Hash :
af6fc1b4
Author :
Date :
2017-01-26T17:45:35
Make aggregate node creation more robust Now aggregate nodes are always built with their return type, op and arguments set. They'll determine their qualifier and precision automatically. This fixes setting of gotPrecisionFromChildren in a few cases. This will also make it easier to split TIntermAggregate further into specialized classes if that is desired. BUG=angleproject:1490 TEST=angle_unittests Change-Id: I1fbe0c75679c517a22d44dfc1ea160ad7a7fdfda Reviewed-on: https://chromium-review.googlesource.com/433468 Reviewed-by: Corentin Wallez <cwallez@chromium.org> Reviewed-by: Jamie Madill <jmadill@chromium.org> Commit-Queue: Olli Etuaho <oetuaho@nvidia.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/ParseContext.h"
#include <stdarg.h>
#include <stdio.h>
#include "compiler/preprocessor/SourceLocation.h"
#include "compiler/translator/Cache.h"
#include "compiler/translator/glslang.h"
#include "compiler/translator/ValidateSwitch.h"
#include "compiler/translator/ValidateGlobalInitializer.h"
#include "compiler/translator/util.h"
namespace sh
{
///////////////////////////////////////////////////////////////////////
//
// Sub- vector and matrix fields
//
////////////////////////////////////////////////////////////////////////
namespace
{
const int kWebGLMaxStructNesting = 4;
bool ContainsSampler(const TType &type)
{
if (IsSampler(type.getBasicType()))
return true;
if (type.getBasicType() == EbtStruct || type.isInterfaceBlock())
{
const TFieldList &fields = type.getStruct()->fields();
for (unsigned int i = 0; i < fields.size(); ++i)
{
if (ContainsSampler(*fields[i]->type()))
return true;
}
}
return false;
}
bool ContainsImage(const TType &type)
{
if (IsImage(type.getBasicType()))
return true;
if (type.getBasicType() == EbtStruct || type.isInterfaceBlock())
{
const TFieldList &fields = type.getStruct()->fields();
for (unsigned int i = 0; i < fields.size(); ++i)
{
if (ContainsImage(*fields[i]->type()))
return true;
}
}
return false;
}
} // namespace
TParseContext::TParseContext(TSymbolTable &symt,
TExtensionBehavior &ext,
sh::GLenum type,
ShShaderSpec spec,
ShCompileOptions options,
bool checksPrecErrors,
TDiagnostics *diagnostics,
const ShBuiltInResources &resources)
: intermediate(),
symbolTable(symt),
mDeferredSingleDeclarationErrorCheck(false),
mShaderType(type),
mShaderSpec(spec),
mCompileOptions(options),
mShaderVersion(100),
mTreeRoot(nullptr),
mLoopNestingLevel(0),
mStructNestingLevel(0),
mSwitchNestingLevel(0),
mCurrentFunctionType(nullptr),
mFunctionReturnsValue(false),
mChecksPrecisionErrors(checksPrecErrors),
mFragmentPrecisionHighOnESSL1(false),
mDefaultMatrixPacking(EmpColumnMajor),
mDefaultBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared),
mDiagnostics(diagnostics),
mDirectiveHandler(ext,
*mDiagnostics,
mShaderVersion,
mShaderType,
resources.WEBGL_debug_shader_precision == 1),
mPreprocessor(mDiagnostics, &mDirectiveHandler, pp::PreprocessorSettings()),
mScanner(nullptr),
mUsesFragData(false),
mUsesFragColor(false),
mUsesSecondaryOutputs(false),
mMinProgramTexelOffset(resources.MinProgramTexelOffset),
mMaxProgramTexelOffset(resources.MaxProgramTexelOffset),
mMultiviewAvailable(resources.OVR_multiview == 1),
mComputeShaderLocalSizeDeclared(false),
mNumViews(-1),
mMaxNumViews(resources.MaxViewsOVR),
mDeclaringFunction(false)
{
mComputeShaderLocalSize.fill(-1);
}
//
// Look at a '.' field selector string and change it into offsets
// for a vector.
//
bool TParseContext::parseVectorFields(const TString &compString,
int vecSize,
TVectorFields &fields,
const TSourceLoc &line)
{
fields.num = (int)compString.size();
if (fields.num > 4)
{
error(line, "illegal vector field selection", compString.c_str());
return false;
}
enum
{
exyzw,
ergba,
estpq
} fieldSet[4];
for (int i = 0; i < fields.num; ++i)
{
switch (compString[i])
{
case 'x':
fields.offsets[i] = 0;
fieldSet[i] = exyzw;
break;
case 'r':
fields.offsets[i] = 0;
fieldSet[i] = ergba;
break;
case 's':
fields.offsets[i] = 0;
fieldSet[i] = estpq;
break;
case 'y':
fields.offsets[i] = 1;
fieldSet[i] = exyzw;
break;
case 'g':
fields.offsets[i] = 1;
fieldSet[i] = ergba;
break;
case 't':
fields.offsets[i] = 1;
fieldSet[i] = estpq;
break;
case 'z':
fields.offsets[i] = 2;
fieldSet[i] = exyzw;
break;
case 'b':
fields.offsets[i] = 2;
fieldSet[i] = ergba;
break;
case 'p':
fields.offsets[i] = 2;
fieldSet[i] = estpq;
break;
case 'w':
fields.offsets[i] = 3;
fieldSet[i] = exyzw;
break;
case 'a':
fields.offsets[i] = 3;
fieldSet[i] = ergba;
break;
case 'q':
fields.offsets[i] = 3;
fieldSet[i] = estpq;
break;
default:
error(line, "illegal vector field selection", compString.c_str());
return false;
}
}
for (int i = 0; i < fields.num; ++i)
{
if (fields.offsets[i] >= vecSize)
{
error(line, "vector field selection out of range", compString.c_str());
return false;
}
if (i > 0)
{
if (fieldSet[i] != fieldSet[i - 1])
{
error(line, "illegal - vector component fields not from the same set",
compString.c_str());
return false;
}
}
}
return true;
}
///////////////////////////////////////////////////////////////////////
//
// Errors
//
////////////////////////////////////////////////////////////////////////
//
// Used by flex/bison to output all syntax and parsing errors.
//
void TParseContext::error(const TSourceLoc &loc, const char *reason, const char *token)
{
mDiagnostics->error(loc, reason, token);
}
void TParseContext::warning(const TSourceLoc &loc, const char *reason, const char *token)
{
mDiagnostics->warning(loc, reason, token);
}
void TParseContext::outOfRangeError(bool isError,
const TSourceLoc &loc,
const char *reason,
const char *token)
{
if (isError)
{
error(loc, reason, token);
}
else
{
warning(loc, reason, token);
}
}
//
// Same error message for all places assignments don't work.
//
void TParseContext::assignError(const TSourceLoc &line, const char *op, TString left, TString right)
{
std::stringstream reasonStream;
reasonStream << "cannot convert from '" << right << "' to '" << left << "'";
std::string reason = reasonStream.str();
error(line, reason.c_str(), op);
}
//
// Same error message for all places unary operations don't work.
//
void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, TString operand)
{
std::stringstream reasonStream;
reasonStream << "wrong operand type - no operation '" << op
<< "' exists that takes an operand of type " << operand
<< " (or there is no acceptable conversion)";
std::string reason = reasonStream.str();
error(line, reason.c_str(), op);
}
//
// Same error message for all binary operations don't work.
//
void TParseContext::binaryOpError(const TSourceLoc &line,
const char *op,
TString left,
TString right)
{
std::stringstream reasonStream;
reasonStream << "wrong operand types - no operation '" << op
<< "' exists that takes a left-hand operand of type '" << left
<< "' and a right operand of type '" << right
<< "' (or there is no acceptable conversion)";
std::string reason = reasonStream.str();
error(line, reason.c_str(), op);
}
void TParseContext::checkPrecisionSpecified(const TSourceLoc &line,
TPrecision precision,
TBasicType type)
{
if (!mChecksPrecisionErrors)
return;
if (precision != EbpUndefined && !SupportsPrecision(type))
{
error(line, "illegal type for precision qualifier", getBasicString(type));
}
if (precision == EbpUndefined)
{
switch (type)
{
case EbtFloat:
error(line, "No precision specified for (float)", "");
return;
case EbtInt:
case EbtUInt:
UNREACHABLE(); // there's always a predeclared qualifier
error(line, "No precision specified (int)", "");
return;
default:
if (IsSampler(type))
{
error(line, "No precision specified (sampler)", "");
return;
}
if (IsImage(type))
{
error(line, "No precision specified (image)", "");
return;
}
}
}
}
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node)
{
TIntermSymbol *symNode = node->getAsSymbolNode();
TIntermBinary *binaryNode = node->getAsBinaryNode();
TIntermSwizzle *swizzleNode = node->getAsSwizzleNode();
if (swizzleNode)
{
bool ok = checkCanBeLValue(line, op, swizzleNode->getOperand());
if (ok && swizzleNode->hasDuplicateOffsets())
{
error(line, " l-value of swizzle cannot have duplicate components", op);
return false;
}
return ok;
}
if (binaryNode)
{
switch (binaryNode->getOp())
{
case EOpIndexDirect:
case EOpIndexIndirect:
case EOpIndexDirectStruct:
case EOpIndexDirectInterfaceBlock:
return checkCanBeLValue(line, op, binaryNode->getLeft());
default:
break;
}
error(line, " l-value required", op);
return false;
}
const char *message = 0;
switch (node->getQualifier())
{
case EvqConst:
message = "can't modify a const";
break;
case EvqConstReadOnly:
message = "can't modify a const";
break;
case EvqAttribute:
message = "can't modify an attribute";
break;
case EvqFragmentIn:
message = "can't modify an input";
break;
case EvqVertexIn:
message = "can't modify an input";
break;
case EvqUniform:
message = "can't modify a uniform";
break;
case EvqVaryingIn:
message = "can't modify a varying";
break;
case EvqFragCoord:
message = "can't modify gl_FragCoord";
break;
case EvqFrontFacing:
message = "can't modify gl_FrontFacing";
break;
case EvqPointCoord:
message = "can't modify gl_PointCoord";
break;
case EvqNumWorkGroups:
message = "can't modify gl_NumWorkGroups";
break;
case EvqWorkGroupSize:
message = "can't modify gl_WorkGroupSize";
break;
case EvqWorkGroupID:
message = "can't modify gl_WorkGroupID";
break;
case EvqLocalInvocationID:
message = "can't modify gl_LocalInvocationID";
break;
case EvqGlobalInvocationID:
message = "can't modify gl_GlobalInvocationID";
break;
case EvqLocalInvocationIndex:
message = "can't modify gl_LocalInvocationIndex";
break;
case EvqComputeIn:
message = "can't modify work group size variable";
break;
default:
//
// Type that can't be written to?
//
if (node->getBasicType() == EbtVoid)
{
message = "can't modify void";
}
if (IsSampler(node->getBasicType()))
{
message = "can't modify a sampler";
}
if (IsImage(node->getBasicType()))
{
message = "can't modify an image";
}
}
if (message == 0 && binaryNode == 0 && symNode == 0)
{
error(line, "l-value required", op);
return false;
}
//
// Everything else is okay, no error.
//
if (message == 0)
return true;
//
// If we get here, we have an error and a message.
//
if (symNode)
{
const char *symbol = symNode->getSymbol().c_str();
std::stringstream reasonStream;
reasonStream << "l-value required (" << message << " \"" << symbol << "\")";
std::string reason = reasonStream.str();
error(line, reason.c_str(), op);
}
else
{
std::stringstream reasonStream;
reasonStream << "l-value required (" << message << ")";
std::string reason = reasonStream.str();
error(line, reason.c_str(), op);
}
return false;
}
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
void TParseContext::checkIsConst(TIntermTyped *node)
{
if (node->getQualifier() != EvqConst)
{
error(node->getLine(), "constant expression required", "");
}
}
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token)
{
if (!node->isScalarInt())
{
error(node->getLine(), "integer expression required", token);
}
}
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token)
{
if (!symbolTable.atGlobalLevel())
{
error(line, "only allowed at global scope", token);
return false;
}
return true;
}
// For now, keep it simple: if it starts "gl_", it's reserved, independent
// of scope. Except, if the symbol table is at the built-in push-level,
// which is when we are parsing built-ins.
// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
// webgl shader.
bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const TString &identifier)
{
static const char *reservedErrMsg = "reserved built-in name";
if (!symbolTable.atBuiltInLevel())
{
if (identifier.compare(0, 3, "gl_") == 0)
{
error(line, reservedErrMsg, "gl_");
return false;
}
if (sh::IsWebGLBasedSpec(mShaderSpec))
{
if (identifier.compare(0, 6, "webgl_") == 0)
{
error(line, reservedErrMsg, "webgl_");
return false;
}
if (identifier.compare(0, 7, "_webgl_") == 0)
{
error(line, reservedErrMsg, "_webgl_");
return false;
}
}
if (identifier.find("__") != TString::npos)
{
error(line,
"identifiers containing two consecutive underscores (__) are reserved as "
"possible future keywords",
identifier.c_str());
return false;
}
}
return true;
}
// Make sure there is enough data provided to the constructor to build
// something of the type of the constructor. Also returns the type of
// the constructor.
bool TParseContext::checkConstructorArguments(const TSourceLoc &line,
const TIntermSequence *arguments,
TOperator op,
const TType &type)
{
bool constructingMatrix = false;
switch (op)
{
case EOpConstructMat2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4:
constructingMatrix = true;
break;
default:
break;
}
//
// Note: It's okay to have too many components available, but not okay to have unused
// arguments. 'full' will go to true when enough args have been seen. If we loop
// again, there is an extra argument, so 'overfull' will become true.
//
size_t size = 0;
bool full = false;
bool overFull = false;
bool matrixInMatrix = false;
bool arrayArg = false;
for (TIntermNode *arg : *arguments)
{
const TIntermTyped *argTyped = arg->getAsTyped();
size += argTyped->getType().getObjectSize();
if (constructingMatrix && argTyped->getType().isMatrix())
matrixInMatrix = true;
if (full)
overFull = true;
if (op != EOpConstructStruct && !type.isArray() && size >= type.getObjectSize())
full = true;
if (argTyped->getType().isArray())
arrayArg = true;
}
if (type.isArray())
{
// The size of an unsized constructor should already have been determined.
ASSERT(!type.isUnsizedArray());
if (static_cast<size_t>(type.getArraySize()) != arguments->size())
{
error(line, "array constructor needs one argument per array element", "constructor");
return false;
}
}
if (arrayArg && op != EOpConstructStruct)
{
error(line, "constructing from a non-dereferenced array", "constructor");
return false;
}
if (matrixInMatrix && !type.isArray())
{
if (arguments->size() != 1)
{
error(line, "constructing matrix from matrix can only take one argument",
"constructor");
return false;
}
}
if (overFull)
{
error(line, "too many arguments", "constructor");
return false;
}
if (op == EOpConstructStruct && !type.isArray() &&
type.getStruct()->fields().size() != arguments->size())
{
error(line,
"Number of constructor parameters does not match the number of structure fields",
"constructor");
return false;
}
if (!type.isMatrix() || !matrixInMatrix)
{
if ((op != EOpConstructStruct && size != 1 && size < type.getObjectSize()) ||
(op == EOpConstructStruct && size < type.getObjectSize()))
{
error(line, "not enough data provided for construction", "constructor");
return false;
}
}
if (arguments->empty())
{
error(line, "constructor does not have any arguments", "constructor");
return false;
}
for (TIntermNode *const &argNode : *arguments)
{
TIntermTyped *argTyped = argNode->getAsTyped();
ASSERT(argTyped != nullptr);
if (op != EOpConstructStruct && IsSampler(argTyped->getBasicType()))
{
error(line, "cannot convert a sampler", "constructor");
return false;
}
if (op != EOpConstructStruct && IsImage(argTyped->getBasicType()))
{
error(line, "cannot convert an image", "constructor");
return false;
}
if (argTyped->getBasicType() == EbtVoid)
{
error(line, "cannot convert a void", "constructor");
return false;
}
}
if (type.isArray())
{
// GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of
// the array.
for (TIntermNode *const &argNode : *arguments)
{
const TType &argType = argNode->getAsTyped()->getType();
// It has already been checked that the argument is not an array.
ASSERT(!argType.isArray());
if (!argType.sameElementType(type))
{
error(line, "Array constructor argument has an incorrect type", "constructor");
return false;
}
}
}
else if (op == EOpConstructStruct)
{
const TFieldList &fields = type.getStruct()->fields();
for (size_t i = 0; i < fields.size(); i++)
{
if (i >= arguments->size() ||
(*arguments)[i]->getAsTyped()->getType() != *fields[i]->type())
{
error(line, "Structure constructor arguments do not match structure fields",
"constructor");
return false;
}
}
}
return true;
}
// This function checks to see if a void variable has been declared and raise an error message for
// such a case
//
// returns true in case of an error
//
bool TParseContext::checkIsNonVoid(const TSourceLoc &line,
const TString &identifier,
const TBasicType &type)
{
if (type == EbtVoid)
{
error(line, "illegal use of type 'void'", identifier.c_str());
return false;
}
return true;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression
// or not.
void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type)
{
if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector())
{
error(line, "boolean expression expected", "");
}
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression
// or not.
void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType)
{
if (pType.getBasicType() != EbtBool || pType.isAggregate())
{
error(line, "boolean expression expected", "");
}
}
bool TParseContext::checkIsNotSampler(const TSourceLoc &line,
const TTypeSpecifierNonArray &pType,
const char *reason)
{
if (pType.type == EbtStruct)
{
if (ContainsSampler(*pType.userDef))
{
std::stringstream reasonStream;
reasonStream << reason << " (structure contains a sampler)";
std::string reasonStr = reasonStream.str();
error(line, reasonStr.c_str(), getBasicString(pType.type));
return false;
}
return true;
}
else if (IsSampler(pType.type))
{
error(line, reason, getBasicString(pType.type));
return false;
}
return true;
}
bool TParseContext::checkIsNotImage(const TSourceLoc &line,
const TTypeSpecifierNonArray &pType,
const char *reason)
{
if (pType.type == EbtStruct)
{
if (ContainsImage(*pType.userDef))
{
std::stringstream reasonStream;
reasonStream << reason << " (structure contains an image)";
std::string reasonStr = reasonStream.str();
error(line, reasonStr.c_str(), getBasicString(pType.type));
return false;
}
return true;
}
else if (IsImage(pType.type))
{
error(line, reason, getBasicString(pType.type));
return false;
}
return true;
}
void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line,
const TPublicType &pType)
{
if (pType.layoutQualifier.location != -1)
{
error(line, "location must only be specified for a single input or output variable",
"location");
}
}
void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location,
const TLayoutQualifier &layoutQualifier)
{
if (layoutQualifier.location != -1)
{
error(location, "invalid layout qualifier: only valid on program inputs and outputs",
"location");
}
}
void TParseContext::checkOutParameterIsNotOpaqueType(const TSourceLoc &line,
TQualifier qualifier,
const TType &type)
{
checkOutParameterIsNotSampler(line, qualifier, type);
checkOutParameterIsNotImage(line, qualifier, type);
}
void TParseContext::checkOutParameterIsNotSampler(const TSourceLoc &line,
TQualifier qualifier,
const TType &type)
{
ASSERT(qualifier == EvqOut || qualifier == EvqInOut);
if (IsSampler(type.getBasicType()))
{
error(line, "samplers cannot be output parameters", type.getBasicString());
}
}
void TParseContext::checkOutParameterIsNotImage(const TSourceLoc &line,
TQualifier qualifier,
const TType &type)
{
ASSERT(qualifier == EvqOut || qualifier == EvqInOut);
if (IsImage(type.getBasicType()))
{
error(line, "images cannot be output parameters", type.getBasicString());
}
}
// Do size checking for an array type's size.
unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr)
{
TIntermConstantUnion *constant = expr->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of the constant == nullptr check here once all constant
// expressions can be folded. Right now we don't allow constant expressions that ANGLE can't
// fold as array size.
if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt())
{
error(line, "array size must be a constant integer expression", "");
return 1u;
}
unsigned int size = 0u;
if (constant->getBasicType() == EbtUInt)
{
size = constant->getUConst(0);
}
else
{
int signedSize = constant->getIConst(0);
if (signedSize < 0)
{
error(line, "array size must be non-negative", "");
return 1u;
}
size = static_cast<unsigned int>(signedSize);
}
if (size == 0u)
{
error(line, "array size must be greater than zero", "");
return 1u;
}
// The size of arrays is restricted here to prevent issues further down the
// compiler/translator/driver stack. Shader Model 5 generation hardware is limited to
// 4096 registers so this should be reasonable even for aggressively optimizable code.
const unsigned int sizeLimit = 65536;
if (size > sizeLimit)
{
error(line, "array size too large", "");
return 1u;
}
return size;
}
// See if this qualifier can be an array.
bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line,
const TPublicType &elementQualifier)
{
if ((elementQualifier.qualifier == EvqAttribute) ||
(elementQualifier.qualifier == EvqVertexIn) ||
(elementQualifier.qualifier == EvqConst && mShaderVersion < 300))
{
error(line, "cannot declare arrays of this qualifier",
TType(elementQualifier).getQualifierString());
return false;
}
return true;
}
// See if this element type can be formed into an array.
bool TParseContext::checkIsValidTypeForArray(const TSourceLoc &line, const TPublicType &elementType)
{
//
// Can the type be an array?
//
if (elementType.array)
{
error(line, "cannot declare arrays of arrays",
TType(elementType).getCompleteString().c_str());
return false;
}
// In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere.
// In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section
// 4.3.4).
if (mShaderVersion >= 300 && elementType.getBasicType() == EbtStruct &&
sh::IsVarying(elementType.qualifier))
{
error(line, "cannot declare arrays of structs of this qualifier",
TType(elementType).getCompleteString().c_str());
return false;
}
return true;
}
// Check if this qualified element type can be formed into an array.
bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation,
const TPublicType &elementType)
{
if (checkIsValidTypeForArray(indexLocation, elementType))
{
return checkIsValidQualifierForArray(indexLocation, elementType);
}
return false;
}
// Enforce non-initializer type/qualifier rules.
void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line,
const TString &identifier,
TPublicType *type)
{
ASSERT(type != nullptr);
if (type->qualifier == EvqConst)
{
// Make the qualifier make sense.
type->qualifier = EvqTemporary;
// Generate informative error messages for ESSL1.
// In ESSL3 arrays and structures containing arrays can be constant.
if (mShaderVersion < 300 && type->isStructureContainingArrays())
{
error(line,
"structures containing arrays may not be declared constant since they cannot be "
"initialized",
identifier.c_str());
}
else
{
error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
}
return;
}
if (type->isUnsizedArray())
{
error(line, "implicitly sized arrays need to be initialized", identifier.c_str());
}
}
// Do some simple checks that are shared between all variable declarations,
// and update the symbol table.
//
// Returns true if declaring the variable succeeded.
//
bool TParseContext::declareVariable(const TSourceLoc &line,
const TString &identifier,
const TType &type,
TVariable **variable)
{
ASSERT((*variable) == nullptr);
bool needsReservedCheck = true;
// gl_LastFragData may be redeclared with a new precision qualifier
if (type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0)
{
const TVariable *maxDrawBuffers = static_cast<const TVariable *>(
symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion));
if (static_cast<int>(type.getArraySize()) == maxDrawBuffers->getConstPointer()->getIConst())
{
if (TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion))
{
needsReservedCheck = !checkCanUseExtension(line, builtInSymbol->getExtension());
}
}
else
{
error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers",
identifier.c_str());
return false;
}
}
if (needsReservedCheck && !checkIsNotReserved(line, identifier))
return false;
(*variable) = new TVariable(&identifier, type);
if (!symbolTable.declare(*variable))
{
error(line, "redefinition", identifier.c_str());
*variable = nullptr;
return false;
}
if (!checkIsNonVoid(line, identifier, type.getBasicType()))
return false;
return true;
}
void TParseContext::checkIsParameterQualifierValid(
const TSourceLoc &line,
const TTypeQualifierBuilder &typeQualifierBuilder,
TType *type)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getParameterTypeQualifier(mDiagnostics);
if (typeQualifier.qualifier == EvqOut || typeQualifier.qualifier == EvqInOut)
{
checkOutParameterIsNotOpaqueType(line, typeQualifier.qualifier, *type);
}
if (!IsImage(type->getBasicType()))
{
checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, line);
}
else
{
type->setMemoryQualifier(typeQualifier.memoryQualifier);
}
type->setQualifier(typeQualifier.qualifier);
if (typeQualifier.precision != EbpUndefined)
{
type->setPrecision(typeQualifier.precision);
}
}
bool TParseContext::checkCanUseExtension(const TSourceLoc &line, const TString &extension)
{
const TExtensionBehavior &extBehavior = extensionBehavior();
TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
if (iter == extBehavior.end())
{
error(line, "extension is not supported", extension.c_str());
return false;
}
// In GLSL ES, an extension's default behavior is "disable".
