Hash :
6655e94f
Author :
Date :
2024-09-09T15:41:09
Remove Feature Level 9_3, part 2 Remove all of the remaining feature level 9_3 code. Bug: angleproject:355462523 Change-Id: Ifd15d8f5486d3e7f8f2e134f23872abf4a8ea51c Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/5847452 Reviewed-by: Geoff Lang <geofflang@chromium.org> Commit-Queue: Rafael Cintron <rafael.cintron@microsoft.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
//
// Copyright 2023 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ProgramExecutableD3D.cpp: Implementation of ProgramExecutableD3D.
#include "libANGLE/renderer/d3d/ProgramExecutableD3D.h"
#include "common/bitset_utils.h"
#include "common/string_utils.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/FramebufferAttachment.h"
#include "libANGLE/renderer/d3d/FramebufferD3D.h"
#include "libANGLE/renderer/d3d/ShaderExecutableD3D.h"
#include "libANGLE/trace.h"
namespace rx
{
namespace
{
void GetDefaultInputLayoutFromShader(const gl::SharedCompiledShaderState &vertexShader,
gl::InputLayout *inputLayoutOut)
{
inputLayoutOut->clear();
if (!vertexShader)
{
return;
}
for (const sh::ShaderVariable &shaderAttr : vertexShader->activeAttributes)
{
if (shaderAttr.type != GL_NONE)
{
GLenum transposedType = gl::TransposeMatrixType(shaderAttr.type);
for (size_t rowIndex = 0;
static_cast<int>(rowIndex) < gl::VariableRowCount(transposedType); ++rowIndex)
{
GLenum componentType = gl::VariableComponentType(transposedType);
GLuint components = static_cast<GLuint>(gl::VariableColumnCount(transposedType));
bool pureInt = (componentType != GL_FLOAT);
gl::VertexAttribType attribType =
gl::FromGLenum<gl::VertexAttribType>(componentType);
angle::FormatID defaultID =
gl::GetVertexFormatID(attribType, GL_FALSE, components, pureInt);
inputLayoutOut->push_back(defaultID);
}
}
}
}
size_t GetMaxOutputIndex(const std::vector<PixelShaderOutputVariable> &shaderOutputVars,
size_t location)
{
size_t maxIndex = 0;
for (auto &outputVar : shaderOutputVars)
{
if (outputVar.outputLocation == location)
{
maxIndex = std::max(maxIndex, outputVar.outputIndex);
}
}
return maxIndex;
}
void GetDefaultOutputLayoutFromShader(
const std::vector<PixelShaderOutputVariable> &shaderOutputVars,
std::vector<GLenum> *outputLayoutOut)
{
outputLayoutOut->clear();
if (!shaderOutputVars.empty())
{
size_t location = shaderOutputVars[0].outputLocation;
size_t maxIndex = GetMaxOutputIndex(shaderOutputVars, location);
outputLayoutOut->assign(maxIndex + 1,
GL_COLOR_ATTACHMENT0 + static_cast<unsigned int>(location));
}
}
void GetDefaultImage2DBindLayoutFromShader(const std::vector<sh::ShaderVariable> &image2DUniforms,
gl::ImageUnitTextureTypeMap *image2DBindLayout)
{
image2DBindLayout->clear();
for (const sh::ShaderVariable &image2D : image2DUniforms)
{
if (gl::IsImage2DType(image2D.type))
{
if (image2D.binding == -1)
{
image2DBindLayout->insert(std::make_pair(0, gl::TextureType::_2D));
}
else
{
for (unsigned int index = 0; index < image2D.getArraySizeProduct(); index++)
{
image2DBindLayout->insert(
std::make_pair(image2D.binding + index, gl::TextureType::_2D));
}
}
}
}
}
gl::PrimitiveMode GetGeometryShaderTypeFromDrawMode(gl::PrimitiveMode drawMode)
{
switch (drawMode)
{
// Uses the point sprite geometry shader.
case gl::PrimitiveMode::Points:
return gl::PrimitiveMode::Points;
// All line drawing uses the same geometry shader.
case gl::PrimitiveMode::Lines:
case gl::PrimitiveMode::LineStrip:
case gl::PrimitiveMode::LineLoop:
return gl::PrimitiveMode::Lines;
// The triangle fan primitive is emulated with strips in D3D11.
case gl::PrimitiveMode::Triangles:
case gl::PrimitiveMode::TriangleFan:
return gl::PrimitiveMode::Triangles;
// Special case for triangle strips.
case gl::PrimitiveMode::TriangleStrip:
return gl::PrimitiveMode::TriangleStrip;
default:
UNREACHABLE();
return gl::PrimitiveMode::InvalidEnum;
}
}
// Helper class that gathers uniform info from the default uniform block.
class UniformEncodingVisitorD3D : public sh::BlockEncoderVisitor
{
public:
UniformEncodingVisitorD3D(gl::ShaderType shaderType,
HLSLRegisterType registerType,
sh::BlockLayoutEncoder *encoder,
D3DUniformMap *uniformMapOut)
: sh::BlockEncoderVisitor("", "", encoder),
mShaderType(shaderType),
mRegisterType(registerType),
mUniformMapOut(uniformMapOut)
{}
void visitNamedOpaqueObject(const sh::ShaderVariable &sampler,
const std::string &name,
const std::string &mappedName,
const std::vector<unsigned int> &arraySizes) override
{
auto uniformMapEntry = mUniformMapOut->find(name);
if (uniformMapEntry == mUniformMapOut->end())
{
(*mUniformMapOut)[name] =
new D3DUniform(sampler.type, mRegisterType, name, sampler.arraySizes, true);
}
}
void encodeVariable(const sh::ShaderVariable &variable,
const sh::BlockMemberInfo &variableInfo,
const std::string &name,
const std::string &mappedName) override
{
auto uniformMapEntry = mUniformMapOut->find(name);
D3DUniform *d3dUniform = nullptr;
if (uniformMapEntry != mUniformMapOut->end())
{
d3dUniform = uniformMapEntry->second;
}
else
{
d3dUniform =
new D3DUniform(variable.type, mRegisterType, name, variable.arraySizes, true);
(*mUniformMapOut)[name] = d3dUniform;
}
d3dUniform->registerElement = static_cast<unsigned int>(
sh::BlockLayoutEncoder::GetBlockRegisterElement(variableInfo));
unsigned int reg =
static_cast<unsigned int>(sh::BlockLayoutEncoder::GetBlockRegister(variableInfo));
ASSERT(mShaderType != gl::ShaderType::InvalidEnum);
d3dUniform->mShaderRegisterIndexes[mShaderType] = reg;
}
private:
gl::ShaderType mShaderType;
HLSLRegisterType mRegisterType;
D3DUniformMap *mUniformMapOut;
};
} // anonymous namespace
// D3DUniform Implementation
D3DUniform::D3DUniform(GLenum type,
HLSLRegisterType reg,
const std::string &nameIn,
const std::vector<unsigned int> &arraySizesIn,
bool defaultBlock)
: typeInfo(gl::GetUniformTypeInfo(type)),
name(nameIn),
arraySizes(arraySizesIn),
mShaderData({}),
regType(reg),
registerCount(0),
registerElement(0)
{
mShaderRegisterIndexes.fill(GL_INVALID_INDEX);
// We use data storage for default block uniforms to cache values that are sent to D3D during
// rendering
// Uniform blocks/buffers are treated separately by the Renderer (ES3 path only)
if (defaultBlock)
{
// Use the row count as register count, will work for non-square matrices.
registerCount = typeInfo.rowCount * getArraySizeProduct();
}
}
D3DUniform::~D3DUniform() {}
unsigned int D3DUniform::getArraySizeProduct() const
{
return gl::ArraySizeProduct(arraySizes);
}
const uint8_t *D3DUniform::getDataPtrToElement(size_t elementIndex) const
{
ASSERT((!isArray() && elementIndex == 0) ||
(isArray() && elementIndex < getArraySizeProduct()));
if (isSampler())
{
return reinterpret_cast<const uint8_t *>(&mSamplerData[elementIndex]);
}
return firstNonNullData() + (elementIndex > 0 ? (typeInfo.internalSize * elementIndex) : 0u);
}
bool D3DUniform::isSampler() const
{
return typeInfo.isSampler;
}
bool D3DUniform::isImage() const
{
return typeInfo.isImageType;
}
bool D3DUniform::isImage2D() const
{
return gl::IsImage2DType(typeInfo.type);
}
bool D3DUniform::isReferencedByShader(gl::ShaderType shaderType) const
{
return mShaderRegisterIndexes[shaderType] != GL_INVALID_INDEX;
}
const uint8_t *D3DUniform::firstNonNullData() const
{
if (!mSamplerData.empty())
{
return reinterpret_cast<const uint8_t *>(mSamplerData.data());
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (mShaderData[shaderType])
{
return mShaderData[shaderType];
}
}
UNREACHABLE();
return nullptr;
}
// D3DInterfaceBlock Implementation
D3DInterfaceBlock::D3DInterfaceBlock()
{
mShaderRegisterIndexes.fill(GL_INVALID_INDEX);
}
D3DInterfaceBlock::D3DInterfaceBlock(const D3DInterfaceBlock &other) = default;
D3DUniformBlock::D3DUniformBlock()
{
mUseStructuredBuffers.fill(false);
mByteWidths.fill(0u);
mStructureByteStrides.fill(0u);
}
D3DUniformBlock::D3DUniformBlock(const D3DUniformBlock &other) = default;
// D3DVarying Implementation
D3DVarying::D3DVarying() : semanticIndex(0), componentCount(0), outputSlot(0) {}
D3DVarying::D3DVarying(const std::string &semanticNameIn,
unsigned int semanticIndexIn,
unsigned int componentCountIn,
unsigned int outputSlotIn)
: semanticName(semanticNameIn),
semanticIndex(semanticIndexIn),
componentCount(componentCountIn),
outputSlot(outputSlotIn)
{}
D3DVertexExecutable::D3DVertexExecutable(const gl::InputLayout &inputLayout,
const Signature &signature,
ShaderExecutableD3D *shaderExecutable)
