol = createTempSymbol(rightNode->getType());
TIntermBinary *assignment = new TIntermBinary(EOpAssign);
assignment->setLeft(tempSymbol);
assignment->setRight(rightNode);
assignment->setType(tempSymbol->getType());
return assignment;
}
void TIntermTraverser::useTemporaryIndex(unsigned int *temporaryIndex)
{
mTemporaryIndex = temporaryIndex;
}
void TIntermTraverser::nextTemporaryIndex()
{
ASSERT(mTemporaryIndex != nullptr);
++(*mTemporaryIndex);
}
//
// Traverse the intermediate representation tree, and
// call a node type specific function for each node.
// Done recursively through the member function Traverse().
// Node types can be skipped if their function to call is 0,
// but their subtree will still be traversed.
// Nodes with children can have their whole subtree skipped
// if preVisit is turned on and the type specific function
// returns false.
//
// preVisit, postVisit, and rightToLeft control what order
// nodes are visited in.
//
//
// Traversal functions for terminals are straighforward....
//
void TIntermSymbol::traverse(TIntermTraverser *it)
{
it->visitSymbol(this);
}
void TIntermConstantUnion::traverse(TIntermTraverser *it)
{
it->visitConstantUnion(this);
}
//
// Traverse a binary node.
//
void TIntermBinary::traverse(TIntermTraverser *it)
{
bool visit = true;
//
// visit the node before children if pre-visiting.
//
if (it->preVisit)
visit = it->visitBinary(PreVisit, this);
//
// Visit the children, in the right order.
//
if (visit)
{
it->incrementDepth(this);
if (it->rightToLeft)
{
if (mRight)
mRight->traverse(it);
if (it->inVisit)
visit = it->visitBinary(InVisit, this);
if (visit && mLeft)
mLeft->traverse(it);
}
else
{
if (mLeft)
mLeft->traverse(it);
if (it->inVisit)
visit = it->visitBinary(InVisit, this);
if (visit && mRight)
mRight->traverse(it);
}
it->decrementDepth();
}
//
// Visit the node after the children, if requested and the traversal
// hasn't been cancelled yet.
//
if (visit && it->postVisit)
it->visitBinary(PostVisit, this);
}
//
// Traverse a unary node. Same comments in binary node apply here.
//
void TIntermUnary::traverse(TIntermTraverser *it)
{
bool visit = true;
if (it->preVisit)
visit = it->visitUnary(PreVisit, this);
if (visit) {
it->incrementDepth(this);
mOperand->traverse(it);
it->decrementDepth();
}
if (visit && it->postVisit)
it->visitUnary(PostVisit, this);
}
//
// Traverse an aggregate node. Same comments in binary node apply here.
//
void TIntermAggregate::traverse(TIntermTraverser *it)
{
bool visit = true;
if (it->preVisit)
visit = it->visitAggregate(PreVisit, this);
if (visit)
{
if (mOp == EOpSequence)
it->pushParentBlock(this);
it->incrementDepth(this);
if (it->rightToLeft)
{
for (TIntermSequence::reverse_iterator sit = mSequence.rbegin();
sit != mSequence.rend(); sit++)
{
(*sit)->traverse(it);
if (visit && it->inVisit)
{
if (*sit != mSequence.front())
visit = it->visitAggregate(InVisit, this);
}
if (mOp == EOpSequence)
{
it->incrementParentBlockPos();
}
}
}
else
{
for (TIntermSequence::iterator sit = mSequence.begin();
sit != mSequence.end(); sit++)
{
(*sit)->traverse(it);
if (visit && it->inVisit)
{
if (*sit != mSequence.back())
visit = it->visitAggregate(InVisit, this);
}
if (mOp == EOpSequence)
{
it->incrementParentBlockPos();
}
}
}
it->decrementDepth();
if (mOp == EOpSequence)
it->popParentBlock();
}
if (visit && it->postVisit)
it->visitAggregate(PostVisit, this);
}
//
// Traverse a selection node. Same comments in binary node apply here.
//
void TIntermSelection::traverse(TIntermTraverser *it)
{
bool visit = true;
if (it->preVisit)
visit = it->visitSelection(PreVisit, this);
if (visit)
{
it->incrementDepth(this);
if (it->rightToLeft)
{
if (mFalseBlock)
mFalseBlock->traverse(it);
if (mTrueBlock)
mTrueBlock->traverse(it);
mCondition->traverse(it);
}
else
{
mCondition->traverse(it);
if (mTrueBlock)
mTrueBlock->traverse(it);
if (mFalseBlock)
mFalseBlock->traverse(it);
}
it->decrementDepth();
}
if (visit && it->postVisit)
it->visitSelection(PostVisit, this);
}
//
// Traverse a switch node. Same comments in binary node apply here.
//
void TIntermSwitch::traverse(TIntermTraverser *it)
{
bool visit = true;
if (it->preVisit)
visit = it->visitSwitch(PreVisit, this);
if (visit)
{
it->incrementDepth(this);
if (it->rightToLeft)
{
if (mStatementList)
mStatementList->traverse(it);
if (it->inVisit)
visit = it->visitSwitch(InVisit, this);
if (visit)
mInit->traverse(it);
}
else
{
mInit->traverse(it);
if (it->inVisit)
visit = it->visitSwitch(InVisit, this);
if (visit && mStatementList)
mStatementList->traverse(it);
}
it->decrementDepth();
}
if (visit && it->postVisit)
it->visitSwitch(PostVisit, this);
}
//
// Traverse a switch node. Same comments in binary node apply here.
//
void TIntermCase::traverse(TIntermTraverser *it)
{
bool visit = true;
if (it->preVisit)
visit = it->visitCase(PreVisit, this);
if (visit && mCondition)
mCondition->traverse(it);
if (visit && it->postVisit)
it->visitCase(PostVisit, this);
}
//
// Traverse a loop node. Same comments in binary node apply here.
//
void TIntermLoop::traverse(TIntermTraverser *it)
{
bool visit = true;
if (it->preVisit)
visit = it->visitLoop(PreVisit, this);
if (visit)
{
it->incrementDepth(this);
if (it->rightToLeft)
{
if (mExpr)
mExpr->traverse(it);
if (mBody)
mBody->traverse(it);
if (mCond)
mCond->traverse(it);
if (mInit)
mInit->traverse(it);
}
else
{
if (mInit)
mInit->traverse(it);
if (mCond)
mCond->traverse(it);
if (mBody)
mBody->traverse(it);
if (mExpr)
mExpr->traverse(it);
}
it->decrementDepth();
}
if (visit && it->postVisit)
it->visitLoop(PostVisit, this);
}
//
// Traverse a branch node. Same comments in binary node apply here.
//
void TIntermBranch::traverse(TIntermTraverser *it)
{
bool visit = true;
if (it->preVisit)
visit = it->visitBranch(PreVisit, this);
if (visit && mExpression) {
it->incrementDepth(this);
mExpression->traverse(it);
it->decrementDepth();
}
if (visit && it->postVisit)
it->visitBranch(PostVisit, this);
}
void TIntermRaw::traverse(TIntermTraverser *it)
{
it->visitRaw(this);
}