if (iter->second == EBhDisable || iter->second == EBhUndefined)
{
// TODO(oetuaho@nvidia.com): This is slightly hacky. Might be better if symbols could be
// associated with more than one extension.
if (extension == "GL_OVR_multiview")
{
return checkCanUseExtension(line, "GL_OVR_multiview2");
}
error(line, "extension is disabled", extension.c_str());
return false;
}
if (iter->second == EBhWarn)
{
warning(line, "extension is being used", extension.c_str());
return true;
}
return true;
}
void TParseContext::emptyDeclarationErrorCheck(const TPublicType &publicType,
const TSourceLoc &location)
{
if (publicType.isUnsizedArray())
{
// ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an
// error. It is assumed that this applies to empty declarations as well.
error(location, "empty array declaration needs to specify a size", "");
}
if (publicType.qualifier == EvqShared && !publicType.layoutQualifier.isEmpty())
{
error(location, "Shared memory declarations cannot have layout specified", "layout");
}
}
// These checks are common for all declarations starting a declarator list, and declarators that
// follow an empty declaration.
void TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType,
const TSourceLoc &identifierLocation)
{
switch (publicType.qualifier)
{
case EvqVaryingIn:
case EvqVaryingOut:
case EvqAttribute:
case EvqVertexIn:
case EvqFragmentOut:
case EvqComputeIn:
if (publicType.getBasicType() == EbtStruct)
{
error(identifierLocation, "cannot be used with a structure",
getQualifierString(publicType.qualifier));
return;
}
default:
break;
}
if (publicType.qualifier != EvqUniform &&
!checkIsNotSampler(identifierLocation, publicType.typeSpecifierNonArray,
"samplers must be uniform"))
{
return;
}
if (publicType.qualifier != EvqUniform &&
!checkIsNotImage(identifierLocation, publicType.typeSpecifierNonArray,
"images must be uniform"))
{
return;
}
// check for layout qualifier issues
const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
if (layoutQualifier.matrixPacking != EmpUnspecified)
{
error(identifierLocation, "layout qualifier only valid for interface blocks",
getMatrixPackingString(layoutQualifier.matrixPacking));
return;
}
if (layoutQualifier.blockStorage != EbsUnspecified)
{
error(identifierLocation, "layout qualifier only valid for interface blocks",
getBlockStorageString(layoutQualifier.blockStorage));
return;
}
if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut)
{
checkLocationIsNotSpecified(identifierLocation, publicType.layoutQualifier);
}
if (IsImage(publicType.getBasicType()))
{
switch (layoutQualifier.imageInternalFormat)
{
case EiifRGBA32F:
case EiifRGBA16F:
case EiifR32F:
case EiifRGBA8:
case EiifRGBA8_SNORM:
if (!IsFloatImage(publicType.getBasicType()))
{
error(identifierLocation,
"internal image format requires a floating image type",
getBasicString(publicType.getBasicType()));
return;
}
break;
case EiifRGBA32I:
case EiifRGBA16I:
case EiifRGBA8I:
case EiifR32I:
if (!IsIntegerImage(publicType.getBasicType()))
{
error(identifierLocation,
"internal image format requires an integer image type",
getBasicString(publicType.getBasicType()));
return;
}
break;
case EiifRGBA32UI:
case EiifRGBA16UI:
case EiifRGBA8UI:
case EiifR32UI:
if (!IsUnsignedImage(publicType.getBasicType()))
{
error(identifierLocation,
"internal image format requires an unsigned image type",
getBasicString(publicType.getBasicType()));
return;
}
break;
case EiifUnspecified:
error(identifierLocation, "layout qualifier", "No image internal format specified");
return;
default:
error(identifierLocation, "layout qualifier", "unrecognized token");
return;
}
// GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
switch (layoutQualifier.imageInternalFormat)
{
case EiifR32F:
case EiifR32I:
case EiifR32UI:
break;
default:
if (!publicType.memoryQualifier.readonly && !publicType.memoryQualifier.writeonly)
{
error(identifierLocation, "layout qualifier",
"Except for images with the r32f, r32i and r32ui format qualifiers, "
"image variables must be qualified readonly and/or writeonly");
return;
}
break;
}
}
else
{
if (!checkInternalFormatIsNotSpecified(identifierLocation,
layoutQualifier.imageInternalFormat))
{
return;
}
if (!checkIsMemoryQualifierNotSpecified(publicType.memoryQualifier, identifierLocation))
{
return;
}
}
}
void TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location,
const TString &layoutQualifierName,
int versionRequired)
{
if (mShaderVersion < versionRequired)
{
error(location, "invalid layout qualifier: not supported", layoutQualifierName.c_str());
}
}
bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location,
const TLayoutQualifier &layoutQualifier)
{
const sh::WorkGroupSize &localSize = layoutQualifier.localSize;
for (size_t i = 0u; i < localSize.size(); ++i)
{
if (localSize[i] != -1)
{
error(location,
"invalid layout qualifier: only valid when used with 'in' in a compute shader "
"global layout declaration",
getWorkGroupSizeString(i));
return false;
}
}
return true;
}
bool TParseContext::checkInternalFormatIsNotSpecified(const TSourceLoc &location,
TLayoutImageInternalFormat internalFormat)
{
if (internalFormat != EiifUnspecified)
{
error(location, "invalid layout qualifier: only valid when used with images",
getImageInternalFormatString(internalFormat));
return false;
}
return true;
}
void TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate,
TIntermAggregate *fnCall)
{
for (size_t i = 0; i < fnCandidate->getParamCount(); ++i)
{
TQualifier qual = fnCandidate->getParam(i).type->getQualifier();
if (qual == EvqOut || qual == EvqInOut)
{
TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped();
if (!checkCanBeLValue(argument->getLine(), "assign", argument))
{
TString unmangledName =
TFunction::unmangleName(fnCall->getFunctionSymbolInfo()->getName());
error(argument->getLine(),
"Constant value cannot be passed for 'out' or 'inout' parameters.",
unmangledName.c_str());
return;
}
}
}
}
void TParseContext::checkInvariantVariableQualifier(bool invariant,
const TQualifier qualifier,
const TSourceLoc &invariantLocation)
{
if (!invariant)
return;
if (mShaderVersion < 300)
{
// input variables in the fragment shader can be also qualified as invariant
if (!sh::CanBeInvariantESSL1(qualifier))
{
error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
}
}
else
{
if (!sh::CanBeInvariantESSL3OrGreater(qualifier))
{
error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
}
}
}
bool TParseContext::supportsExtension(const char *extension)
{
const TExtensionBehavior &extbehavior = extensionBehavior();
TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
return (iter != extbehavior.end());
}
bool TParseContext::isExtensionEnabled(const char *extension) const
{
return ::IsExtensionEnabled(extensionBehavior(), extension);
}
void TParseContext::handleExtensionDirective(const TSourceLoc &loc,
const char *extName,
const char *behavior)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
mDirectiveHandler.handleExtension(srcLoc, extName, behavior);
}
void TParseContext::handlePragmaDirective(const TSourceLoc &loc,
const char *name,
const char *value,
bool stdgl)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl);
}
sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const
{
sh::WorkGroupSize result;
for (size_t i = 0u; i < result.size(); ++i)
{
if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1)
{
result[i] = 1;
}
else
{
result[i] = mComputeShaderLocalSize[i];
}
}
return result;
}
/////////////////////////////////////////////////////////////////////////////////
//
// Non-Errors.
//
/////////////////////////////////////////////////////////////////////////////////
const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location,
const TString *name,
const TSymbol *symbol)
{
const TVariable *variable = NULL;
if (!symbol)
{
error(location, "undeclared identifier", name->c_str());
}
else if (!symbol->isVariable())
{
error(location, "variable expected", name->c_str());
}
else
{
variable = static_cast<const TVariable *>(symbol);
if (symbolTable.findBuiltIn(variable->getName(), mShaderVersion) &&
!variable->getExtension().empty())
{
checkCanUseExtension(location, variable->getExtension());
}
// Reject shaders using both gl_FragData and gl_FragColor
TQualifier qualifier = variable->getType().getQualifier();
if (qualifier == EvqFragData || qualifier == EvqSecondaryFragDataEXT)
{
mUsesFragData = true;
}
else if (qualifier == EvqFragColor || qualifier == EvqSecondaryFragColorEXT)
{
mUsesFragColor = true;
}
if (qualifier == EvqSecondaryFragDataEXT || qualifier == EvqSecondaryFragColorEXT)
{
mUsesSecondaryOutputs = true;
}
// This validation is not quite correct - it's only an error to write to
// both FragData and FragColor. For simplicity, and because users shouldn't
// be rewarded for reading from undefined varaibles, return an error
// if they are both referenced, rather than assigned.
if (mUsesFragData && mUsesFragColor)
{
const char *errorMessage = "cannot use both gl_FragData and gl_FragColor";
if (mUsesSecondaryOutputs)
{
errorMessage =
"cannot use both output variable sets (gl_FragData, gl_SecondaryFragDataEXT)"
" and (gl_FragColor, gl_SecondaryFragColorEXT)";
}
error(location, errorMessage, name->c_str());
}
// GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables
if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared &&
qualifier == EvqWorkGroupSize)
{
error(location,
"It is an error to use gl_WorkGroupSize before declaring the local group size",
"gl_WorkGroupSize");
}
}
if (!variable)
{
TType type(EbtFloat, EbpUndefined);
TVariable *fakeVariable = new TVariable(name, type);
symbolTable.declare(fakeVariable);
variable = fakeVariable;
}
return variable;
}
TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location,
const TString *name,
const TSymbol *symbol)
{
const TVariable *variable = getNamedVariable(location, name, symbol);
if (variable->getType().getQualifier() == EvqViewIDOVR && IsWebGLBasedSpec(mShaderSpec) &&
mShaderType == GL_FRAGMENT_SHADER && !isExtensionEnabled("GL_OVR_multiview2"))
{
// WEBGL_multiview spec
error(location, "Need to enable OVR_multiview2 to use gl_ViewID_OVR in fragment shader",
"gl_ViewID_OVR");
}
if (variable->getConstPointer())
{
const TConstantUnion *constArray = variable->getConstPointer();
return intermediate.addConstantUnion(constArray, variable->getType(), location);
}
else if (variable->getType().getQualifier() == EvqWorkGroupSize &&
mComputeShaderLocalSizeDeclared)
{
// gl_WorkGroupSize can be used to size arrays according to the ESSL 3.10.4 spec, so it
// needs to be added to the AST as a constant and not as a symbol.
sh::WorkGroupSize workGroupSize = getComputeShaderLocalSize();
TConstantUnion *constArray = new TConstantUnion[3];
for (size_t i = 0; i < 3; ++i)
{
constArray[i].setUConst(static_cast<unsigned int>(workGroupSize[i]));
}
ASSERT(variable->getType().getBasicType() == EbtUInt);
ASSERT(variable->getType().getObjectSize() == 3);
TType type(variable->getType());
type.setQualifier(EvqConst);
return intermediate.addConstantUnion(constArray, type, location);
}
else
{
return intermediate.addSymbol(variable->getUniqueId(), variable->getName(),
variable->getType(), location);
}
}
//
// Initializers show up in several places in the grammar. Have one set of
// code to handle them here.
//
// Returns true on error, false if no error
//
bool TParseContext::executeInitializer(const TSourceLoc &line,
const TString &identifier,
const TPublicType &pType,
TIntermTyped *initializer,
TIntermBinary **initNode)
{
ASSERT(initNode != nullptr);
ASSERT(*initNode == nullptr);
TType type = TType(pType);
TVariable *variable = nullptr;
if (type.isUnsizedArray())
{
// We have not checked yet whether the initializer actually is an array or not.
if (initializer->isArray())
{
type.setArraySize(initializer->getArraySize());
}
else
{
// Having a non-array initializer for an unsized array will result in an error later,
// so we don't generate an error message here.
type.setArraySize(1u);
}
}
if (!declareVariable(line, identifier, type, &variable))
{
return true;
}
bool globalInitWarning = false;
if (symbolTable.atGlobalLevel() &&
!ValidateGlobalInitializer(initializer, this, &globalInitWarning))
{
// Error message does not completely match behavior with ESSL 1.00, but
// we want to steer developers towards only using constant expressions.
error(line, "global variable initializers must be constant expressions", "=");
return true;
}
if (globalInitWarning)
{
warning(
line,
"global variable initializers should be constant expressions "
"(uniforms and globals are allowed in global initializers for legacy compatibility)",
"=");
}
//
// identifier must be of type constant, a global, or a temporary
//
TQualifier qualifier = variable->getType().getQualifier();
if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst))
{
error(line, " cannot initialize this type of qualifier ",
variable->getType().getQualifierString());
return true;
}
//
// test for and propagate constant
//
if (qualifier == EvqConst)
{
if (qualifier != initializer->getType().getQualifier())
{
std::stringstream reasonStream;
reasonStream << "assigning non-constant to '" << variable->getType().getCompleteString()
<< "'";
std::string reason = reasonStream.str();
error(line, reason.c_str(), "=");
variable->getType().setQualifier(EvqTemporary);
return true;
}
if (type != initializer->getType())
{
error(line, " non-matching types for const initializer ",
variable->getType().getQualifierString());
variable->getType().setQualifier(EvqTemporary);
return true;
}
// Save the constant folded value to the variable if possible. For example array
// initializers are not folded, since that way copying the array literal to multiple places
// in the shader is avoided.