: mInputs(inputLayout), mSignature(signature), mShaderExecutable(shaderExecutable)
{}
D3DVertexExecutable::~D3DVertexExecutable()
{
SafeDelete(mShaderExecutable);
}
// static
D3DVertexExecutable::HLSLAttribType D3DVertexExecutable::GetAttribType(GLenum type)
{
switch (type)
{
case GL_INT:
return HLSLAttribType::SIGNED_INT;
case GL_UNSIGNED_INT:
return HLSLAttribType::UNSIGNED_INT;
case GL_SIGNED_NORMALIZED:
case GL_UNSIGNED_NORMALIZED:
case GL_FLOAT:
return HLSLAttribType::FLOAT;
default:
UNREACHABLE();
return HLSLAttribType::FLOAT;
}
}
// static
void D3DVertexExecutable::getSignature(RendererD3D *renderer,
const gl::InputLayout &inputLayout,
Signature *signatureOut)
{
signatureOut->assign(inputLayout.size(), HLSLAttribType::FLOAT);
for (size_t index = 0; index < inputLayout.size(); ++index)
{
angle::FormatID vertexFormatID = inputLayout[index];
if (vertexFormatID == angle::FormatID::NONE)
continue;
VertexConversionType conversionType = renderer->getVertexConversionType(vertexFormatID);
if ((conversionType & VERTEX_CONVERT_GPU) == 0)
continue;
GLenum componentType = renderer->getVertexComponentType(vertexFormatID);
(*signatureOut)[index] = GetAttribType(componentType);
}
}
bool D3DVertexExecutable::matchesSignature(const Signature &signature) const
{
size_t limit = std::max(mSignature.size(), signature.size());
for (size_t index = 0; index < limit; ++index)
{
// treat undefined indexes as FLOAT
auto a = index < signature.size() ? signature[index] : HLSLAttribType::FLOAT;
auto b = index < mSignature.size() ? mSignature[index] : HLSLAttribType::FLOAT;
if (a != b)
return false;
}
return true;
}
D3DPixelExecutable::D3DPixelExecutable(const std::vector<GLenum> &outputSignature,
const gl::ImageUnitTextureTypeMap &image2DSignature,
ShaderExecutableD3D *shaderExecutable)
: mOutputSignature(outputSignature),
mImage2DSignature(image2DSignature),
mShaderExecutable(shaderExecutable)
{}
D3DPixelExecutable::~D3DPixelExecutable()
{
SafeDelete(mShaderExecutable);
}
D3DComputeExecutable::D3DComputeExecutable(const gl::ImageUnitTextureTypeMap &signature,
std::unique_ptr<ShaderExecutableD3D> shaderExecutable)
: mSignature(signature), mShaderExecutable(std::move(shaderExecutable))
{}
D3DComputeExecutable::~D3DComputeExecutable() {}
D3DSampler::D3DSampler() : active(false), logicalTextureUnit(0), textureType(gl::TextureType::_2D)
{}
D3DImage::D3DImage() : active(false), logicalImageUnit(0) {}
unsigned int ProgramExecutableD3D::mCurrentSerial = 1;
ProgramExecutableD3D::ProgramExecutableD3D(const gl::ProgramExecutable *executable)
: ProgramExecutableImpl(executable),
mUsesPointSize(false),
mUsesFlatInterpolation(false),
mUsedShaderSamplerRanges({}),
mDirtySamplerMapping(true),
mUsedImageRange({}),
mUsedReadonlyImageRange({}),
mUsedAtomicCounterRange({}),
mSerial(issueSerial())
{
reset();
}
ProgramExecutableD3D::~ProgramExecutableD3D() {}
void ProgramExecutableD3D::destroy(const gl::Context *context) {}
void ProgramExecutableD3D::reset()
{
mVertexExecutables.clear();
mPixelExecutables.clear();
mComputeExecutables.clear();
for (auto &geometryExecutable : mGeometryExecutables)
{
geometryExecutable.reset(nullptr);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
mShaderHLSL[shaderType].clear();
}
mFragDepthUsage = FragDepthUsage::Unused;
mUsesSampleMask = false;
mHasMultiviewEnabled = false;
mUsesVertexID = false;
mUsesViewID = false;
mPixelShaderKey.clear();
mUsesPointSize = false;
mUsesFlatInterpolation = false;
SafeDeleteContainer(mD3DUniforms);
mD3DUniformBlocks.clear();
mD3DShaderStorageBlocks.clear();
mComputeAtomicCounterBufferRegisterIndices.fill({});
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
mShaderUniformStorages[shaderType].reset();
mShaderSamplers[shaderType].clear();
mImages[shaderType].clear();
mReadonlyImages[shaderType].clear();
}
mUsedShaderSamplerRanges.fill({0, 0});
mUsedAtomicCounterRange.fill({0, 0});
mDirtySamplerMapping = true;
mUsedImageRange.fill({0, 0});
mUsedReadonlyImageRange.fill({0, 0});
mAttribLocationToD3DSemantic.fill(-1);
mStreamOutVaryings.clear();
mGeometryShaderPreamble.clear();
markUniformsClean();
mCachedPixelExecutableIndex.reset();
mCachedVertexExecutableIndex.reset();
}
bool ProgramExecutableD3D::load(const gl::Context *context,
RendererD3D *renderer,
gl::BinaryInputStream *stream)
{
gl::InfoLog &infoLog = mExecutable->getInfoLog();
reset();
DeviceIdentifier binaryDeviceIdentifier = {};
stream->readBytes(reinterpret_cast<unsigned char *>(&binaryDeviceIdentifier),
sizeof(DeviceIdentifier));
DeviceIdentifier identifier = renderer->getAdapterIdentifier();
if (memcmp(&identifier, &binaryDeviceIdentifier, sizeof(DeviceIdentifier)) != 0)
{
infoLog << "Invalid program binary, device configuration has changed.";
return false;
}
int compileFlags = stream->readInt<int>();
if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL)
{
infoLog << "Mismatched compilation flags.";
return false;
}
for (int &index : mAttribLocationToD3DSemantic)
{
stream->readInt(&index);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
size_t samplerCount = stream->readInt<size_t>();
for (size_t sampleIndex = 0; sampleIndex < samplerCount; ++sampleIndex)
{
D3DSampler sampler;
stream->readBool(&sampler.active);
stream->readInt(&sampler.logicalTextureUnit);
stream->readEnum(&sampler.textureType);
mShaderSamplers[shaderType].push_back(sampler);
}
unsigned int samplerRangeLow, samplerRangeHigh;
stream->readInt(&samplerRangeLow);
stream->readInt(&samplerRangeHigh);
mUsedShaderSamplerRanges[shaderType] = gl::RangeUI(samplerRangeLow, samplerRangeHigh);
}
for (gl::ShaderType shaderType : {gl::ShaderType::Compute, gl::ShaderType::Fragment})
{
size_t imageCount = stream->readInt<size_t>();
for (size_t imageIndex = 0; imageIndex < imageCount; ++imageIndex)
{
D3DImage image;
stream->readBool(&image.active);
stream->readInt(&image.logicalImageUnit);
mImages[shaderType].push_back(image);
}
size_t readonlyImageCount = stream->readInt<size_t>();
for (size_t imageIndex = 0; imageIndex < readonlyImageCount; ++imageIndex)
{
D3DImage image;
stream->readBool(&image.active);
stream->readInt(&image.logicalImageUnit);
mReadonlyImages[shaderType].push_back(image);
}
unsigned int imageRangeLow, imageRangeHigh, readonlyImageRangeLow, readonlyImageRangeHigh;
stream->readInt(&imageRangeLow);
stream->readInt(&imageRangeHigh);
stream->readInt(&readonlyImageRangeLow);
stream->readInt(&readonlyImageRangeHigh);
mUsedImageRange[shaderType] = gl::RangeUI(imageRangeLow, imageRangeHigh);
mUsedReadonlyImageRange[shaderType] =
gl::RangeUI(readonlyImageRangeLow, readonlyImageRangeHigh);
unsigned int atomicCounterRangeLow, atomicCounterRangeHigh;
stream->readInt(&atomicCounterRangeLow);
stream->readInt(&atomicCounterRangeHigh);
mUsedAtomicCounterRange[shaderType] =
gl::RangeUI(atomicCounterRangeLow, atomicCounterRangeHigh);
}
size_t shaderStorageBlockCount = stream->readInt<size_t>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return false;
}
ASSERT(mD3DShaderStorageBlocks.empty());
for (size_t blockIndex = 0; blockIndex < shaderStorageBlockCount; ++blockIndex)
{
D3DInterfaceBlock shaderStorageBlock;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->readInt(&shaderStorageBlock.mShaderRegisterIndexes[shaderType]);
}
mD3DShaderStorageBlocks.push_back(shaderStorageBlock);
}
for (gl::ShaderType shaderType : {gl::ShaderType::Compute, gl::ShaderType::Fragment})
{
size_t image2DUniformCount = stream->readInt<size_t>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return false;
}
ASSERT(mImage2DUniforms[shaderType].empty());
for (size_t image2DUniformIndex = 0; image2DUniformIndex < image2DUniformCount;
++image2DUniformIndex)
{
sh::ShaderVariable image2Duniform;
gl::LoadShaderVar(stream, &image2Duniform);
mImage2DUniforms[shaderType].push_back(image2Duniform);
}
}
for (unsigned int ii = 0; ii < gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS; ++ii)
{
unsigned int index = stream->readInt<unsigned int>();
mComputeAtomicCounterBufferRegisterIndices[ii] = index;
}
size_t uniformCount = stream->readInt<size_t>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return false;
}
const auto &linkedUniforms = mExecutable->getUniforms();
ASSERT(mD3DUniforms.empty());
for (size_t uniformIndex = 0; uniformIndex < uniformCount; uniformIndex++)
{
const gl::LinkedUniform &linkedUniform = linkedUniforms[uniformIndex];
// Could D3DUniform just change to use unsigned int instead of std::vector for arraySizes?