// TODO(oetuaho@nvidia.com): Consider constant folding array initialization in cases where
// it would be beneficial.
if (initializer->getAsConstantUnion())
{
variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
*initNode = nullptr;
return false;
}
else if (initializer->getAsSymbolNode())
{
const TSymbol *symbol =
symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0);
const TVariable *tVar = static_cast<const TVariable *>(symbol);
const TConstantUnion *constArray = tVar->getConstPointer();
if (constArray)
{
variable->shareConstPointer(constArray);
*initNode = nullptr;
return false;
}
}
}
TIntermSymbol *intermSymbol = intermediate.addSymbol(
variable->getUniqueId(), variable->getName(), variable->getType(), line);
*initNode = createAssign(EOpInitialize, intermSymbol, initializer, line);
if (*initNode == nullptr)
{
assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
return true;
}
return false;
}
void TParseContext::addFullySpecifiedType(TPublicType *typeSpecifier)
{
checkPrecisionSpecified(typeSpecifier->getLine(), typeSpecifier->precision,
typeSpecifier->getBasicType());
if (mShaderVersion < 300 && typeSpecifier->array)
{
error(typeSpecifier->getLine(), "not supported", "first-class array");
typeSpecifier->clearArrayness();
}
}
TPublicType TParseContext::addFullySpecifiedType(const TTypeQualifierBuilder &typeQualifierBuilder,
const TPublicType &typeSpecifier)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
TPublicType returnType = typeSpecifier;
returnType.qualifier = typeQualifier.qualifier;
returnType.invariant = typeQualifier.invariant;
returnType.layoutQualifier = typeQualifier.layoutQualifier;
returnType.memoryQualifier = typeQualifier.memoryQualifier;
returnType.precision = typeSpecifier.precision;
if (typeQualifier.precision != EbpUndefined)
{
returnType.precision = typeQualifier.precision;
}
checkPrecisionSpecified(typeSpecifier.getLine(), returnType.precision,
typeSpecifier.getBasicType());
checkInvariantVariableQualifier(returnType.invariant, returnType.qualifier,
typeSpecifier.getLine());
checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier);
if (mShaderVersion < 300)
{
if (typeSpecifier.array)
{
error(typeSpecifier.getLine(), "not supported", "first-class array");
returnType.clearArrayness();
}
if (returnType.qualifier == EvqAttribute &&
(typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
{
error(typeSpecifier.getLine(), "cannot be bool or int",
getQualifierString(returnType.qualifier));
}
if ((returnType.qualifier == EvqVaryingIn || returnType.qualifier == EvqVaryingOut) &&
(typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
{
error(typeSpecifier.getLine(), "cannot be bool or int",
getQualifierString(returnType.qualifier));
}
}
else
{
if (!returnType.layoutQualifier.isEmpty())
{
checkIsAtGlobalLevel(typeSpecifier.getLine(), "layout");
}
if (sh::IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn ||
returnType.qualifier == EvqFragmentOut)
{
checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier,
typeSpecifier.getLine());
}
if (returnType.qualifier == EvqComputeIn)
{
error(typeSpecifier.getLine(), "'in' can be only used to specify the local group size",
"in");
}
}
return returnType;
}
void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier,
const TPublicType &type,
const TSourceLoc &qualifierLocation)
{
// An input/output variable can never be bool or a sampler. Samplers are checked elsewhere.
if (type.getBasicType() == EbtBool)
{
error(qualifierLocation, "cannot be bool", getQualifierString(qualifier));
}
// Specific restrictions apply for vertex shader inputs and fragment shader outputs.
switch (qualifier)
{
case EvqVertexIn:
// ESSL 3.00 section 4.3.4
if (type.array)
{
error(qualifierLocation, "cannot be array", getQualifierString(qualifier));
}
// Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck
return;
case EvqFragmentOut:
// ESSL 3.00 section 4.3.6
if (type.typeSpecifierNonArray.isMatrix())
{
error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier));
}
// Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck
return;
default:
break;
}
// Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of
// restrictions.
bool typeContainsIntegers =
(type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt ||
type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt));
if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut)
{
error(qualifierLocation, "must use 'flat' interpolation here",
getQualifierString(qualifier));
}
if (type.getBasicType() == EbtStruct)
{
// ESSL 3.00 sections 4.3.4 and 4.3.6.
// These restrictions are only implied by the ESSL 3.00 spec, but
// the ESSL 3.10 spec lists these restrictions explicitly.
if (type.array)
{
error(qualifierLocation, "cannot be an array of structures",
getQualifierString(qualifier));
}
if (type.isStructureContainingArrays())
{
error(qualifierLocation, "cannot be a structure containing an array",
getQualifierString(qualifier));
}
if (type.isStructureContainingType(EbtStruct))
{
error(qualifierLocation, "cannot be a structure containing a structure",
getQualifierString(qualifier));
}
if (type.isStructureContainingType(EbtBool))
{
error(qualifierLocation, "cannot be a structure containing a bool",
getQualifierString(qualifier));
}
}
}
void TParseContext::checkLocalVariableConstStorageQualifier(const TQualifierWrapperBase &qualifier)
{
if (qualifier.getType() == QtStorage)
{
const TStorageQualifierWrapper &storageQualifier =
static_cast<const TStorageQualifierWrapper &>(qualifier);
if (!declaringFunction() && storageQualifier.getQualifier() != EvqConst &&
!symbolTable.atGlobalLevel())
{
error(storageQualifier.getLine(),
"Local variables can only use the const storage qualifier.",
storageQualifier.getQualifierString().c_str());
}
}
}
bool TParseContext::checkIsMemoryQualifierNotSpecified(const TMemoryQualifier &memoryQualifier,
const TSourceLoc &location)
{
if (memoryQualifier.readonly)
{
error(location, "Only allowed with images.", "readonly");
return false;
}
if (memoryQualifier.writeonly)
{
error(location, "Only allowed with images.", "writeonly");
return false;
}
if (memoryQualifier.coherent)
{
error(location, "Only allowed with images.", "coherent");
return false;
}
if (memoryQualifier.restrictQualifier)
{
error(location, "Only allowed with images.", "restrict");
return false;
}
if (memoryQualifier.volatileQualifier)
{
error(location, "Only allowed with images.", "volatile");
return false;
}
return true;
}
TIntermDeclaration *TParseContext::parseSingleDeclaration(
TPublicType &publicType,
const TSourceLoc &identifierOrTypeLocation,
const TString &identifier)
{
TType type(publicType);
if ((mCompileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) &&
mDirectiveHandler.pragma().stdgl.invariantAll)
{
TQualifier qualifier = type.getQualifier();
// The directive handler has already taken care of rejecting invalid uses of this pragma
// (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all
// affected variable declarations:
//
// 1. Built-in special variables which are inputs to the fragment shader. (These are handled
// elsewhere, in TranslatorGLSL.)
//
// 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It
// is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but
// the way this is currently implemented we have to enable this compiler option before
// parsing the shader and determining the shading language version it uses. If this were
// implemented as a post-pass, the workaround could be more targeted.
//
// 3. Inputs in ESSL 1.00 fragment shaders (EvqVaryingIn). This is somewhat in violation of
// the specification, but there are desktop OpenGL drivers that expect that this is the
// behavior of the #pragma when specified in ESSL 1.00 fragment shaders.
if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut || qualifier == EvqVaryingIn)
{
type.setInvariant(true);
}
}
TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, type, identifierOrTypeLocation);
bool emptyDeclaration = (identifier == "");
mDeferredSingleDeclarationErrorCheck = emptyDeclaration;
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierOrTypeLocation);
if (emptyDeclaration)
{
emptyDeclarationErrorCheck(publicType, identifierOrTypeLocation);
}
else
{
singleDeclarationErrorCheck(publicType, identifierOrTypeLocation);
checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, &publicType);
TVariable *variable = nullptr;
declareVariable(identifierOrTypeLocation, identifier, type, &variable);
if (variable && symbol)
{
symbol->setId(variable->getUniqueId());
}
}
// We append the symbol even if the declaration is empty, mainly because of struct declarations
// that may just declare a type.
declaration->appendDeclarator(symbol);
return declaration;
}
TIntermDeclaration *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression)
{
mDeferredSingleDeclarationErrorCheck = false;
singleDeclarationErrorCheck(publicType, identifierLocation);
checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType);
checkIsValidTypeAndQualifierForArray(indexLocation, publicType);
TType arrayType(publicType);
unsigned int size = checkIsValidArraySize(identifierLocation, indexExpression);
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArraySize(size);
TVariable *variable = nullptr;
declareVariable(identifierLocation, identifier, arrayType, &variable);
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierLocation);
TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
if (variable && symbol)
{
symbol->setId(variable->getUniqueId());
declaration->appendDeclarator(symbol);
}
return declaration;
}
TIntermDeclaration *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
mDeferredSingleDeclarationErrorCheck = false;
singleDeclarationErrorCheck(publicType, identifierLocation);
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierLocation);
TIntermBinary *initNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &initNode))
{
if (initNode)
{
declaration->appendDeclarator(initNode);
}
}
return declaration;
}
TIntermDeclaration *TParseContext::parseSingleArrayInitDeclaration(
TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
mDeferredSingleDeclarationErrorCheck = false;
singleDeclarationErrorCheck(publicType, identifierLocation);
checkIsValidTypeAndQualifierForArray(indexLocation, publicType);
TPublicType arrayType(publicType);
unsigned int size = 0u;
// If indexExpression is nullptr, then the array will eventually get its size implicitly from
// the initializer.
if (indexExpression != nullptr)
{
size = checkIsValidArraySize(identifierLocation, indexExpression);
}
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArraySize(size);
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierLocation);
// initNode will correspond to the whole of "type b[n] = initializer".
TIntermBinary *initNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
{
if (initNode)
{
declaration->appendDeclarator(initNode);
}
}
return declaration;
}
TIntermInvariantDeclaration *TParseContext::parseInvariantDeclaration(
const TTypeQualifierBuilder &typeQualifierBuilder,
const TSourceLoc &identifierLoc,
const TString *identifier,
const TSymbol *symbol)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
if (!typeQualifier.invariant)
{
error(identifierLoc, "Expected invariant", identifier->c_str());
return nullptr;
}
if (!checkIsAtGlobalLevel(identifierLoc, "invariant varying"))
{
return nullptr;
}
if (!symbol)
{
error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str());
return nullptr;
}
if (!IsQualifierUnspecified(typeQualifier.qualifier))
{
error(identifierLoc, "invariant declaration specifies qualifier",
getQualifierString(typeQualifier.qualifier));
}
if (typeQualifier.precision != EbpUndefined)
{
error(identifierLoc, "invariant declaration specifies precision",
getPrecisionString(typeQualifier.precision));
}
if (!typeQualifier.layoutQualifier.isEmpty())
{
error(identifierLoc, "invariant declaration specifies layout", "'layout'");
}
const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol);
ASSERT(variable);
const TType &type = variable->getType();
checkInvariantVariableQualifier(typeQualifier.invariant, type.getQualifier(),
typeQualifier.line);
checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
symbolTable.addInvariantVarying(std::string(identifier->c_str()));
TIntermSymbol *intermSymbol =
intermediate.addSymbol(variable->getUniqueId(), *identifier, type, identifierLoc);
return new TIntermInvariantDeclaration(intermSymbol, identifierLoc);
}
void TParseContext::parseDeclarator(TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
singleDeclarationErrorCheck(publicType, identifierLocation);
mDeferredSingleDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType);
TVariable *variable = nullptr;
declareVariable(identifierLocation, identifier, TType(publicType), &variable);
TIntermSymbol *symbol =
intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
if (variable && symbol)
{
symbol->setId(variable->getUniqueId());
declarationOut->appendDeclarator(symbol);
}
}
void TParseContext::parseArrayDeclarator(TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &arrayLocation,
TIntermTyped *indexExpression,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
singleDeclarationErrorCheck(publicType, identifierLocation);
mDeferredSingleDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType);
if (checkIsValidTypeAndQualifierForArray(arrayLocation, publicType))
{
TType arrayType = TType(publicType);
unsigned int size = checkIsValidArraySize(arrayLocation, indexExpression);
arrayType.setArraySize(size);
TVariable *variable = nullptr;
declareVariable(identifierLocation, identifier, arrayType, &variable);
TIntermSymbol *symbol =
intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
if (variable && symbol)
symbol->setId(variable->getUniqueId());
declarationOut->appendDeclarator(symbol);
}
}
void TParseContext::parseInitDeclarator(const TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &initLocation,
TIntermTyped *initializer,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
singleDeclarationErrorCheck(publicType, identifierLocation);
mDeferredSingleDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
TIntermBinary *initNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &initNode))
{
//
// build the intermediate representation
//
if (initNode)
{
declarationOut->appendDeclarator(initNode);
}
}
}
void TParseContext::parseArrayInitDeclarator(const TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression,
const TSourceLoc &initLocation,
TIntermTyped *initializer,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
singleDeclarationErrorCheck(publicType, identifierLocation);
mDeferredSingleDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
checkIsValidTypeAndQualifierForArray(indexLocation, publicType);
TPublicType arrayType(publicType);
unsigned int size = 0u;
// If indexExpression is nullptr, then the array will eventually get its size implicitly from
// the initializer.
if (indexExpression != nullptr)
{
size = checkIsValidArraySize(identifierLocation, indexExpression);
}
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArraySize(size);
// initNode will correspond to the whole of "b[n] = initializer".
TIntermBinary *initNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
{
if (initNode)
{
declarationOut->appendDeclarator(initNode);
}
}
}
void TParseContext::parseGlobalLayoutQualifier(const TTypeQualifierBuilder &typeQualifierBuilder)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
checkInvariantVariableQualifier(typeQualifier.invariant, typeQualifier.qualifier,
typeQualifier.line);
// It should never be the case, but some strange parser errors can send us here.
if (layoutQualifier.isEmpty())
{
error(typeQualifier.line, "Error during layout qualifier parsing.", "?");
return;
}
if (!layoutQualifier.isCombinationValid())
{
error(typeQualifier.line, "invalid combination:", "layout");
return;
}
checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
checkInternalFormatIsNotSpecified(typeQualifier.line, layoutQualifier.imageInternalFormat);
if (typeQualifier.qualifier == EvqComputeIn)
{
if (mComputeShaderLocalSizeDeclared &&
!layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize))
{
error(typeQualifier.line, "Work group size does not match the previous declaration",
"layout");
return;
}
if (mShaderVersion < 310)
{
error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout");
return;
}
if (!layoutQualifier.localSize.isAnyValueSet())
{
error(typeQualifier.line, "No local work group size specified", "layout");
return;
}
const TVariable *maxComputeWorkGroupSize = static_cast<const TVariable *>(
symbolTable.findBuiltIn("gl_MaxComputeWorkGroupSize", mShaderVersion));
const TConstantUnion *maxComputeWorkGroupSizeData =
maxComputeWorkGroupSize->getConstPointer();
for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i)
{
if (layoutQualifier.localSize[i] != -1)
{
mComputeShaderLocalSize[i] = layoutQualifier.localSize[i];
const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst();
if (mComputeShaderLocalSize[i] < 1 ||
mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue)
{
std::stringstream reasonStream;
reasonStream << "invalid value: Value must be at least 1 and no greater than "
<< maxComputeWorkGroupSizeValue;
const std::string &reason = reasonStream.str();
error(typeQualifier.line, reason.c_str(), getWorkGroupSizeString(i));
return;
}
}
}
mComputeShaderLocalSizeDeclared = true;
}
else if (mMultiviewAvailable &&
(isExtensionEnabled("GL_OVR_multiview") || isExtensionEnabled("GL_OVR_multiview2")) &&
typeQualifier.qualifier == EvqVertexIn)
{
// This error is only specified in WebGL, but tightens unspecified behavior in the native
// specification.
if (mNumViews != -1 && layoutQualifier.numViews != mNumViews)
{
error(typeQualifier.line, "Number of views does not match the previous declaration",
"layout");
return;
}
if (layoutQualifier.numViews == -1)
{
error(typeQualifier.line, "No num_views specified", "layout");
return;
}
if (layoutQualifier.numViews > mMaxNumViews)
{
error(typeQualifier.line, "num_views greater than the value of GL_MAX_VIEWS_OVR",
"layout");
return;
}
mNumViews = layoutQualifier.numViews;
}
else
{
if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, layoutQualifier))
{
return;
}
if (typeQualifier.qualifier != EvqUniform)
{
error(typeQualifier.line, "invalid qualifier: global layout must be uniform",
getQualifierString(typeQualifier.qualifier));
return;
}
if (mShaderVersion < 300)
{
error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and above",
"layout");
return;
}
checkLocationIsNotSpecified(typeQualifier.line, layoutQualifier);
if (layoutQualifier.matrixPacking != EmpUnspecified)
{
mDefaultMatrixPacking = layoutQualifier.matrixPacking;
}
if (layoutQualifier.blockStorage != EbsUnspecified)
{
mDefaultBlockStorage = layoutQualifier.blockStorage;
}
}
}
TIntermFunctionPrototype *TParseContext::createPrototypeNodeFromFunction(
const TFunction &function,
const TSourceLoc &location,
bool insertParametersToSymbolTable)
{
TIntermFunctionPrototype *prototype = new TIntermFunctionPrototype(function.getReturnType());
// TODO(oetuaho@nvidia.com): Instead of converting the function information here, the node could
// point to the data that already exists in the symbol table.
prototype->getFunctionSymbolInfo()->setFromFunction(function);
prototype->setLine(location);
for (size_t i = 0; i < function.getParamCount(); i++)
{
const TConstParameter ¶m = function.getParam(i);
// If the parameter has no name, it's not an error, just don't add it to symbol table (could
// be used for unused args).
if (param.name != nullptr)
{
TVariable *variable = new TVariable(param.name, *param.type);
// Insert the parameter in the symbol table.
if (insertParametersToSymbolTable && !symbolTable.declare(variable))
{
error(location, "redefinition", variable->getName().c_str());
prototype->appendParameter(intermediate.addSymbol(0, "", *param.type, location));
continue;
}
TIntermSymbol *symbol = intermediate.addSymbol(
variable->getUniqueId(), variable->getName(), variable->getType(), location);
prototype->appendParameter(symbol);
}
else
{
prototype->appendParameter(intermediate.addSymbol(0, "", *param.type, location));
}
}
return prototype;
}
TIntermFunctionPrototype *TParseContext::addFunctionPrototypeDeclaration(
const TFunction &parsedFunction,
const TSourceLoc &location)
{
// Note: function found from the symbol table could be the same as parsedFunction if this is the
// first declaration. Either way the instance in the symbol table is used to track whether the
// function is declared multiple times.
TFunction *function = static_cast<TFunction *>(
symbolTable.find(parsedFunction.getMangledName(), getShaderVersion()));
if (function->hasPrototypeDeclaration() && mShaderVersion == 100)
{
// ESSL 1.00.17 section 4.2.7.
// Doesn't apply to ESSL 3.00.4: see section 4.2.3.
error(location, "duplicate function prototype declarations are not allowed", "function");
}
function->setHasPrototypeDeclaration();
TIntermFunctionPrototype *prototype =
createPrototypeNodeFromFunction(*function, location, false);
symbolTable.pop();
if (!symbolTable.atGlobalLevel())
{
// ESSL 3.00.4 section 4.2.4.
error(location, "local function prototype declarations are not allowed", "function");
}
return prototype;
}
TIntermFunctionDefinition *TParseContext::addFunctionDefinition(
TIntermFunctionPrototype *functionPrototype,
TIntermBlock *functionBody,
const TSourceLoc &location)
{
// Check that non-void functions have at least one return statement.
if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue)
{
error(location, "function does not return a value:",
functionPrototype->getFunctionSymbolInfo()->getName().c_str());
}
if (functionBody == nullptr)
{
functionBody = new TIntermBlock();
functionBody->setLine(location);
}
TIntermFunctionDefinition *functionNode =
new TIntermFunctionDefinition(functionPrototype, functionBody);
functionNode->setLine(location);
symbolTable.pop();
return functionNode;
}
void TParseContext::parseFunctionDefinitionHeader(const TSourceLoc &location,
TFunction **function,
TIntermFunctionPrototype **prototypeOut)
{
ASSERT(function);
ASSERT(*function);
const TSymbol *builtIn =
symbolTable.findBuiltIn((*function)->getMangledName(), getShaderVersion());
if (builtIn)
{
error(location, "built-in functions cannot be redefined", (*function)->getName().c_str());
}
else
{
TFunction *prevDec = static_cast<TFunction *>(
symbolTable.find((*function)->getMangledName(), getShaderVersion()));
// Note: 'prevDec' could be 'function' if this is the first time we've seen function as it
// would have just been put in the symbol table. Otherwise, we're looking up an earlier
// occurance.
if (*function != prevDec)
{
// Swap the parameters of the previous declaration to the parameters of the function
// definition (parameter names may differ).
prevDec->swapParameters(**function);
// The function definition will share the same symbol as any previous declaration.
*function = prevDec;
}
if ((*function)->isDefined())
{
error(location, "function already has a body", (*function)->getName().c_str());
}
(*function)->setDefined();
}
// Remember the return type for later checking for return statements.
mCurrentFunctionType = &((*function)->getReturnType());
mFunctionReturnsValue = false;
*prototypeOut = createPrototypeNodeFromFunction(**function, location, true);
setLoopNestingLevel(0);
}
TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function)
{
//
// We don't know at this point whether this is a function definition or a prototype.
// The definition production code will check for redefinitions.
// In the case of ESSL 1.00 the prototype production code will also check for redeclarations.
//
// Return types and parameter qualifiers must match in all redeclarations, so those are checked
// here.
//
TFunction *prevDec =
static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
if (getShaderVersion() >= 300 &&
symbolTable.hasUnmangledBuiltInForShaderVersion(function->getName().c_str(),
getShaderVersion()))
{
// With ESSL 3.00 and above, names of built-in functions cannot be redeclared as functions.
// Therefore overloading or redefining builtin functions is an error.
error(location, "Name of a built-in function cannot be redeclared as function",
function->getName().c_str());
}
else if (prevDec)
{
if (prevDec->getReturnType() != function->getReturnType())
{
error(location, "function must have the same return type in all of its declarations",
function->getReturnType().getBasicString());
}
for (size_t i = 0; i < prevDec->getParamCount(); ++i)
{
if (prevDec->getParam(i).type->getQualifier() !=
function->getParam(i).type->getQualifier())
{
error(location,
"function must have the same parameter qualifiers in all of its declarations",
function->getParam(i).type->getQualifierString());
}
}
}
//
// Check for previously declared variables using the same name.
//
TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion());
if (prevSym)
{
if (!prevSym->isFunction())
{
error(location, "redefinition of a function", function->getName().c_str());
}
}
else
{
// Insert the unmangled name to detect potential future redefinition as a variable.
symbolTable.getOuterLevel()->insertUnmangled(function);
}
// We're at the inner scope level of the function's arguments and body statement.
// Add the function prototype to the surrounding scope instead.
symbolTable.getOuterLevel()->insert(function);
// Raise error message if main function takes any parameters or return anything other than void
if (function->getName() == "main")
{
if (function->getParamCount() > 0)
{
error(location, "function cannot take any parameter(s)", "main");
}
if (function->getReturnType().getBasicType() != EbtVoid)
{
error(location, "main function cannot return a value",
function->getReturnType().getBasicString());
}
}
//
// If this is a redeclaration, it could also be a definition, in which case, we want to use the
// variable names from this one, and not the one that's
// being redeclared. So, pass back up this declaration, not the one in the symbol table.
//
return function;
}
TFunction *TParseContext::parseFunctionHeader(const TPublicType &type,
const TString *name,
const TSourceLoc &location)
{
if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary)
{
error(location, "no qualifiers allowed for function return",
getQualifierString(type.qualifier));
}
if (!type.layoutQualifier.isEmpty())
{
error(location, "no qualifiers allowed for function return", "layout");
}
// make sure a sampler or an image is not involved as well...
checkIsNotSampler(location, type.typeSpecifierNonArray,
"samplers can't be function return values");
checkIsNotImage(location, type.typeSpecifierNonArray, "images can't be function return values");
if (mShaderVersion < 300)
{
// Array return values are forbidden, but there's also no valid syntax for declaring array
// return values in ESSL 1.00.