// Frontend always flatten the array to at most 1D array.
std::vector<unsigned int> arraySizes;
if (linkedUniform.isArray())
{
arraySizes.push_back(linkedUniform.getBasicTypeElementCount());
}
D3DUniform *d3dUniform = new D3DUniform(linkedUniform.getType(), HLSLRegisterType::None,
mExecutable->getUniformNames()[uniformIndex],
arraySizes, linkedUniform.isInDefaultBlock());
stream->readEnum(&d3dUniform->regType);
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->readInt(&d3dUniform->mShaderRegisterIndexes[shaderType]);
}
stream->readInt(&d3dUniform->registerCount);
stream->readInt(&d3dUniform->registerElement);
mD3DUniforms.push_back(d3dUniform);
}
size_t blockCount = stream->readInt<size_t>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return false;
}
ASSERT(mD3DUniformBlocks.empty());
for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
{
D3DUniformBlock uniformBlock;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->readInt(&uniformBlock.mShaderRegisterIndexes[shaderType]);
stream->readBool(&uniformBlock.mUseStructuredBuffers[shaderType]);
stream->readInt(&uniformBlock.mByteWidths[shaderType]);
stream->readInt(&uniformBlock.mStructureByteStrides[shaderType]);
}
mD3DUniformBlocks.push_back(uniformBlock);
}
size_t streamOutVaryingCount = stream->readInt<size_t>();
mStreamOutVaryings.resize(streamOutVaryingCount);
for (size_t varyingIndex = 0; varyingIndex < streamOutVaryingCount; ++varyingIndex)
{
D3DVarying *varying = &mStreamOutVaryings[varyingIndex];
stream->readString(&varying->semanticName);
stream->readInt(&varying->semanticIndex);
stream->readInt(&varying->componentCount);
stream->readInt(&varying->outputSlot);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->readString(&mShaderHLSL[shaderType]);
stream->readBytes(reinterpret_cast<unsigned char *>(&mShaderWorkarounds[shaderType]),
sizeof(CompilerWorkaroundsD3D));
}
stream->readEnum(&mFragDepthUsage);
stream->readBool(&mUsesSampleMask);
stream->readBool(&mHasMultiviewEnabled);
stream->readBool(&mUsesVertexID);
stream->readBool(&mUsesViewID);
stream->readBool(&mUsesPointSize);
stream->readBool(&mUsesFlatInterpolation);
const size_t pixelShaderKeySize = stream->readInt<size_t>();
mPixelShaderKey.resize(pixelShaderKeySize);
for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < pixelShaderKeySize;
pixelShaderKeyIndex++)
{
stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].type);
stream->readString(&mPixelShaderKey[pixelShaderKeyIndex].name);
stream->readString(&mPixelShaderKey[pixelShaderKeyIndex].source);
stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].outputLocation);
stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].outputIndex);
}
stream->readString(&mGeometryShaderPreamble);
return true;
}
angle::Result ProgramExecutableD3D::loadBinaryShaderExecutables(d3d::Context *contextD3D,
RendererD3D *renderer,
gl::BinaryInputStream *stream)
{
gl::InfoLog &infoLog = mExecutable->getInfoLog();
const unsigned char *binary = reinterpret_cast<const unsigned char *>(stream->data());
bool separateAttribs = mExecutable->getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS;
size_t vertexShaderCount = stream->readInt<size_t>();
for (size_t vertexShaderIndex = 0; vertexShaderIndex < vertexShaderCount; vertexShaderIndex++)
{
size_t inputLayoutSize = stream->readInt<size_t>();
gl::InputLayout inputLayout(inputLayoutSize, angle::FormatID::NONE);
for (size_t inputIndex = 0; inputIndex < inputLayoutSize; inputIndex++)
{
inputLayout[inputIndex] = stream->readEnum<angle::FormatID>();
}
size_t vertexShaderSize = stream->readInt<size_t>();
const unsigned char *vertexShaderFunction = binary + stream->offset();
ShaderExecutableD3D *shaderExecutable = nullptr;
ANGLE_TRY(renderer->loadExecutable(contextD3D, vertexShaderFunction, vertexShaderSize,
gl::ShaderType::Vertex, mStreamOutVaryings,
separateAttribs, &shaderExecutable));
if (!shaderExecutable)
{
infoLog << "Could not create vertex shader.";
return angle::Result::Stop;
}
// generated converted input layout
D3DVertexExecutable::Signature signature;
D3DVertexExecutable::getSignature(renderer, inputLayout, &signature);
// add new binary
mVertexExecutables.push_back(std::unique_ptr<D3DVertexExecutable>(
new D3DVertexExecutable(inputLayout, signature, shaderExecutable)));
stream->skip(vertexShaderSize);
}
size_t pixelShaderCount = stream->readInt<size_t>();
for (size_t pixelShaderIndex = 0; pixelShaderIndex < pixelShaderCount; pixelShaderIndex++)
{
size_t outputCount = stream->readInt<size_t>();
std::vector<GLenum> outputs(outputCount);
for (size_t outputIndex = 0; outputIndex < outputCount; outputIndex++)
{
stream->readInt(&outputs[outputIndex]);
}
const size_t image2DCount = stream->readInt<size_t>();
gl::ImageUnitTextureTypeMap image2Ds;
for (size_t index = 0; index < image2DCount; index++)
{
unsigned int imageUint;
gl::TextureType textureType;
stream->readInt(&imageUint);
stream->readEnum(&textureType);
image2Ds.insert({imageUint, textureType});
}
size_t pixelShaderSize = stream->readInt<size_t>();
const unsigned char *pixelShaderFunction = binary + stream->offset();
ShaderExecutableD3D *shaderExecutable = nullptr;
ANGLE_TRY(renderer->loadExecutable(contextD3D, pixelShaderFunction, pixelShaderSize,
gl::ShaderType::Fragment, mStreamOutVaryings,
separateAttribs, &shaderExecutable));
if (!shaderExecutable)
{
infoLog << "Could not create pixel shader.";
return angle::Result::Stop;
}
// add new binary
mPixelExecutables.push_back(std::unique_ptr<D3DPixelExecutable>(
new D3DPixelExecutable(outputs, image2Ds, shaderExecutable)));
stream->skip(pixelShaderSize);
}
for (std::unique_ptr<ShaderExecutableD3D> &geometryExe : mGeometryExecutables)
{
size_t geometryShaderSize = stream->readInt<size_t>();
if (geometryShaderSize == 0)
{
continue;
}
const unsigned char *geometryShaderFunction = binary + stream->offset();
ShaderExecutableD3D *geometryExecutable = nullptr;
ANGLE_TRY(renderer->loadExecutable(contextD3D, geometryShaderFunction, geometryShaderSize,
gl::ShaderType::Geometry, mStreamOutVaryings,
separateAttribs, &geometryExecutable));
if (!geometryExecutable)
{
infoLog << "Could not create geometry shader.";
return angle::Result::Stop;
}
geometryExe.reset(geometryExecutable);
stream->skip(geometryShaderSize);
}
size_t computeShaderCount = stream->readInt<size_t>();
for (size_t computeShaderIndex = 0; computeShaderIndex < computeShaderCount;
computeShaderIndex++)
{
size_t signatureCount = stream->readInt<size_t>();
gl::ImageUnitTextureTypeMap signatures;
for (size_t signatureIndex = 0; signatureIndex < signatureCount; signatureIndex++)
{
unsigned int imageUint;
gl::TextureType textureType;
stream->readInt(&imageUint);
stream->readEnum(&textureType);
signatures.insert(std::pair<unsigned int, gl::TextureType>(imageUint, textureType));
}
size_t computeShaderSize = stream->readInt<size_t>();
const unsigned char *computeShaderFunction = binary + stream->offset();
ShaderExecutableD3D *computeExecutable = nullptr;
ANGLE_TRY(renderer->loadExecutable(contextD3D, computeShaderFunction, computeShaderSize,
gl::ShaderType::Compute, std::vector<D3DVarying>(),
false, &computeExecutable));
if (!computeExecutable)
{
infoLog << "Could not create compute shader.";
return angle::Result::Stop;
}
// add new binary
mComputeExecutables.push_back(
std::unique_ptr<D3DComputeExecutable>(new D3DComputeExecutable(
signatures, std::unique_ptr<ShaderExecutableD3D>(computeExecutable))));
stream->skip(computeShaderSize);
}
for (const gl::ShaderType shaderType :
{gl::ShaderType::Vertex, gl::ShaderType::Fragment, gl::ShaderType::Compute})
{
size_t bindLayoutCount = stream->readInt<size_t>();
for (size_t bindLayoutIndex = 0; bindLayoutIndex < bindLayoutCount; bindLayoutIndex++)
{
mImage2DBindLayoutCache[shaderType].insert(std::pair<unsigned int, gl::TextureType>(
stream->readInt<unsigned int>(), gl::TextureType::_2D));
}
}
initializeUniformStorage(renderer, mExecutable->getLinkedShaderStages());
dirtyAllUniforms();
return angle::Result::Continue;
}
void ProgramExecutableD3D::save(const gl::Context *context,
RendererD3D *renderer,
gl::BinaryOutputStream *stream)
{
// Output the DeviceIdentifier before we output any shader code
// When we load the binary again later, we can validate the device identifier before trying to
// compile any HLSL
DeviceIdentifier binaryIdentifier = renderer->getAdapterIdentifier();
stream->writeBytes(reinterpret_cast<unsigned char *>(&binaryIdentifier),
sizeof(DeviceIdentifier));
stream->writeInt(ANGLE_COMPILE_OPTIMIZATION_LEVEL);
for (int d3dSemantic : mAttribLocationToD3DSemantic)
{
stream->writeInt(d3dSemantic);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeInt(mShaderSamplers[shaderType].size());
for (unsigned int i = 0; i < mShaderSamplers[shaderType].size(); ++i)
{
stream->writeBool(mShaderSamplers[shaderType][i].active);
stream->writeInt(mShaderSamplers[shaderType][i].logicalTextureUnit);
stream->writeEnum(mShaderSamplers[shaderType][i].textureType);
}
stream->writeInt(mUsedShaderSamplerRanges[shaderType].low());
stream->writeInt(mUsedShaderSamplerRanges[shaderType].high());
}
for (gl::ShaderType shaderType : {gl::ShaderType::Compute, gl::ShaderType::Fragment})
{
stream->writeInt(mImages[shaderType].size());
for (size_t imageIndex = 0; imageIndex < mImages[shaderType].size(); ++imageIndex)
{
stream->writeBool(mImages[shaderType][imageIndex].active);
stream->writeInt(mImages[shaderType][imageIndex].logicalImageUnit);
}
stream->writeInt(mReadonlyImages[shaderType].size());
for (size_t imageIndex = 0; imageIndex < mReadonlyImages[shaderType].size(); ++imageIndex)
{
stream->writeBool(mReadonlyImages[shaderType][imageIndex].active);
stream->writeInt(mReadonlyImages[shaderType][imageIndex].logicalImageUnit);
}
stream->writeInt(mUsedImageRange[shaderType].low());
stream->writeInt(mUsedImageRange[shaderType].high());
stream->writeInt(mUsedReadonlyImageRange[shaderType].low());
stream->writeInt(mUsedReadonlyImageRange[shaderType].high());
stream->writeInt(mUsedAtomicCounterRange[shaderType].low());
stream->writeInt(mUsedAtomicCounterRange[shaderType].high());
}
stream->writeInt(mD3DShaderStorageBlocks.size());
for (const D3DInterfaceBlock &shaderStorageBlock : mD3DShaderStorageBlocks)
{
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeIntOrNegOne(shaderStorageBlock.mShaderRegisterIndexes[shaderType]);
}
}
for (gl::ShaderType shaderType : {gl::ShaderType::Compute, gl::ShaderType::Fragment})
{
stream->writeInt(mImage2DUniforms[shaderType].size());
for (const sh::ShaderVariable &image2DUniform : mImage2DUniforms[shaderType])
{
gl::WriteShaderVar(stream, image2DUniform);
}
}
for (unsigned int ii = 0; ii < gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS; ++ii)
{
stream->writeInt(mComputeAtomicCounterBufferRegisterIndices[ii]);
}
stream->writeInt(mD3DUniforms.size());
for (const D3DUniform *uniform : mD3DUniforms)
{
// Type, name and arraySize are redundant, so aren't stored in the binary.
stream->writeEnum(uniform->regType);
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeIntOrNegOne(uniform->mShaderRegisterIndexes[shaderType]);
}
stream->writeInt(uniform->registerCount);
stream->writeInt(uniform->registerElement);
}
stream->writeInt(mD3DUniformBlocks.size());
for (const D3DUniformBlock &uniformBlock : mD3DUniformBlocks)
{
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeIntOrNegOne(uniformBlock.mShaderRegisterIndexes[shaderType]);
stream->writeBool(uniformBlock.mUseStructuredBuffers[shaderType]);
stream->writeInt(uniformBlock.mByteWidths[shaderType]);
stream->writeInt(uniformBlock.mStructureByteStrides[shaderType]);
}
}
stream->writeInt(mStreamOutVaryings.size());
for (const D3DVarying &varying : mStreamOutVaryings)
{
stream->writeString(varying.semanticName);
stream->writeInt(varying.semanticIndex);
stream->writeInt(varying.componentCount);
stream->writeInt(varying.outputSlot);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeString(mShaderHLSL[shaderType]);
stream->writeBytes(reinterpret_cast<unsigned char *>(&mShaderWorkarounds[shaderType]),
sizeof(CompilerWorkaroundsD3D));
}
stream->writeEnum(mFragDepthUsage);
stream->writeBool(mUsesSampleMask);
stream->writeBool(mHasMultiviewEnabled);
stream->writeBool(mUsesVertexID);
stream->writeBool(mUsesViewID);
stream->writeBool(mUsesPointSize);
stream->writeBool(mUsesFlatInterpolation);
const std::vector<PixelShaderOutputVariable> &pixelShaderKey = mPixelShaderKey;
stream->writeInt(pixelShaderKey.size());
for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < pixelShaderKey.size();
pixelShaderKeyIndex++)
{
const PixelShaderOutputVariable &variable = pixelShaderKey[pixelShaderKeyIndex];
stream->writeInt(variable.type);
stream->writeString(variable.name);
stream->writeString(variable.source);
stream->writeInt(variable.outputLocation);
stream->writeInt(variable.outputIndex);
}
stream->writeString(mGeometryShaderPreamble);
stream->writeInt(mVertexExecutables.size());
for (size_t vertexExecutableIndex = 0; vertexExecutableIndex < mVertexExecutables.size();
vertexExecutableIndex++)
{
D3DVertexExecutable *vertexExecutable = mVertexExecutables[vertexExecutableIndex].get();
const gl::InputLayout &inputLayout = vertexExecutable->inputs();
stream->writeInt(inputLayout.size());
for (size_t inputIndex = 0; inputIndex < inputLayout.size(); inputIndex++)
{
stream->writeEnum(inputLayout[inputIndex]);
}
size_t vertexShaderSize = vertexExecutable->shaderExecutable()->getLength();
stream->writeInt(vertexShaderSize);
const uint8_t *vertexBlob = vertexExecutable->shaderExecutable()->getFunction();
stream->writeBytes(vertexBlob, vertexShaderSize);
}
stream->writeInt(mPixelExecutables.size());
for (size_t pixelExecutableIndex = 0; pixelExecutableIndex < mPixelExecutables.size();
pixelExecutableIndex++)
{
D3DPixelExecutable *pixelExecutable = mPixelExecutables[pixelExecutableIndex].get();
const std::vector<GLenum> &outputs = pixelExecutable->outputSignature();
stream->writeInt(outputs.size());
for (size_t outputIndex = 0; outputIndex < outputs.size(); outputIndex++)
{
stream->writeInt(outputs[outputIndex]);
}
const gl::ImageUnitTextureTypeMap &image2Ds = pixelExecutable->image2DSignature();
stream->writeInt(image2Ds.size());
for (const auto &image2D : image2Ds)
{
stream->writeInt(image2D.first);
stream->writeEnum(image2D.second);
}
size_t pixelShaderSize = pixelExecutable->shaderExecutable()->getLength();
stream->writeInt(pixelShaderSize);
const uint8_t *pixelBlob = pixelExecutable->shaderExecutable()->getFunction();
stream->writeBytes(pixelBlob, pixelShaderSize);
}
for (auto const &geometryExecutable : mGeometryExecutables)
{
if (!geometryExecutable)
{
stream->writeInt<size_t>(0);
continue;
}
size_t geometryShaderSize = geometryExecutable->getLength();
stream->writeInt(geometryShaderSize);
stream->writeBytes(geometryExecutable->getFunction(), geometryShaderSize);
}
stream->writeInt(mComputeExecutables.size());
for (size_t computeExecutableIndex = 0; computeExecutableIndex < mComputeExecutables.size();
computeExecutableIndex++)
{
D3DComputeExecutable *computeExecutable = mComputeExecutables[computeExecutableIndex].get();
const gl::ImageUnitTextureTypeMap signatures = computeExecutable->signature();
stream->writeInt(signatures.size());
for (const auto &signature : signatures)
{
stream->writeInt(signature.first);
stream->writeEnum(signature.second);
}
size_t computeShaderSize = computeExecutable->shaderExecutable()->getLength();
stream->writeInt(computeShaderSize);
const uint8_t *computeBlob = computeExecutable->shaderExecutable()->getFunction();
stream->writeBytes(computeBlob, computeShaderSize);
}
for (const gl::ShaderType shaderType :
{gl::ShaderType::Vertex, gl::ShaderType::Fragment, gl::ShaderType::Compute})
{
stream->writeInt(mImage2DBindLayoutCache[shaderType].size());
for (auto &image2DBindLayout : mImage2DBindLayoutCache[shaderType])
{
stream->writeInt(image2DBindLayout.first);
}
}
}
bool ProgramExecutableD3D::hasVertexExecutableForCachedInputLayout()
{
return mCachedVertexExecutableIndex.valid();
}
bool ProgramExecutableD3D::hasGeometryExecutableForPrimitiveType(RendererD3D *renderer,
const gl::State &state,
gl::PrimitiveMode drawMode)
{
if (!usesGeometryShader(renderer, state.getProvokingVertex(), drawMode))
{
// No shader necessary mean we have the required (null) executable.
return true;
}
gl::PrimitiveMode geometryShaderType = GetGeometryShaderTypeFromDrawMode(drawMode);
return mGeometryExecutables[geometryShaderType].get() != nullptr;
}
bool ProgramExecutableD3D::hasPixelExecutableForCachedOutputLayout()
{
return mCachedPixelExecutableIndex.valid();
}
bool ProgramExecutableD3D::hasComputeExecutableForCachedImage2DBindLayout()
{
return mCachedComputeExecutableIndex.valid();
}
void ProgramExecutableD3D::dirtyAllUniforms()
{
mShaderUniformsDirty = mExecutable->getLinkedShaderStages();
}
void ProgramExecutableD3D::markUniformsClean()
{
mShaderUniformsDirty.reset();
}
unsigned int ProgramExecutableD3D::getAtomicCounterBufferRegisterIndex(
GLuint binding,
gl::ShaderType shaderType) const
{
if (shaderType != gl::ShaderType::Compute)
{
// Implement atomic counters for non-compute shaders
// http://anglebug.com/42260658
UNIMPLEMENTED();
}
return mComputeAtomicCounterBufferRegisterIndices[binding];
}
unsigned int ProgramExecutableD3D::getShaderStorageBufferRegisterIndex(
GLuint blockIndex,
gl::ShaderType shaderType) const
{
return mD3DShaderStorageBlocks[blockIndex].mShaderRegisterIndexes[shaderType];
}
const std::vector<D3DUBOCache> &ProgramExecutableD3D::getShaderUniformBufferCache(
gl::ShaderType shaderType) const
{
return mShaderUBOCaches[shaderType];
}
const std::vector<D3DUBOCacheUseSB> &ProgramExecutableD3D::getShaderUniformBufferCacheUseSB(
gl::ShaderType shaderType) const
{
return mShaderUBOCachesUseSB[shaderType];
}
GLint ProgramExecutableD3D::getSamplerMapping(gl::ShaderType type,
unsigned int samplerIndex,
const gl::Caps &caps) const
{
GLint logicalTextureUnit = -1;
ASSERT(type != gl::ShaderType::InvalidEnum);
ASSERT(samplerIndex < static_cast<unsigned int>(caps.maxShaderTextureImageUnits[type]));
const auto &samplers = mShaderSamplers[type];
if (samplerIndex < samplers.size() && samplers[samplerIndex].active)
{
logicalTextureUnit = samplers[samplerIndex].logicalTextureUnit;
}
if (logicalTextureUnit >= 0 && logicalTextureUnit < caps.maxCombinedTextureImageUnits)
{
return logicalTextureUnit;
}
return -1;
}
// Returns the texture type for a given Direct3D 9 sampler type and
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
gl::TextureType ProgramExecutableD3D::getSamplerTextureType(gl::ShaderType type,
unsigned int samplerIndex) const
{
ASSERT(type != gl::ShaderType::InvalidEnum);
const auto &samplers = mShaderSamplers[type];
ASSERT(samplerIndex < samplers.size());
ASSERT(samplers[samplerIndex].active);
return samplers[samplerIndex].textureType;
}
gl::RangeUI ProgramExecutableD3D::getUsedSamplerRange(gl::ShaderType type) const
{
ASSERT(type != gl::ShaderType::InvalidEnum);
return mUsedShaderSamplerRanges[type];
}
void ProgramExecutableD3D::updateSamplerMapping()
{
ASSERT(mDirtySamplerMapping);
mDirtySamplerMapping = false;
// Retrieve sampler uniform values
for (const D3DUniform *d3dUniform : mD3DUniforms)
{
if (!d3dUniform->isSampler())
continue;
int count = d3dUniform->getArraySizeProduct();
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (!d3dUniform->isReferencedByShader(shaderType))
{
continue;
}
unsigned int firstIndex = d3dUniform->mShaderRegisterIndexes[shaderType];
std::vector<D3DSampler> &samplers = mShaderSamplers[shaderType];
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < samplers.size())
{
ASSERT(samplers[samplerIndex].active);
samplers[samplerIndex].logicalTextureUnit = d3dUniform->mSamplerData[i];
}
}
}
}
}
GLint ProgramExecutableD3D::getImageMapping(gl::ShaderType type,
unsigned int imageIndex,
bool readonly,
const gl::Caps &caps) const
{
GLint logicalImageUnit = -1;
ASSERT(imageIndex < static_cast<unsigned int>(caps.maxImageUnits));
if (readonly && imageIndex < mReadonlyImages[type].size() &&
mReadonlyImages[type][imageIndex].active)
{
logicalImageUnit = mReadonlyImages[type][imageIndex].logicalImageUnit;