ASSERT(type.arraySize == 0 || mDiagnostics->numErrors() > 0);
if (type.isStructureContainingArrays())
{
// ESSL 1.00.17 section 6.1 Function Definitions
error(location, "structures containing arrays can't be function return values",
TType(type).getCompleteString().c_str());
}
}
// Add the function as a prototype after parsing it (we do not support recursion)
return new TFunction(name, new TType(type));
}
TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn)
{
TPublicType publicType = publicTypeIn;
if (publicType.isStructSpecifier())
{
error(publicType.getLine(), "constructor can't be a structure definition",
getBasicString(publicType.getBasicType()));
}
TOperator op = EOpNull;
if (publicType.getUserDef())
{
op = EOpConstructStruct;
}
else
{
op = sh::TypeToConstructorOperator(TType(publicType));
if (op == EOpNull)
{
error(publicType.getLine(), "cannot construct this type",
getBasicString(publicType.getBasicType()));
publicType.setBasicType(EbtFloat);
op = EOpConstructFloat;
}
}
const TType *type = new TType(publicType);
return new TFunction(nullptr, type, op);
}
// This function is used to test for the correctness of the parameters passed to various constructor
// functions and also convert them to the right datatype if it is allowed and required.
//
// Returns a node to add to the tree regardless of if an error was generated or not.
//
TIntermTyped *TParseContext::addConstructor(TIntermSequence *arguments,
TOperator op,
TType type,
const TSourceLoc &line)
{
if (type.isUnsizedArray())
{
if (arguments->empty())
{
error(line, "implicitly sized array constructor must have at least one argument", "[]");
type.setArraySize(1u);
return TIntermTyped::CreateZero(type);
}
type.setArraySize(static_cast<unsigned int>(arguments->size()));
}
if (!checkConstructorArguments(line, arguments, op, type))
{
return TIntermTyped::CreateZero(type);
}
TIntermAggregate *constructorNode = new TIntermAggregate(type, op, arguments);
constructorNode->setLine(line);
ASSERT(constructorNode->isConstructor());
TIntermTyped *constConstructor =
intermediate.foldAggregateBuiltIn(constructorNode, mDiagnostics);
if (constConstructor)
{
return constConstructor;
}
return constructorNode;
}
//
// Interface/uniform blocks
//
TIntermDeclaration *TParseContext::addInterfaceBlock(
const TTypeQualifierBuilder &typeQualifierBuilder,
const TSourceLoc &nameLine,
const TString &blockName,
TFieldList *fieldList,
const TString *instanceName,
const TSourceLoc &instanceLine,
TIntermTyped *arrayIndex,
const TSourceLoc &arrayIndexLine)
{
checkIsNotReserved(nameLine, blockName);
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
if (typeQualifier.qualifier != EvqUniform)
{
error(typeQualifier.line, "invalid qualifier: interface blocks must be uniform",
getQualifierString(typeQualifier.qualifier));
}
if (typeQualifier.invariant)
{
error(typeQualifier.line, "invalid qualifier on interface block member", "invariant");
}
checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier);
if (blockLayoutQualifier.matrixPacking == EmpUnspecified)
{
blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking;
}
if (blockLayoutQualifier.blockStorage == EbsUnspecified)
{
blockLayoutQualifier.blockStorage = mDefaultBlockStorage;
}
checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier);
checkInternalFormatIsNotSpecified(nameLine, blockLayoutQualifier.imageInternalFormat);
TSymbol *blockNameSymbol = new TInterfaceBlockName(&blockName);
if (!symbolTable.declare(blockNameSymbol))
{
error(nameLine, "redefinition of an interface block name", blockName.c_str());
}
// check for sampler types and apply layout qualifiers
for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
{
TField *field = (*fieldList)[memberIndex];
TType *fieldType = field->type();
if (IsSampler(fieldType->getBasicType()))
{
error(field->line(),
"unsupported type - sampler types are not allowed in interface blocks",
fieldType->getBasicString());
}
if (IsImage(fieldType->getBasicType()))
{
error(field->line(),
"unsupported type - image types are not allowed in interface blocks",
fieldType->getBasicString());
}
const TQualifier qualifier = fieldType->getQualifier();
switch (qualifier)
{
case EvqGlobal:
case EvqUniform:
break;
default:
error(field->line(), "invalid qualifier on interface block member",
getQualifierString(qualifier));
break;
}
if (fieldType->isInvariant())
{
error(field->line(), "invalid qualifier on interface block member", "invariant");
}
// check layout qualifiers
TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
checkLocationIsNotSpecified(field->line(), fieldLayoutQualifier);
if (fieldLayoutQualifier.blockStorage != EbsUnspecified)
{
error(field->line(), "invalid layout qualifier: cannot be used here",
getBlockStorageString(fieldLayoutQualifier.blockStorage));
}
if (fieldLayoutQualifier.matrixPacking == EmpUnspecified)
{
fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
}
else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct)
{
warning(field->line(),
"extraneous layout qualifier: only has an effect on matrix types",
getMatrixPackingString(fieldLayoutQualifier.matrixPacking));
}
fieldType->setLayoutQualifier(fieldLayoutQualifier);
}
// add array index
unsigned int arraySize = 0;
if (arrayIndex != nullptr)
{
arraySize = checkIsValidArraySize(arrayIndexLine, arrayIndex);
}
TInterfaceBlock *interfaceBlock =
new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier);
TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier,
arraySize);
TString symbolName = "";
int symbolId = 0;
if (!instanceName)
{
// define symbols for the members of the interface block
for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
{
TField *field = (*fieldList)[memberIndex];
TType *fieldType = field->type();
// set parent pointer of the field variable
fieldType->setInterfaceBlock(interfaceBlock);
TVariable *fieldVariable = new TVariable(&field->name(), *fieldType);
fieldVariable->setQualifier(typeQualifier.qualifier);
if (!symbolTable.declare(fieldVariable))
{
error(field->line(), "redefinition of an interface block member name",
field->name().c_str());
}
}
}
else
{
checkIsNotReserved(instanceLine, *instanceName);
// add a symbol for this interface block
TVariable *instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false);
instanceTypeDef->setQualifier(typeQualifier.qualifier);
if (!symbolTable.declare(instanceTypeDef))
{
error(instanceLine, "redefinition of an interface block instance name",
instanceName->c_str());
}
symbolId = instanceTypeDef->getUniqueId();
symbolName = instanceTypeDef->getName();
}
TIntermSymbol *blockSymbol =
intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line);
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->appendDeclarator(blockSymbol);
declaration->setLine(nameLine);
exitStructDeclaration();
return declaration;
}
void TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString &identifier)
{
++mStructNestingLevel;
// Embedded structure definitions are not supported per GLSL ES spec.
// ESSL 1.00.17 section 10.9. ESSL 3.00.6 section 12.11.
if (mStructNestingLevel > 1)
{
error(line, "Embedded struct definitions are not allowed", "struct");
}
}
void TParseContext::exitStructDeclaration()
{
--mStructNestingLevel;
}
void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field)
{
if (!sh::IsWebGLBasedSpec(mShaderSpec))
{
return;
}
if (field.type()->getBasicType() != EbtStruct)
{
return;
}
// We're already inside a structure definition at this point, so add
// one to the field's struct nesting.
if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting)
{
std::stringstream reasonStream;
reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str()
<< " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting;
std::string reason = reasonStream.str();
error(line, reason.c_str(), field.name().c_str());
return;
}
}
//
// Parse an array index expression
//
TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression,
const TSourceLoc &location,
TIntermTyped *indexExpression)
{
if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
{
if (baseExpression->getAsSymbolNode())
{
error(location, " left of '[' is not of type array, matrix, or vector ",
baseExpression->getAsSymbolNode()->getSymbol().c_str());
}
else
{
error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
}
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray->setFConst(0.0f);
return intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst),
location);
}
TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of indexConstantUnion == nullptr below once ANGLE is able
// to constant fold all constant expressions. Right now we don't allow indexing interface blocks
// or fragment outputs with expressions that ANGLE is not able to constant fold, even if the
// index is a constant expression.
if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr)
{
if (baseExpression->isInterfaceBlock())
{
error(location,
"array indexes for interface blocks arrays must be constant integral expressions",
"[");
}
else if (baseExpression->getQualifier() == EvqFragmentOut)
{
error(location,
"array indexes for fragment outputs must be constant integral expressions", "[");
}
else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData)
{
error(location, "array index for gl_FragData must be constant zero", "[");
}
}
if (indexConstantUnion)
{
// If an out-of-range index is not qualified as constant, the behavior in the spec is
// undefined. This applies even if ANGLE has been able to constant fold it (ANGLE may
// constant fold expressions that are not constant expressions). The most compatible way to
// handle this case is to report a warning instead of an error and force the index to be in
// the correct range.
bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst;
int index = indexConstantUnion->getIConst(0);
int safeIndex = -1;
if (baseExpression->isArray())
{
if (baseExpression->getQualifier() == EvqFragData && index > 0)
{
if (mShaderSpec == SH_WEBGL2_SPEC)
{
// Error has been already generated if index is not const.
if (indexExpression->getQualifier() == EvqConst)
{
error(location, "array index for gl_FragData must be constant zero", "[");
}
safeIndex = 0;
}
else if (!isExtensionEnabled("GL_EXT_draw_buffers"))
{
outOfRangeError(outOfRangeIndexIsError, location,
"array index for gl_FragData must be zero when "
"GL_EXT_draw_buffers is disabled",
"[");
safeIndex = 0;
}
}
// Only do generic out-of-range check if similar error hasn't already been reported.
if (safeIndex < 0)
{
safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index,
baseExpression->getArraySize(),
"array index out of range");
}
}
else if (baseExpression->isMatrix())
{
safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index,
baseExpression->getType().getCols(),
"matrix field selection out of range");
}
else if (baseExpression->isVector())
{
safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index,
baseExpression->getType().getNominalSize(),
"vector field selection out of range");
}
ASSERT(safeIndex >= 0);
// Data of constant unions can't be changed, because it may be shared with other
// constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new
// sanitized object.