}
else if (imageIndex < mImages[type].size() && mImages[type][imageIndex].active)
{
logicalImageUnit = mImages[type][imageIndex].logicalImageUnit;
}
if (logicalImageUnit >= 0 && logicalImageUnit < caps.maxImageUnits)
{
return logicalImageUnit;
}
return -1;
}
gl::RangeUI ProgramExecutableD3D::getUsedImageRange(gl::ShaderType type, bool readonly) const
{
return readonly ? mUsedReadonlyImageRange[type] : mUsedImageRange[type];
}
bool ProgramExecutableD3D::usesPointSpriteEmulation(RendererD3D *renderer) const
{
return mUsesPointSize && renderer->getMajorShaderModel() >= 4;
}
bool ProgramExecutableD3D::usesGeometryShaderForPointSpriteEmulation(RendererD3D *renderer) const
{
return usesPointSpriteEmulation(renderer);
}
bool ProgramExecutableD3D::usesGeometryShader(RendererD3D *renderer,
const gl::ProvokingVertexConvention provokingVertex,
const gl::PrimitiveMode drawMode) const
{
if (mHasMultiviewEnabled && !renderer->canSelectViewInVertexShader())
{
return true;
}
if (drawMode != gl::PrimitiveMode::Points)
{
if (!mUsesFlatInterpolation)
{
return false;
}
return provokingVertex == gl::ProvokingVertexConvention::LastVertexConvention;
}
return usesGeometryShaderForPointSpriteEmulation(renderer);
}
angle::Result ProgramExecutableD3D::getVertexExecutableForCachedInputLayout(
d3d::Context *context,
RendererD3D *renderer,
ShaderExecutableD3D **outExectuable,
gl::InfoLog *infoLog)
{
if (mCachedVertexExecutableIndex.valid())
{
*outExectuable =
mVertexExecutables[mCachedVertexExecutableIndex.value()]->shaderExecutable();
return angle::Result::Continue;
}
// Generate new dynamic layout with attribute conversions
std::string vertexHLSL = DynamicHLSL::GenerateVertexShaderForInputLayout(
renderer, mShaderHLSL[gl::ShaderType::Vertex], mCachedInputLayout,
mExecutable->getProgramInputs(), mShaderStorageBlocks[gl::ShaderType::Vertex],
mPixelShaderKey.size());
std::string finalVertexHLSL = DynamicHLSL::GenerateShaderForImage2DBindSignature(
*this, gl::ShaderType::Vertex, mAttachedShaders[gl::ShaderType::Vertex], vertexHLSL,
mImage2DUniforms[gl::ShaderType::Vertex], mImage2DBindLayoutCache[gl::ShaderType::Vertex],
static_cast<unsigned int>(mPixelShaderKey.size()));
// Generate new vertex executable
ShaderExecutableD3D *vertexExecutable = nullptr;
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
ANGLE_TRY(renderer->compileToExecutable(
context, *currentInfoLog, finalVertexHLSL, gl::ShaderType::Vertex, mStreamOutVaryings,
mExecutable->getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS,
mShaderWorkarounds[gl::ShaderType::Vertex], &vertexExecutable));
if (vertexExecutable)
{
mVertexExecutables.push_back(std::unique_ptr<D3DVertexExecutable>(
new D3DVertexExecutable(mCachedInputLayout, mCachedVertexSignature, vertexExecutable)));
mCachedVertexExecutableIndex = mVertexExecutables.size() - 1;
}
else if (!infoLog)
{
ERR() << "Error compiling dynamic vertex executable:" << std::endl
<< tempInfoLog.str() << std::endl;
}
*outExectuable = vertexExecutable;
return angle::Result::Continue;
}
angle::Result ProgramExecutableD3D::getGeometryExecutableForPrimitiveType(
d3d::Context *context,
RendererD3D *renderer,
const gl::Caps &caps,
gl::ProvokingVertexConvention provokingVertex,
gl::PrimitiveMode drawMode,
ShaderExecutableD3D **outExecutable,
gl::InfoLog *infoLog)
{
if (outExecutable)
{
*outExecutable = nullptr;
}
// Return a null shader if the current rendering doesn't use a geometry shader
if (!usesGeometryShader(renderer, provokingVertex, drawMode))
{
return angle::Result::Continue;
}
gl::PrimitiveMode geometryShaderType = GetGeometryShaderTypeFromDrawMode(drawMode);
if (mGeometryExecutables[geometryShaderType])
{
if (outExecutable)
{
*outExecutable = mGeometryExecutables[geometryShaderType].get();
}
return angle::Result::Continue;
}
std::string geometryHLSL = DynamicHLSL::GenerateGeometryShaderHLSL(
renderer, caps, geometryShaderType, renderer->presentPathFastEnabled(),
mHasMultiviewEnabled, renderer->canSelectViewInVertexShader(),
usesGeometryShaderForPointSpriteEmulation(renderer), mGeometryShaderPreamble);
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
ShaderExecutableD3D *geometryExecutable = nullptr;
angle::Result result = renderer->compileToExecutable(
context, *currentInfoLog, geometryHLSL, gl::ShaderType::Geometry, mStreamOutVaryings,
mExecutable->getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS,
CompilerWorkaroundsD3D(), &geometryExecutable);
if (!infoLog && result == angle::Result::Stop)
{
ERR() << "Error compiling dynamic geometry executable:" << std::endl
<< tempInfoLog.str() << std::endl;
}
if (geometryExecutable != nullptr)
{
mGeometryExecutables[geometryShaderType].reset(geometryExecutable);
}
if (outExecutable)
{
*outExecutable = mGeometryExecutables[geometryShaderType].get();
}
return result;
}
angle::Result ProgramExecutableD3D::getPixelExecutableForCachedOutputLayout(
d3d::Context *context,
RendererD3D *renderer,
ShaderExecutableD3D **outExecutable,
gl::InfoLog *infoLog)
{
if (mCachedPixelExecutableIndex.valid())
{
*outExecutable = mPixelExecutables[mCachedPixelExecutableIndex.value()]->shaderExecutable();
return angle::Result::Continue;
}
std::string pixelHLSL = DynamicHLSL::GeneratePixelShaderForOutputSignature(
renderer, mShaderHLSL[gl::ShaderType::Fragment], mPixelShaderKey, mFragDepthUsage,
mUsesSampleMask, mPixelShaderOutputLayoutCache,
mShaderStorageBlocks[gl::ShaderType::Fragment], mPixelShaderKey.size());
std::string finalPixelHLSL = DynamicHLSL::GenerateShaderForImage2DBindSignature(
*this, gl::ShaderType::Fragment, mAttachedShaders[gl::ShaderType::Fragment], pixelHLSL,
mImage2DUniforms[gl::ShaderType::Fragment],
mImage2DBindLayoutCache[gl::ShaderType::Fragment],
static_cast<unsigned int>(mPixelShaderKey.size()));
// Generate new pixel executable
ShaderExecutableD3D *pixelExecutable = nullptr;
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
ANGLE_TRY(renderer->compileToExecutable(
context, *currentInfoLog, finalPixelHLSL, gl::ShaderType::Fragment, mStreamOutVaryings,
mExecutable->getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS,
mShaderWorkarounds[gl::ShaderType::Fragment], &pixelExecutable));
if (pixelExecutable)
{
mPixelExecutables.push_back(std::unique_ptr<D3DPixelExecutable>(new D3DPixelExecutable(
mPixelShaderOutputLayoutCache, mImage2DBindLayoutCache[gl::ShaderType::Fragment],
pixelExecutable)));
mCachedPixelExecutableIndex = mPixelExecutables.size() - 1;
}
else if (!infoLog)
{
ERR() << "Error compiling dynamic pixel executable:" << std::endl
<< tempInfoLog.str() << std::endl;
}
*outExecutable = pixelExecutable;
return angle::Result::Continue;
}
angle::Result ProgramExecutableD3D::getComputeExecutableForImage2DBindLayout(
d3d::Context *context,
RendererD3D *renderer,
ShaderExecutableD3D **outExecutable,
gl::InfoLog *infoLog)
{
ANGLE_TRACE_EVENT0("gpu.angle",
"ProgramExecutableD3D::getComputeExecutableForImage2DBindLayout");
if (mCachedComputeExecutableIndex.valid())
{
*outExecutable =
mComputeExecutables[mCachedComputeExecutableIndex.value()]->shaderExecutable();
return angle::Result::Continue;
}
std::string finalComputeHLSL = DynamicHLSL::GenerateShaderForImage2DBindSignature(
*this, gl::ShaderType::Compute, mAttachedShaders[gl::ShaderType::Compute],
mShaderHLSL[gl::ShaderType::Compute], mImage2DUniforms[gl::ShaderType::Compute],
mImage2DBindLayoutCache[gl::ShaderType::Compute], 0u);
// Generate new compute executable
ShaderExecutableD3D *computeExecutable = nullptr;
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
ANGLE_TRY(renderer->compileToExecutable(context, *currentInfoLog, finalComputeHLSL,
gl::ShaderType::Compute, std::vector<D3DVarying>(),
false, CompilerWorkaroundsD3D(), &computeExecutable));
if (computeExecutable)
{
mComputeExecutables.push_back(std::unique_ptr<D3DComputeExecutable>(
new D3DComputeExecutable(mImage2DBindLayoutCache[gl::ShaderType::Compute],
std::unique_ptr<ShaderExecutableD3D>(computeExecutable))));
mCachedComputeExecutableIndex = mComputeExecutables.size() - 1;
}
else if (!infoLog)
{
ERR() << "Error compiling dynamic compute executable:" << std::endl
<< tempInfoLog.str() << std::endl;
}
*outExecutable = computeExecutable;
return angle::Result::Continue;
}
bool ProgramExecutableD3D::hasNamedUniform(const std::string &name)
{
for (D3DUniform *d3dUniform : mD3DUniforms)
{
if (d3dUniform->name == name)
{
return true;
}
}
return false;
}
void ProgramExecutableD3D::initAttribLocationsToD3DSemantic(
const gl::SharedCompiledShaderState &vertexShader)
{
if (!vertexShader)
{
return;
}
// Init semantic index
int semanticIndex = 0;
for (const sh::ShaderVariable &attribute : vertexShader->activeAttributes)
{
int regCount = gl::VariableRegisterCount(attribute.type);
GLuint location = mExecutable->getAttributeLocation(attribute.name);
ASSERT(location != std::numeric_limits<GLuint>::max());
for (int reg = 0; reg < regCount; ++reg)
{
mAttribLocationToD3DSemantic[location + reg] = semanticIndex++;
}
}
}
void ProgramExecutableD3D::initializeUniformBlocks()
{
if (mExecutable->getUniformBlocks().empty())
{
return;
}
ASSERT(mD3DUniformBlocks.empty());
// Assign registers and update sizes.
for (const gl::InterfaceBlock &uniformBlock : mExecutable->getUniformBlocks())
{
unsigned int uniformBlockElement =
uniformBlock.pod.isArray ? uniformBlock.pod.arrayElement : 0;
D3DUniformBlock d3dUniformBlock;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (uniformBlock.isActive(shaderType))
{
ASSERT(mAttachedShaders[shaderType]);
unsigned int baseRegister =
mAttachedShaders[shaderType]->getUniformBlockRegister(uniformBlock.name);
d3dUniformBlock.mShaderRegisterIndexes[shaderType] =
baseRegister + uniformBlockElement;
bool useStructuredBuffer =
mAttachedShaders[shaderType]->shouldUniformBlockUseStructuredBuffer(
uniformBlock.name);
if (useStructuredBuffer)
{
d3dUniformBlock.mUseStructuredBuffers[shaderType] = true;
d3dUniformBlock.mByteWidths[shaderType] = uniformBlock.pod.dataSize;
d3dUniformBlock.mStructureByteStrides[shaderType] =
uniformBlock.pod.firstFieldArraySize == 0u
? uniformBlock.pod.dataSize
: uniformBlock.pod.dataSize / uniformBlock.pod.firstFieldArraySize;
}
}
}
mD3DUniformBlocks.push_back(d3dUniformBlock);
}
}
void ProgramExecutableD3D::initializeShaderStorageBlocks(
const gl::ShaderMap<gl::SharedCompiledShaderState> &shaders)
{
if (mExecutable->getShaderStorageBlocks().empty())
{
return;
}
ASSERT(mD3DShaderStorageBlocks.empty());
// Assign registers and update sizes.
for (const gl::InterfaceBlock &shaderStorageBlock : mExecutable->getShaderStorageBlocks())
{
unsigned int shaderStorageBlockElement =
shaderStorageBlock.pod.isArray ? shaderStorageBlock.pod.arrayElement : 0;
D3DInterfaceBlock d3dShaderStorageBlock;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (shaderStorageBlock.isActive(shaderType))
{
ASSERT(mAttachedShaders[shaderType]);
unsigned int baseRegister =
mAttachedShaders[shaderType]->getShaderStorageBlockRegister(
shaderStorageBlock.name);
d3dShaderStorageBlock.mShaderRegisterIndexes[shaderType] =
baseRegister + shaderStorageBlockElement;
}
}
mD3DShaderStorageBlocks.push_back(d3dShaderStorageBlock);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
const gl::SharedCompiledShaderState &shader = shaders[shaderType];
if (!shader)
{
continue;
}
for (const sh::InterfaceBlock &ssbo : shader->shaderStorageBlocks)
{
if (!ssbo.active)
{
continue;
}
ShaderStorageBlock block;
block.name = !ssbo.instanceName.empty() ? ssbo.instanceName : ssbo.name;
block.arraySize = ssbo.isArray() ? ssbo.arraySize : 0;
block.registerIndex =
mAttachedShaders[shaderType]->getShaderStorageBlockRegister(ssbo.name);
mShaderStorageBlocks[shaderType].push_back(block);
}
}
}
void ProgramExecutableD3D::initializeUniformStorage(RendererD3D *renderer,
const gl::ShaderBitSet &availableShaderStages)
{
// Compute total default block size
gl::ShaderMap<unsigned int> shaderRegisters = {};
for (const D3DUniform *d3dUniform : mD3DUniforms)
{
if (d3dUniform->isSampler())
{
continue;
}
for (gl::ShaderType shaderType : availableShaderStages)
{
if (d3dUniform->isReferencedByShader(shaderType))
{
shaderRegisters[shaderType] = std::max(
shaderRegisters[shaderType],
d3dUniform->mShaderRegisterIndexes[shaderType] + d3dUniform->registerCount);
}
}
}
// We only reset uniform storages for the shader stages available in the program (attached
// shaders in ProgramExecutableD3D::link() and linkedShaderStages in
// ProgramExecutableD3D::load()).
for (gl::ShaderType shaderType : availableShaderStages)
{
mShaderUniformStorages[shaderType].reset(
renderer->createUniformStorage(shaderRegisters[shaderType] * 16u));
}
// Iterate the uniforms again to assign data pointers to default block uniforms.
for (D3DUniform *d3dUniform : mD3DUniforms)
{
if (d3dUniform->isSampler())
{
d3dUniform->mSamplerData.resize(d3dUniform->getArraySizeProduct(), 0);
continue;
}
for (gl::ShaderType shaderType : availableShaderStages)
{
if (d3dUniform->isReferencedByShader(shaderType))
{
d3dUniform->mShaderData[shaderType] =
mShaderUniformStorages[shaderType]->getDataPointer(
d3dUniform->mShaderRegisterIndexes[shaderType],
d3dUniform->registerElement);
}
}
}
}
void ProgramExecutableD3D::updateCachedInputLayoutFromShader(
RendererD3D *renderer,
const gl::SharedCompiledShaderState &vertexShader)
{
GetDefaultInputLayoutFromShader(vertexShader, &mCachedInputLayout);
D3DVertexExecutable::getSignature(renderer, mCachedInputLayout, &mCachedVertexSignature);
updateCachedVertexExecutableIndex();
}
void ProgramExecutableD3D::updateCachedOutputLayoutFromShader()
{
GetDefaultOutputLayoutFromShader(mPixelShaderKey, &mPixelShaderOutputLayoutCache);
updateCachedPixelExecutableIndex();
}
void ProgramExecutableD3D::updateCachedImage2DBindLayoutFromShader(gl::ShaderType shaderType)
{
GetDefaultImage2DBindLayoutFromShader(mImage2DUniforms[shaderType],
&mImage2DBindLayoutCache[shaderType]);
switch (shaderType)
{
case gl::ShaderType::Compute:
updateCachedComputeExecutableIndex();
break;
case gl::ShaderType::Fragment:
updateCachedPixelExecutableIndex();
break;
case gl::ShaderType::Vertex:
updateCachedVertexExecutableIndex();
break;
default:
ASSERT(false);
break;
}
}
void ProgramExecutableD3D::updateCachedInputLayout(RendererD3D *renderer,
UniqueSerial associatedSerial,
const gl::State &state)
{
if (mCurrentVertexArrayStateSerial == associatedSerial)
{
return;
}
mCurrentVertexArrayStateSerial = associatedSerial;
mCachedInputLayout.clear();
const auto &vertexAttributes = state.getVertexArray()->getVertexAttributes();
const gl::AttributesMask &attributesMask = mExecutable->getActiveAttribLocationsMask();
for (size_t locationIndex : attributesMask)
{
int d3dSemantic = mAttribLocationToD3DSemantic[locationIndex];
if (d3dSemantic != -1)
{
if (mCachedInputLayout.size() < static_cast<size_t>(d3dSemantic + 1))
{
mCachedInputLayout.resize(d3dSemantic + 1, angle::FormatID::NONE);
}
mCachedInputLayout[d3dSemantic] =
GetVertexFormatID(vertexAttributes[locationIndex],
state.getVertexAttribCurrentValue(locationIndex).Type);
}
}
D3DVertexExecutable::getSignature(renderer, mCachedInputLayout, &mCachedVertexSignature);
updateCachedVertexExecutableIndex();
}
void ProgramExecutableD3D::updateCachedOutputLayout(const gl::Context *context,
const gl::Framebuffer *framebuffer)
{
mPixelShaderOutputLayoutCache.clear();
FramebufferD3D *fboD3D = GetImplAs<FramebufferD3D>(framebuffer);
const auto &colorbuffers = fboD3D->getColorAttachmentsForRender(context);
for (size_t colorAttachment = 0; colorAttachment < colorbuffers.size(); ++colorAttachment)
{
const gl::FramebufferAttachment *colorbuffer = colorbuffers[colorAttachment];
if (colorbuffer)
{
auto binding = colorbuffer->getBinding() == GL_BACK ? GL_COLOR_ATTACHMENT0
: colorbuffer->getBinding();
size_t maxIndex = binding != GL_NONE ? GetMaxOutputIndex(mPixelShaderKey,
binding - GL_COLOR_ATTACHMENT0)
: 0;
mPixelShaderOutputLayoutCache.insert(mPixelShaderOutputLayoutCache.end(), maxIndex + 1,
binding);
}
else
{
mPixelShaderOutputLayoutCache.push_back(GL_NONE);
}
}
updateCachedPixelExecutableIndex();
}
void ProgramExecutableD3D::updateCachedImage2DBindLayout(const gl::Context *context,
const gl::ShaderType shaderType)
{
const auto &glState = context->getState();
for (auto &image2DBindLayout : mImage2DBindLayoutCache[shaderType])
{
const gl::ImageUnit &imageUnit = glState.getImageUnit(image2DBindLayout.first);
if (imageUnit.texture.get())
{
image2DBindLayout.second = imageUnit.texture->getType();
}
else
{
image2DBindLayout.second = gl::TextureType::_2D;
}
}
switch (shaderType)
{
case gl::ShaderType::Vertex:
updateCachedVertexExecutableIndex();
break;
case gl::ShaderType::Fragment:
updateCachedPixelExecutableIndex();
break;
case gl::ShaderType::Compute:
updateCachedComputeExecutableIndex();
break;
default:
ASSERT(false);
break;
}
}
void ProgramExecutableD3D::updateCachedVertexExecutableIndex()
{
mCachedVertexExecutableIndex.reset();
for (size_t executableIndex = 0; executableIndex < mVertexExecutables.size(); executableIndex++)
{
if (mVertexExecutables[executableIndex]->matchesSignature(mCachedVertexSignature))
{
mCachedVertexExecutableIndex = executableIndex;
break;
}
}
}
void ProgramExecutableD3D::updateCachedPixelExecutableIndex()
{
mCachedPixelExecutableIndex.reset();
for (size_t executableIndex = 0; executableIndex < mPixelExecutables.size(); executableIndex++)
{
if (mPixelExecutables[executableIndex]->matchesSignature(
mPixelShaderOutputLayoutCache, mImage2DBindLayoutCache[gl::ShaderType::Fragment]))
{
mCachedPixelExecutableIndex = executableIndex;
break;
}
}
}
void ProgramExecutableD3D::updateCachedComputeExecutableIndex()
{
mCachedComputeExecutableIndex.reset();
for (size_t executableIndex = 0; executableIndex < mComputeExecutables.size();
executableIndex++)
{
if (mComputeExecutables[executableIndex]->matchesSignature(
mImage2DBindLayoutCache[gl::ShaderType::Compute]))
{
mCachedComputeExecutableIndex = executableIndex;
break;
}
}
}
void ProgramExecutableD3D::updateUniformBufferCache(const gl::Caps &caps)
{
if (mExecutable->getUniformBlocks().empty())
{
return;
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
mShaderUBOCaches[shaderType].clear();
mShaderUBOCachesUseSB[shaderType].clear();
}
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < mD3DUniformBlocks.size();
uniformBlockIndex++)
{
const D3DUniformBlock &uniformBlock = mD3DUniformBlocks[uniformBlockIndex];
GLuint blockBinding = mExecutable->getUniformBlockBinding(uniformBlockIndex);
// Unnecessary to apply an unreferenced standard or shared UBO
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (!uniformBlock.activeInShader(shaderType))
{
continue;
}
bool useStructuredBuffer = uniformBlock.mUseStructuredBuffers[shaderType];
unsigned int registerIndex = uniformBlock.mShaderRegisterIndexes[shaderType];
if (useStructuredBuffer)
{
D3DUBOCacheUseSB cacheUseSB;
cacheUseSB.registerIndex = registerIndex;
cacheUseSB.binding = blockBinding;
cacheUseSB.byteWidth = uniformBlock.mByteWidths[shaderType];
cacheUseSB.structureByteStride = uniformBlock.mStructureByteStrides[shaderType];
mShaderUBOCachesUseSB[shaderType].push_back(cacheUseSB);
}
else
{
ASSERT(registerIndex <
static_cast<unsigned int>(caps.maxShaderUniformBlocks[shaderType]));
D3DUBOCache cache;
cache.registerIndex = registerIndex;
cache.binding = blockBinding;
mShaderUBOCaches[shaderType].push_back(cache);
}
}
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
GLuint uniformBlockCount = static_cast<GLuint>(mShaderUBOCaches[shaderType].size() +
mShaderUBOCachesUseSB[shaderType].size());
ASSERT(uniformBlockCount <=
static_cast<unsigned int>(caps.maxShaderUniformBlocks[shaderType]));
}
}
void ProgramExecutableD3D::defineUniformsAndAssignRegisters(
RendererD3D *renderer,
const gl::ShaderMap<gl::SharedCompiledShaderState> &shaders)
{
D3DUniformMap uniformMap;
gl::ShaderBitSet attachedShaders;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
const gl::SharedCompiledShaderState &shader = shaders[shaderType];
if (shader)
{
for (const sh::ShaderVariable &uniform : shader->uniforms)
{
if (uniform.active)
{
defineUniformBase(shader->shaderType, uniform, &uniformMap);
}
}
attachedShaders.set(shader->shaderType);
}
}
// Initialize the D3DUniform list to mirror the indexing of the GL layer.