if (safeIndex != index)
{
TConstantUnion *safeConstantUnion = new TConstantUnion();
safeConstantUnion->setIConst(safeIndex);
indexConstantUnion->replaceConstantUnion(safeConstantUnion);
}
return intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location,
mDiagnostics);
}
else
{
return intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location,
mDiagnostics);
}
}
int TParseContext::checkIndexOutOfRange(bool outOfRangeIndexIsError,
const TSourceLoc &location,
int index,
int arraySize,
const char *reason)
{
if (index >= arraySize || index < 0)
{
std::stringstream reasonStream;
reasonStream << reason << " '" << index << "'";
std::string token = reasonStream.str();
outOfRangeError(outOfRangeIndexIsError, location, reason, "[]");
if (index < 0)
{
return 0;
}
else
{
return arraySize - 1;
}
}
return index;
}
TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression,
const TSourceLoc &dotLocation,
const TString &fieldString,
const TSourceLoc &fieldLocation)
{
if (baseExpression->isArray())
{
error(fieldLocation, "cannot apply dot operator to an array", ".");
return baseExpression;
}
if (baseExpression->isVector())
{
TVectorFields fields;
if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields,
fieldLocation))
{
fields.num = 1;
fields.offsets[0] = 0;
}
return TIntermediate::AddSwizzle(baseExpression, fields, dotLocation);
}
else if (baseExpression->getBasicType() == EbtStruct)
{
const TFieldList &fields = baseExpression->getType().getStruct()->fields();
if (fields.empty())
{
error(dotLocation, "structure has no fields", "Internal Error");
return baseExpression;
}
else
{
bool fieldFound = false;
unsigned int i;
for (i = 0; i < fields.size(); ++i)
{
if (fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if (fieldFound)
{
TIntermTyped *index = TIntermTyped::CreateIndexNode(i);
index->setLine(fieldLocation);
return intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index,
dotLocation, mDiagnostics);
}
else
{
error(dotLocation, " no such field in structure", fieldString.c_str());
return baseExpression;
}
}
}
else if (baseExpression->isInterfaceBlock())
{
const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields();
if (fields.empty())
{
error(dotLocation, "interface block has no fields", "Internal Error");
return baseExpression;
}
else
{
bool fieldFound = false;
unsigned int i;
for (i = 0; i < fields.size(); ++i)
{
if (fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if (fieldFound)
{
TIntermTyped *index = TIntermTyped::CreateIndexNode(i);
index->setLine(fieldLocation);
return intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index,
dotLocation, mDiagnostics);
}
else
{
error(dotLocation, " no such field in interface block", fieldString.c_str());
return baseExpression;
}
}
}
else
{
if (mShaderVersion < 300)
{
error(dotLocation, " field selection requires structure or vector on left hand side",
fieldString.c_str());
}
else
{
error(dotLocation,
" field selection requires structure, vector, or interface block on left hand "
"side",
fieldString.c_str());
}
return baseExpression;
}
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType,
const TSourceLoc &qualifierTypeLine)
{
TLayoutQualifier qualifier = TLayoutQualifier::create();
if (qualifierType == "shared")
{
if (sh::IsWebGLBasedSpec(mShaderSpec))
{
error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "shared");
}
qualifier.blockStorage = EbsShared;
}
else if (qualifierType == "packed")
{
if (sh::IsWebGLBasedSpec(mShaderSpec))
{
error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "packed");
}
qualifier.blockStorage = EbsPacked;
}
else if (qualifierType == "std140")
{
qualifier.blockStorage = EbsStd140;
}
else if (qualifierType == "row_major")
{
qualifier.matrixPacking = EmpRowMajor;
}
else if (qualifierType == "column_major")
{
qualifier.matrixPacking = EmpColumnMajor;
}
else if (qualifierType == "location")
{
error(qualifierTypeLine, "invalid layout qualifier: location requires an argument",
qualifierType.c_str());
}
else if (qualifierType == "rgba32f")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA32F;
}
else if (qualifierType == "rgba16f")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA16F;
}
else if (qualifierType == "r32f")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifR32F;
}
else if (qualifierType == "rgba8")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8;
}
else if (qualifierType == "rgba8_snorm")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8_SNORM;
}
else if (qualifierType == "rgba32i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA32I;
}
else if (qualifierType == "rgba16i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA16I;
}
else if (qualifierType == "rgba8i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8I;
}
else if (qualifierType == "r32i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifR32I;
}
else if (qualifierType == "rgba32ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA32UI;
}
else if (qualifierType == "rgba16ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA16UI;
}
else if (qualifierType == "rgba8ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8UI;
}
else if (qualifierType == "r32ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifR32UI;
}
else
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
}
return qualifier;
}
void TParseContext::parseLocalSize(const TString &qualifierType,
const TSourceLoc &qualifierTypeLine,
int intValue,
const TSourceLoc &intValueLine,
const std::string &intValueString,
size_t index,
sh::WorkGroupSize *localSize)
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
if (intValue < 1)
{
std::stringstream reasonStream;
reasonStream << "out of range: " << getWorkGroupSizeString(index) << " must be positive";
std::string reason = reasonStream.str();
error(intValueLine, reason.c_str(), intValueString.c_str());
}
(*localSize)[index] = intValue;
}
void TParseContext::parseNumViews(int intValue,
const TSourceLoc &intValueLine,
const std::string &intValueString,
int *numViews)
{
// This error is only specified in WebGL, but tightens unspecified behavior in the native
// specification.
if (intValue < 1)
{
error(intValueLine, "out of range: num_views must be positive", intValueString.c_str());
}
*numViews = intValue;
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType,
const TSourceLoc &qualifierTypeLine,
int intValue,
const TSourceLoc &intValueLine)
{
TLayoutQualifier qualifier = TLayoutQualifier::create();
std::string intValueString = Str(intValue);
if (qualifierType == "location")
{
// must check that location is non-negative
if (intValue < 0)
{
error(intValueLine, "out of range: location must be non-negative",
intValueString.c_str());
}
else
{
qualifier.location = intValue;
qualifier.locationsSpecified = 1;
}
}
else if (qualifierType == "local_size_x")
{
parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u,
&qualifier.localSize);
}
else if (qualifierType == "local_size_y")
{
parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u,
&qualifier.localSize);
}
else if (qualifierType == "local_size_z")
{
parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u,
&qualifier.localSize);
}
else if (qualifierType == "num_views" && mMultiviewAvailable &&
(isExtensionEnabled("GL_OVR_multiview") || isExtensionEnabled("GL_OVR_multiview2")) &&
mShaderType == GL_VERTEX_SHADER)
{
parseNumViews(intValue, intValueLine, intValueString, &qualifier.numViews);
}
else
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
}
return qualifier;
}
TTypeQualifierBuilder *TParseContext::createTypeQualifierBuilder(const TSourceLoc &loc)
{
return new TTypeQualifierBuilder(
new TStorageQualifierWrapper(symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary, loc),
mShaderVersion);
}
TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier,
TLayoutQualifier rightQualifier,
const TSourceLoc &rightQualifierLocation)
{
return sh::JoinLayoutQualifiers(leftQualifier, rightQualifier, rightQualifierLocation,
mDiagnostics);
}
TFieldList *TParseContext::combineStructFieldLists(TFieldList *processedFields,
const TFieldList *newlyAddedFields,
const TSourceLoc &location)
{
for (TField *field : *newlyAddedFields)
{
for (TField *oldField : *processedFields)
{
if (oldField->name() == field->name())
{
error(location, "duplicate field name in structure", field->name().c_str());
}
}
processedFields->push_back(field);
}
return processedFields;
}
TFieldList *TParseContext::addStructDeclaratorListWithQualifiers(
const TTypeQualifierBuilder &typeQualifierBuilder,
TPublicType *typeSpecifier,
TFieldList *fieldList)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
typeSpecifier->qualifier = typeQualifier.qualifier;
typeSpecifier->layoutQualifier = typeQualifier.layoutQualifier;
typeSpecifier->memoryQualifier = typeQualifier.memoryQualifier;
typeSpecifier->invariant = typeQualifier.invariant;
if (typeQualifier.precision != EbpUndefined)
{
typeSpecifier->precision = typeQualifier.precision;
}
return addStructDeclaratorList(*typeSpecifier, fieldList);
}
TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier,
TFieldList *fieldList)
{
checkPrecisionSpecified(typeSpecifier.getLine(), typeSpecifier.precision,
typeSpecifier.getBasicType());
checkIsNonVoid(typeSpecifier.getLine(), (*fieldList)[0]->name(), typeSpecifier.getBasicType());
checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), typeSpecifier.layoutQualifier);
for (unsigned int i = 0; i < fieldList->size(); ++i)
{
//
// Careful not to replace already known aspects of type, like array-ness
//
TType *type = (*fieldList)[i]->type();
type->setBasicType(typeSpecifier.getBasicType());
type->setPrimarySize(typeSpecifier.getPrimarySize());
type->setSecondarySize(typeSpecifier.getSecondarySize());
type->setPrecision(typeSpecifier.precision);
type->setQualifier(typeSpecifier.qualifier);
type->setLayoutQualifier(typeSpecifier.layoutQualifier);
type->setMemoryQualifier(typeSpecifier.memoryQualifier);
type->setInvariant(typeSpecifier.invariant);
// don't allow arrays of arrays
if (type->isArray())
{
checkIsValidTypeForArray(typeSpecifier.getLine(), typeSpecifier);
}
if (typeSpecifier.array)
type->setArraySize(static_cast<unsigned int>(typeSpecifier.arraySize));
if (typeSpecifier.getUserDef())
{
type->setStruct(typeSpecifier.getUserDef()->getStruct());
}
checkIsBelowStructNestingLimit(typeSpecifier.getLine(), *(*fieldList)[i]);
}
return fieldList;
}
TTypeSpecifierNonArray TParseContext::addStructure(const TSourceLoc &structLine,
const TSourceLoc &nameLine,
const TString *structName,
TFieldList *fieldList)
{
TStructure *structure = new TStructure(structName, fieldList);
TType *structureType = new TType(structure);
// Store a bool in the struct if we're at global scope, to allow us to
// skip the local struct scoping workaround in HLSL.
structure->setAtGlobalScope(symbolTable.atGlobalLevel());
if (!structName->empty())
{
checkIsNotReserved(nameLine, *structName);
TVariable *userTypeDef = new TVariable(structName, *structureType, true);
if (!symbolTable.declare(userTypeDef))
{
error(nameLine, "redefinition of a struct", structName->c_str());
}
}
// ensure we do not specify any storage qualifiers on the struct members
for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
{
const TField &field = *(*fieldList)[typeListIndex];
const TQualifier qualifier = field.type()->getQualifier();
switch (qualifier)
{
case EvqGlobal:
case EvqTemporary:
break;
default:
error(field.line(), "invalid qualifier on struct member",
getQualifierString(qualifier));
break;
}
if (field.type()->isInvariant())
{
error(field.line(), "invalid qualifier on struct member", "invariant");
}
if (IsImage(field.type()->getBasicType()))
{
error(field.line(), "disallowed type in struct", field.type()->getBasicString());
}
checkIsMemoryQualifierNotSpecified(field.type()->getMemoryQualifier(), field.line());
checkLocationIsNotSpecified(field.line(), field.type()->getLayoutQualifier());
}
TTypeSpecifierNonArray typeSpecifierNonArray;
typeSpecifierNonArray.initialize(EbtStruct, structLine);
typeSpecifierNonArray.userDef = structureType;
typeSpecifierNonArray.isStructSpecifier = true;
exitStructDeclaration();
return typeSpecifierNonArray;
}
TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init,
TIntermBlock *statementList,
const TSourceLoc &loc)
{
TBasicType switchType = init->getBasicType();
if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() ||
init->isVector())
{
error(init->getLine(), "init-expression in a switch statement must be a scalar integer",
"switch");
return nullptr;
}
if (statementList)
{
if (!ValidateSwitchStatementList(switchType, mDiagnostics, statementList, loc))
{
return nullptr;
}
}
TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc);
if (node == nullptr)
{
error(loc, "erroneous switch statement", "switch");
return nullptr;
}
return node;
}
TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc)
{
if (mSwitchNestingLevel == 0)
{
error(loc, "case labels need to be inside switch statements", "case");
return nullptr;
}
if (condition == nullptr)
{
error(loc, "case label must have a condition", "case");
return nullptr;
}
if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) ||
condition->isMatrix() || condition->isArray() || condition->isVector())
{
error(condition->getLine(), "case label must be a scalar integer", "case");
}
TIntermConstantUnion *conditionConst = condition->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of the conditionConst == nullptr check once all constant
// expressions can be folded. Right now we don't allow constant expressions that ANGLE can't
// fold in case labels.
if (condition->getQualifier() != EvqConst || conditionConst == nullptr)
{
error(condition->getLine(), "case label must be constant", "case");
}
TIntermCase *node = intermediate.addCase(condition, loc);
if (node == nullptr)
{
error(loc, "erroneous case statement", "case");
return nullptr;
}
return node;
}
TIntermCase *TParseContext::addDefault(const TSourceLoc &loc)
{
if (mSwitchNestingLevel == 0)
{
error(loc, "default labels need to be inside switch statements", "default");
return nullptr;
}
TIntermCase *node = intermediate.addCase(nullptr, loc);
if (node == nullptr)
{
error(loc, "erroneous default statement", "default");
return nullptr;
}
return node;
}
TIntermTyped *TParseContext::createUnaryMath(TOperator op,
TIntermTyped *child,
const TSourceLoc &loc)
{
ASSERT(child != nullptr);
switch (op)
{
case EOpLogicalNot:
if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() ||
child->isVector())
{
unaryOpError(loc, GetOperatorString(op), child->getCompleteString());
return nullptr;
}
break;
case EOpBitwiseNot:
if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) ||
child->isMatrix() || child->isArray())
{
unaryOpError(loc, GetOperatorString(op), child->getCompleteString());
return nullptr;
}
break;
case EOpPostIncrement:
case EOpPreIncrement:
case EOpPostDecrement:
case EOpPreDecrement:
case EOpNegative:
case EOpPositive:
if (child->getBasicType() == EbtStruct || child->getBasicType() == EbtBool ||
child->isArray() || IsOpaqueType(child->getBasicType()))
{
unaryOpError(loc, GetOperatorString(op), child->getCompleteString());
return nullptr;
}
// Operators for built-ins are already type checked against their prototype.
default:
break;
}
TIntermUnary *node = new TIntermUnary(op, child);
node->setLine(loc);
TIntermTyped *foldedNode = node->fold(mDiagnostics);
if (foldedNode)
return foldedNode;
return node;
}
TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
{
TIntermTyped *node = createUnaryMath(op, child, loc);
if (node == nullptr)
{
return child;
}
return node;
}
TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op,
TIntermTyped *child,
const TSourceLoc &loc)
{
checkCanBeLValue(loc, GetOperatorString(op), child);
return addUnaryMath(op, child, loc);
}
bool TParseContext::binaryOpCommonCheck(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
if (left->getType().getStruct() || right->getType().getStruct())
{
switch (op)
{
case EOpIndexDirectStruct:
ASSERT(left->getType().getStruct());
break;
case EOpEqual:
case EOpNotEqual:
case EOpAssign:
case EOpInitialize:
if (left->getType() != right->getType())
{
return false;
}
break;
default:
error(loc, "Invalid operation for structs", GetOperatorString(op));
return false;
}
}
if (left->isArray() || right->isArray())
{
if (mShaderVersion < 300)
{
error(loc, "Invalid operation for arrays", GetOperatorString(op));
return false;
}
if (left->isArray() != right->isArray())
{
error(loc, "array / non-array mismatch", GetOperatorString(op));
return false;
}
switch (op)
{
case EOpEqual:
case EOpNotEqual:
case EOpAssign:
case EOpInitialize:
break;
default:
error(loc, "Invalid operation for arrays", GetOperatorString(op));
return false;
}
// At this point, size of implicitly sized arrays should be resolved.
if (left->getArraySize() != right->getArraySize())
{
error(loc, "array size mismatch", GetOperatorString(op));
return false;
}
}
// Check ops which require integer / ivec parameters
bool isBitShift = false;
switch (op)
{
case EOpBitShiftLeft:
case EOpBitShiftRight:
case EOpBitShiftLeftAssign:
case EOpBitShiftRightAssign:
// Unsigned can be bit-shifted by signed and vice versa, but we need to
// check that the basic type is an integer type.
isBitShift = true;
if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType()))
{
return false;
}
break;
case EOpBitwiseAnd:
case EOpBitwiseXor:
case EOpBitwiseOr:
case EOpBitwiseAndAssign:
case EOpBitwiseXorAssign:
case EOpBitwiseOrAssign:
// It is enough to check the type of only one operand, since later it
// is checked that the operand types match.
if (!IsInteger(left->getBasicType()))
{
return false;
}
break;
default:
break;
}
// GLSL ES 1.00 and 3.00 do not support implicit type casting.