for (GLuint index = 0; index < static_cast<GLuint>(mExecutable->getUniforms().size()); index++)
{
const gl::LinkedUniform &glUniform = mExecutable->getUniforms()[index];
if (!glUniform.isInDefaultBlock())
continue;
std::string name = mExecutable->getUniformNames()[index];
if (glUniform.isArray())
{
// In the program state, array uniform names include [0] as in the program resource
// spec. Here we don't include it.
// TODO(oetuaho@nvidia.com): consider using the same uniform naming here as in the GL
// layer.
ASSERT(angle::EndsWith(name, "[0]"));
name.resize(name.length() - 3);
}
auto mapEntry = uniformMap.find(name);
ASSERT(mapEntry != uniformMap.end());
mD3DUniforms.push_back(mapEntry->second);
}
assignAllSamplerRegisters(shaders);
assignAllAtomicCounterRegisters();
// Samplers and readonly images share shader input resource slot, adjust low value of
// readonly image range.
for (gl::ShaderType shaderType : {gl::ShaderType::Compute, gl::ShaderType::Fragment})
{
mUsedReadonlyImageRange[shaderType] =
gl::RangeUI(mUsedShaderSamplerRanges[shaderType].high(),
mUsedShaderSamplerRanges[shaderType].high());
// Atomic counter buffers and non-readonly images share input resource slots
mUsedImageRange[shaderType] = gl::RangeUI(mUsedAtomicCounterRange[shaderType].high(),
mUsedAtomicCounterRange[shaderType].high());
}
assignAllImageRegisters();
initializeUniformStorage(renderer, attachedShaders);
}
void ProgramExecutableD3D::defineUniformBase(gl::ShaderType shaderType,
const sh::ShaderVariable &uniform,
D3DUniformMap *uniformMap)
{
sh::StubBlockEncoder stubEncoder;
// Samplers get their registers assigned in assignAllSamplerRegisters, and images get their
// registers assigned in assignAllImageRegisters.
if (gl::IsSamplerType(uniform.type))
{
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::Texture, &stubEncoder,
uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
return;
}
if (gl::IsImageType(uniform.type))
{
if (uniform.readonly)
{
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::Texture, &stubEncoder,
uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
}
else
{
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::UnorderedAccessView,
&stubEncoder, uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
}
mImageBindingMap[uniform.name] = uniform.binding;
return;
}
if (uniform.isBuiltIn() && !uniform.isEmulatedBuiltIn())
{
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::None, &stubEncoder,
uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
return;
}
else if (gl::IsAtomicCounterType(uniform.type))
{
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::UnorderedAccessView,
&stubEncoder, uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
mAtomicBindingMap[uniform.name] = uniform.binding;
return;
}
const SharedCompiledShaderStateD3D &shaderD3D = mAttachedShaders[shaderType];
unsigned int startRegister = shaderD3D->getUniformRegister(uniform.name);
ShShaderOutput outputType = shaderD3D->compilerOutputType;
sh::HLSLBlockEncoder encoder(sh::HLSLBlockEncoder::GetStrategyFor(outputType), true);
encoder.skipRegisters(startRegister);
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::None, &encoder, uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
}
void ProgramExecutableD3D::assignAllSamplerRegisters(
const gl::ShaderMap<gl::SharedCompiledShaderState> &shaders)
{
for (size_t uniformIndex = 0; uniformIndex < mD3DUniforms.size(); ++uniformIndex)
{
if (mD3DUniforms[uniformIndex]->isSampler())
{
assignSamplerRegisters(shaders, uniformIndex);
}
}
}
void ProgramExecutableD3D::assignSamplerRegisters(
const gl::ShaderMap<gl::SharedCompiledShaderState> &shaders,
size_t uniformIndex)
{
D3DUniform *d3dUniform = mD3DUniforms[uniformIndex];
ASSERT(d3dUniform->isSampler());
// If the uniform is an array of arrays, then we have separate entries for each inner array in
// mD3DUniforms. However, the sampler register info is stored in the shader only for the
// outermost array.
std::vector<unsigned int> subscripts;
const std::string baseName = gl::ParseResourceName(d3dUniform->name, &subscripts);
unsigned int registerOffset = mExecutable->getUniforms()[uniformIndex].pod.parentArrayIndex *
d3dUniform->getArraySizeProduct();
bool hasUniform = false;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (!shaders[shaderType])
{
continue;
}
const SharedCompiledShaderStateD3D &shaderD3D = mAttachedShaders[shaderType];
if (shaderD3D->hasUniform(baseName))
{
d3dUniform->mShaderRegisterIndexes[shaderType] =
shaderD3D->getUniformRegister(baseName) + registerOffset;
ASSERT(d3dUniform->mShaderRegisterIndexes[shaderType] != GL_INVALID_VALUE);
AssignSamplers(d3dUniform->mShaderRegisterIndexes[shaderType], d3dUniform->typeInfo,
d3dUniform->getArraySizeProduct(), mShaderSamplers[shaderType],
&mUsedShaderSamplerRanges[shaderType]);
hasUniform = true;
}
}
ASSERT(hasUniform);
}
// static
void ProgramExecutableD3D::AssignSamplers(unsigned int startSamplerIndex,
const gl::UniformTypeInfo &typeInfo,
unsigned int samplerCount,
std::vector<D3DSampler> &outSamplers,
gl::RangeUI *outUsedRange)
{
unsigned int samplerIndex = startSamplerIndex;
do
{
ASSERT(samplerIndex < outSamplers.size());
D3DSampler *sampler = &outSamplers[samplerIndex];
sampler->active = true;
sampler->textureType = gl::FromGLenum<gl::TextureType>(typeInfo.textureType);
sampler->logicalTextureUnit = 0;
outUsedRange->extend(samplerIndex);
samplerIndex++;
} while (samplerIndex < startSamplerIndex + samplerCount);
}
void ProgramExecutableD3D::assignAllImageRegisters()
{
for (size_t uniformIndex = 0; uniformIndex < mD3DUniforms.size(); ++uniformIndex)
{
if (mD3DUniforms[uniformIndex]->isImage() && !mD3DUniforms[uniformIndex]->isImage2D())
{
assignImageRegisters(uniformIndex);
}
}
}
void ProgramExecutableD3D::assignAllAtomicCounterRegisters()
{
if (mAtomicBindingMap.empty())
{
return;
}
const SharedCompiledShaderStateD3D &computeShader = mAttachedShaders[gl::ShaderType::Compute];
if (computeShader)
{
auto ®isterIndices = mComputeAtomicCounterBufferRegisterIndices;
for (auto &atomicBinding : mAtomicBindingMap)
{
ASSERT(computeShader->hasUniform(atomicBinding.first));
unsigned int currentRegister = computeShader->getUniformRegister(atomicBinding.first);
ASSERT(currentRegister != GL_INVALID_INDEX);
const int kBinding = atomicBinding.second;
registerIndices[kBinding] = currentRegister;
mUsedAtomicCounterRange[gl::ShaderType::Compute].extend(currentRegister);
}
}
else
{
// Implement atomic counters for non-compute shaders
// http://anglebug.com/42260658
UNIMPLEMENTED();
}
}
void ProgramExecutableD3D::assignImageRegisters(size_t uniformIndex)
{
D3DUniform *d3dUniform = mD3DUniforms[uniformIndex];
ASSERT(d3dUniform->isImage());
// If the uniform is an array of arrays, then we have separate entries for each inner array in
// mD3DUniforms. However, the image register info is stored in the shader only for the
// outermost array.
std::vector<unsigned int> subscripts;
const std::string baseName = gl::ParseResourceName(d3dUniform->name, &subscripts);
unsigned int registerOffset = mExecutable->getUniforms()[uniformIndex].pod.parentArrayIndex *
d3dUniform->getArraySizeProduct();
const SharedCompiledShaderStateD3D &computeShader = mAttachedShaders[gl::ShaderType::Compute];
if (computeShader)
{
ASSERT(computeShader->hasUniform(baseName));
d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute] =
computeShader->getUniformRegister(baseName) + registerOffset;
ASSERT(d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute] != GL_INVALID_INDEX);
auto bindingIter = mImageBindingMap.find(baseName);
ASSERT(bindingIter != mImageBindingMap.end());
if (d3dUniform->regType == HLSLRegisterType::Texture)
{
AssignImages(d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute],
bindingIter->second, d3dUniform->getArraySizeProduct(),
mReadonlyImages[gl::ShaderType::Compute],
&mUsedReadonlyImageRange[gl::ShaderType::Compute]);
}
else if (d3dUniform->regType == HLSLRegisterType::UnorderedAccessView)
{
AssignImages(d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute],
bindingIter->second, d3dUniform->getArraySizeProduct(),
mImages[gl::ShaderType::Compute],
&mUsedImageRange[gl::ShaderType::Compute]);
}
else
{
UNREACHABLE();
}
}
else
{
// TODO(xinghua.cao@intel.com): Implement image variables in vertex shader and pixel shader.
UNIMPLEMENTED();
}
}
// static
void ProgramExecutableD3D::AssignImages(unsigned int startImageIndex,
int startLogicalImageUnit,
unsigned int imageCount,
std::vector<D3DImage> &outImages,
gl::RangeUI *outUsedRange)
{
unsigned int imageIndex = startImageIndex;
// If declare without a binding qualifier, any uniform image variable (include all elements of
// unbound image array) shoud be bound to unit zero.
if (startLogicalImageUnit == -1)
{
ASSERT(imageIndex < outImages.size());
D3DImage *image = &outImages[imageIndex];
image->active = true;
image->logicalImageUnit = 0;
outUsedRange->extend(imageIndex);
return;
}
unsigned int logcalImageUnit = startLogicalImageUnit;
do
{
ASSERT(imageIndex < outImages.size());
D3DImage *image = &outImages[imageIndex];
image->active = true;
image->logicalImageUnit = logcalImageUnit;
outUsedRange->extend(imageIndex);
imageIndex++;
logcalImageUnit++;
} while (imageIndex < startImageIndex + imageCount);
}
void ProgramExecutableD3D::assignImage2DRegisters(gl::ShaderType shaderType,
unsigned int startImageIndex,
int startLogicalImageUnit,
bool readonly)
{
if (readonly)
{
AssignImages(startImageIndex, startLogicalImageUnit, 1, mReadonlyImages[shaderType],
&mUsedReadonlyImageRange[shaderType]);
}
else
{
AssignImages(startImageIndex, startLogicalImageUnit, 1, mImages[shaderType],
&mUsedImageRange[shaderType]);
}
}
void ProgramExecutableD3D::gatherTransformFeedbackVaryings(
RendererD3D *renderer,
const gl::VaryingPacking &varyingPacking,
const std::vector<std::string> &tfVaryingNames,
const BuiltinInfo &builtins)
{
const std::string &varyingSemantic =
GetVaryingSemantic(renderer->getMajorShaderModel(), usesPointSize());
// Gather the linked varyings that are used for transform feedback, they should all exist.
mStreamOutVaryings.clear();
for (unsigned int outputSlot = 0; outputSlot < static_cast<unsigned int>(tfVaryingNames.size());
++outputSlot)
{
const auto &tfVaryingName = tfVaryingNames[outputSlot];
if (tfVaryingName == "gl_Position")
{
if (builtins.glPosition.enabled)
{
mStreamOutVaryings.emplace_back(builtins.glPosition.semantic,
builtins.glPosition.indexOrSize, 4, outputSlot);
}
}
else if (tfVaryingName == "gl_FragCoord")
{
if (builtins.glFragCoord.enabled)
{
mStreamOutVaryings.emplace_back(builtins.glFragCoord.semantic,
builtins.glFragCoord.indexOrSize, 4, outputSlot);
}
}
else if (tfVaryingName == "gl_PointSize")
{
if (builtins.glPointSize.enabled)
{
mStreamOutVaryings.emplace_back("PSIZE", 0, 1, outputSlot);
}
}
else
{
const auto ®isterInfos = varyingPacking.getRegisterList();
for (GLuint registerIndex = 0u; registerIndex < registerInfos.size(); ++registerIndex)
{
const auto ®isterInfo = registerInfos[registerIndex];
const auto &varying = registerInfo.packedVarying->varying();
GLenum transposedType = gl::TransposeMatrixType(varying.type);
int componentCount = gl::VariableColumnCount(transposedType);
ASSERT(!varying.isBuiltIn() && !varying.isStruct());
// There can be more than one register assigned to a particular varying, and each
// register needs its own stream out entry.
if (registerInfo.tfVaryingName() == tfVaryingName)
{
mStreamOutVaryings.emplace_back(varyingSemantic, registerIndex, componentCount,
outputSlot);
}
}
}
}
}
D3DUniform *ProgramExecutableD3D::getD3DUniformFromLocation(
const gl::VariableLocation &locationInfo)
{
return mD3DUniforms[locationInfo.index];
}
const D3DUniform *ProgramExecutableD3D::getD3DUniformFromLocation(
const gl::VariableLocation &locationInfo) const
{
return mD3DUniforms[locationInfo.index];
}
unsigned int ProgramExecutableD3D::issueSerial()
{
return mCurrentSerial++;
}
void ProgramExecutableD3D::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count, v, GL_FLOAT);
}
void ProgramExecutableD3D::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count, v, GL_FLOAT_VEC2);
}
void ProgramExecutableD3D::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count, v, GL_FLOAT_VEC3);
}
void ProgramExecutableD3D::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count, v, GL_FLOAT_VEC4);
}
void ProgramExecutableD3D::setUniformMatrix2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<2, 2>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<3, 3>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<4, 4>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix2x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<2, 3>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix3x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<3, 2>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix2x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<2, 4>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix4x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<4, 2>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix3x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<3, 4>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix4x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<4, 3>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count, v, GL_INT);
}
void ProgramExecutableD3D::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count, v, GL_INT_VEC2);
}
void ProgramExecutableD3D::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count, v, GL_INT_VEC3);
}
void ProgramExecutableD3D::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count, v, GL_INT_VEC4);
}
void ProgramExecutableD3D::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count, v, GL_UNSIGNED_INT);
}
void ProgramExecutableD3D::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count, v, GL_UNSIGNED_INT_VEC2);
}
void ProgramExecutableD3D::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count, v, GL_UNSIGNED_INT_VEC3);
}
void ProgramExecutableD3D::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count, v, GL_UNSIGNED_INT_VEC4);
}
// Assume count is already clamped.
template <typename T>
void ProgramExecutableD3D::setUniformImpl(D3DUniform *targetUniform,
const gl::VariableLocation &locationInfo,
GLsizei count,
const T *v,
uint8_t *targetState,
GLenum uniformType)
{
const int components = targetUniform->typeInfo.componentCount;
const unsigned int arrayElementOffset = locationInfo.arrayIndex;
const int blockSize = 4;
if (targetUniform->typeInfo.type == uniformType)
{
T *dest = reinterpret_cast<T *>(targetState) + arrayElementOffset * blockSize;
const T *source = v;
// If the component is equal to the block size, we can optimize to a single memcpy.
// Otherwise, we have to do partial block writes.
if (components == blockSize)
{
memcpy(dest, source, components * count * sizeof(T));
}
else
{
for (GLint i = 0; i < count; i++, dest += blockSize, source += components)
{
memcpy(dest, source, components * sizeof(T));
}
}
}
else
{
ASSERT(targetUniform->typeInfo.type == gl::VariableBoolVectorType(uniformType));
GLint *boolParams = reinterpret_cast<GLint *>(targetState) + arrayElementOffset * 4;
for (GLint i = 0; i < count; i++)
{
GLint *dest = boolParams + (i * 4);
const T *source = v + (i * components);
for (int c = 0; c < components; c++)
{
dest[c] = (source[c] == static_cast<T>(0)) ? GL_FALSE : GL_TRUE;
}
}
}
}
template <typename T>
void ProgramExecutableD3D::setUniformInternal(GLint location,
GLsizei count,
const T *v,
GLenum uniformType)
{
const gl::VariableLocation &locationInfo = mExecutable->getUniformLocations()[location];
D3DUniform *targetUniform = mD3DUniforms[locationInfo.index];
if (targetUniform->typeInfo.isSampler)
{
ASSERT(uniformType == GL_INT);
size_t size = count * sizeof(T);
GLint *dest = &targetUniform->mSamplerData[locationInfo.arrayIndex];
if (memcmp(dest, v, size) != 0)
{
memcpy(dest, v, size);
mDirtySamplerMapping = true;
}
return;
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
uint8_t *targetState = targetUniform->mShaderData[shaderType];
if (targetState)
{
setUniformImpl(targetUniform, locationInfo, count, v, targetState, uniformType);
mShaderUniformsDirty.set(shaderType);
}
}
}
template <int cols, int rows>
void ProgramExecutableD3D::setUniformMatrixfvInternal(GLint location,
GLsizei countIn,
GLboolean transpose,
const GLfloat *value)
{
const gl::VariableLocation &uniformLocation = mExecutable->getUniformLocations()[location];
D3DUniform *targetUniform = getD3DUniformFromLocation(uniformLocation);
unsigned int arrayElementOffset = uniformLocation.arrayIndex;
unsigned int elementCount = targetUniform->getArraySizeProduct();
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (targetUniform->mShaderData[shaderType])
{
SetFloatUniformMatrixHLSL<cols, rows>::Run(arrayElementOffset, elementCount, countIn,
transpose, value,
targetUniform->mShaderData[shaderType]);
mShaderUniformsDirty.set(shaderType);
}
}
}
template <typename DestT>
void ProgramExecutableD3D::getUniformInternal(GLint location, DestT *dataOut) const
{
const gl::VariableLocation &locationInfo = mExecutable->getUniformLocations()[location];
const gl::LinkedUniform &uniform = mExecutable->getUniforms()[locationInfo.index];
const D3DUniform *targetUniform = getD3DUniformFromLocation(locationInfo);
const uint8_t *srcPointer = targetUniform->getDataPtrToElement(locationInfo.arrayIndex);
if (gl::IsMatrixType(uniform.getType()))
{
GetMatrixUniform(uniform.getType(), dataOut, reinterpret_cast<const DestT *>(srcPointer),
true);
}
else
{
memcpy(dataOut, srcPointer, uniform.getElementSize());
}
}
void ProgramExecutableD3D::getUniformfv(const gl::Context *context,
GLint location,
GLfloat *params) const
{
getUniformInternal(location, params);
}
void ProgramExecutableD3D::getUniformiv(const gl::Context *context,
GLint location,
GLint *params) const
{
getUniformInternal(location, params);
}
void ProgramExecutableD3D::getUniformuiv(const gl::Context *context,
GLint location,
GLuint *params) const
{
getUniformInternal(location, params);
}
} // namespace rx