// So the basic type should usually match.
if (!isBitShift && left->getBasicType() != right->getBasicType())
{
return false;
}
// Check that:
// 1. Type sizes match exactly on ops that require that.
// 2. Restrictions for structs that contain arrays or samplers are respected.
// 3. Arithmetic op type dimensionality restrictions for ops other than multiply are respected.
switch (op)
{
case EOpAssign:
case EOpInitialize:
case EOpEqual:
case EOpNotEqual:
// ESSL 1.00 sections 5.7, 5.8, 5.9
if (mShaderVersion < 300 && left->getType().isStructureContainingArrays())
{
error(loc, "undefined operation for structs containing arrays",
GetOperatorString(op));
return false;
}
// Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7,
// we interpret the spec so that this extends to structs containing samplers,
// similarly to ESSL 1.00 spec.
if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) &&
left->getType().isStructureContainingSamplers())
{
error(loc, "undefined operation for structs containing samplers",
GetOperatorString(op));
return false;
}
if ((op == EOpAssign || op == EOpInitialize) &&
left->getType().isStructureContainingImages())
{
error(loc, "undefined operation for structs containing images",
GetOperatorString(op));
return false;
}
if ((left->getNominalSize() != right->getNominalSize()) ||
(left->getSecondarySize() != right->getSecondarySize()))
{
error(loc, "dimension mismatch", GetOperatorString(op));
return false;
}
break;
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
if (!left->isScalar() || !right->isScalar())
{
error(loc, "comparison operator only defined for scalars", GetOperatorString(op));
return false;
}
break;
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpIMod:
case EOpBitShiftLeft:
case EOpBitShiftRight:
case EOpBitwiseAnd:
case EOpBitwiseXor:
case EOpBitwiseOr:
case EOpAddAssign:
case EOpSubAssign:
case EOpDivAssign:
case EOpIModAssign:
case EOpBitShiftLeftAssign:
case EOpBitShiftRightAssign:
case EOpBitwiseAndAssign:
case EOpBitwiseXorAssign:
case EOpBitwiseOrAssign:
if ((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix()))
{
return false;
}
// Are the sizes compatible?
if (left->getNominalSize() != right->getNominalSize() ||
left->getSecondarySize() != right->getSecondarySize())
{
// If the nominal sizes of operands do not match:
// One of them must be a scalar.
if (!left->isScalar() && !right->isScalar())
return false;
// In the case of compound assignment other than multiply-assign,
// the right side needs to be a scalar. Otherwise a vector/matrix
// would be assigned to a scalar. A scalar can't be shifted by a
// vector either.
if (!right->isScalar() &&
(IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight))
return false;
}
break;
default:
break;
}
return true;
}
bool TParseContext::isMultiplicationTypeCombinationValid(TOperator op,
const TType &left,
const TType &right)
{
switch (op)
{
case EOpMul:
case EOpMulAssign:
return left.getNominalSize() == right.getNominalSize() &&
left.getSecondarySize() == right.getSecondarySize();
case EOpVectorTimesScalar:
return true;
case EOpVectorTimesScalarAssign:
ASSERT(!left.isMatrix() && !right.isMatrix());
return left.isVector() && !right.isVector();
case EOpVectorTimesMatrix:
return left.getNominalSize() == right.getRows();
case EOpVectorTimesMatrixAssign:
ASSERT(!left.isMatrix() && right.isMatrix());
return left.isVector() && left.getNominalSize() == right.getRows() &&
left.getNominalSize() == right.getCols();
case EOpMatrixTimesVector:
return left.getCols() == right.getNominalSize();
case EOpMatrixTimesScalar:
return true;
case EOpMatrixTimesScalarAssign:
ASSERT(left.isMatrix() && !right.isMatrix());
return !right.isVector();
case EOpMatrixTimesMatrix:
return left.getCols() == right.getRows();
case EOpMatrixTimesMatrixAssign:
ASSERT(left.isMatrix() && right.isMatrix());
// We need to check two things:
// 1. The matrix multiplication step is valid.
// 2. The result will have the same number of columns as the lvalue.
return left.getCols() == right.getRows() && left.getCols() == right.getCols();
default:
UNREACHABLE();
return false;
}
}
TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
if (!binaryOpCommonCheck(op, left, right, loc))
return nullptr;
switch (op)
{
case EOpEqual:
case EOpNotEqual:
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
break;
case EOpLogicalOr:
case EOpLogicalXor:
case EOpLogicalAnd:
ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
!right->getType().getStruct());
if (left->getBasicType() != EbtBool || !left->isScalar() || !right->isScalar())
{
return nullptr;
}
// Basic types matching should have been already checked.
ASSERT(right->getBasicType() == EbtBool);
break;
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpMul:
ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
!right->getType().getStruct());
if (left->getBasicType() == EbtBool)
{
return nullptr;
}
break;
case EOpIMod:
ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
!right->getType().getStruct());
// Note that this is only for the % operator, not for mod()
if (left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat)
{
return nullptr;
}
break;
default:
break;
}
if (op == EOpMul)
{
op = TIntermBinary::GetMulOpBasedOnOperands(left->getType(), right->getType());
if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
{
return nullptr;
}
}
TIntermBinary *node = new TIntermBinary(op, left, right);
node->setLine(loc);
// See if we can fold constants.
TIntermTyped *foldedNode = node->fold(mDiagnostics);
if (foldedNode)
return foldedNode;
return node;
}
TIntermTyped *TParseContext::addBinaryMath(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
if (node == 0)
{
binaryOpError(loc, GetOperatorString(op), left->getCompleteString(),
right->getCompleteString());
return left;
}
return node;
}
TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
if (node == 0)
{
binaryOpError(loc, GetOperatorString(op), left->getCompleteString(),
right->getCompleteString());
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray->setBConst(false);
return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst),
loc);
}
return node;
}
TIntermBinary *TParseContext::createAssign(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
if (binaryOpCommonCheck(op, left, right, loc))
{
if (op == EOpMulAssign)
{
op = TIntermBinary::GetMulAssignOpBasedOnOperands(left->getType(), right->getType());
if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
{
return nullptr;
}
}
TIntermBinary *node = new TIntermBinary(op, left, right);
node->setLine(loc);
return node;
}
return nullptr;
}
TIntermTyped *TParseContext::addAssign(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
TIntermTyped *node = createAssign(op, left, right, loc);
if (node == nullptr)
{
assignError(loc, "assign", left->getCompleteString(), right->getCompleteString());
return left;
}
return node;
}
TIntermTyped *TParseContext::addComma(TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
// WebGL2 section 5.26, the following results in an error:
// "Sequence operator applied to void, arrays, or structs containing arrays"
if (mShaderSpec == SH_WEBGL2_SPEC &&
(left->isArray() || left->getBasicType() == EbtVoid ||
left->getType().isStructureContainingArrays() || right->isArray() ||
right->getBasicType() == EbtVoid || right->getType().isStructureContainingArrays()))
{
error(loc,
"sequence operator is not allowed for void, arrays, or structs containing arrays",
",");
}
return TIntermediate::AddComma(left, right, loc, mShaderVersion);
}
TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc)
{
switch (op)
{
case EOpContinue:
if (mLoopNestingLevel <= 0)
{
error(loc, "continue statement only allowed in loops", "");
}
break;
case EOpBreak:
if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0)
{
error(loc, "break statement only allowed in loops and switch statements", "");
}
break;
case EOpReturn:
if (mCurrentFunctionType->getBasicType() != EbtVoid)
{
error(loc, "non-void function must return a value", "return");
}
break;
default:
// No checks for discard
break;
}
return intermediate.addBranch(op, loc);
}
TIntermBranch *TParseContext::addBranch(TOperator op,
TIntermTyped *returnValue,
const TSourceLoc &loc)
{
ASSERT(op == EOpReturn);
mFunctionReturnsValue = true;
if (mCurrentFunctionType->getBasicType() == EbtVoid)
{
error(loc, "void function cannot return a value", "return");
}
else if (*mCurrentFunctionType != returnValue->getType())
{
error(loc, "function return is not matching type:", "return");
}
return intermediate.addBranch(op, returnValue, loc);
}
void TParseContext::checkTextureOffsetConst(TIntermAggregate *functionCall)
{
ASSERT(functionCall->getOp() == EOpCallBuiltInFunction);
const TString &name = functionCall->getFunctionSymbolInfo()->getName();
TIntermNode *offset = nullptr;
TIntermSequence *arguments = functionCall->getSequence();
if (name.compare(0, 16, "texelFetchOffset") == 0 ||
name.compare(0, 16, "textureLodOffset") == 0 ||
name.compare(0, 20, "textureProjLodOffset") == 0 ||
name.compare(0, 17, "textureGradOffset") == 0 ||
name.compare(0, 21, "textureProjGradOffset") == 0)
{
offset = arguments->back();
}
else if (name.compare(0, 13, "textureOffset") == 0 ||
name.compare(0, 17, "textureProjOffset") == 0)
{
// A bias parameter might follow the offset parameter.
ASSERT(arguments->size() >= 3);
offset = (*arguments)[2];
}
if (offset != nullptr)
{
TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion();
if (offset->getAsTyped()->getQualifier() != EvqConst || !offsetConstantUnion)
{
TString unmangledName = TFunction::unmangleName(name);
error(functionCall->getLine(), "Texture offset must be a constant expression",
unmangledName.c_str());
}
else
{
ASSERT(offsetConstantUnion->getBasicType() == EbtInt);
size_t size = offsetConstantUnion->getType().getObjectSize();
const TConstantUnion *values = offsetConstantUnion->getUnionArrayPointer();
for (size_t i = 0u; i < size; ++i)
{
int offsetValue = values[i].getIConst();
if (offsetValue > mMaxProgramTexelOffset || offsetValue < mMinProgramTexelOffset)
{
std::stringstream tokenStream;
tokenStream << offsetValue;
std::string token = tokenStream.str();
error(offset->getLine(), "Texture offset value out of valid range",
token.c_str());
}
}
}
}
}
// GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
void TParseContext::checkImageMemoryAccessForBuiltinFunctions(TIntermAggregate *functionCall)
{
ASSERT(functionCall->getOp() == EOpCallBuiltInFunction);
const TString &name = functionCall->getFunctionSymbolInfo()->getName();
if (name.compare(0, 5, "image") == 0)
{
TIntermSequence *arguments = functionCall->getSequence();
TIntermNode *imageNode = (*arguments)[0];
TIntermSymbol *imageSymbol = imageNode->getAsSymbolNode();
const TMemoryQualifier &memoryQualifier = imageSymbol->getMemoryQualifier();
if (name.compare(5, 5, "Store") == 0)
{
if (memoryQualifier.readonly)
{
error(imageNode->getLine(),
"'imageStore' cannot be used with images qualified as 'readonly'",
imageSymbol->getSymbol().c_str());
}
}
else if (name.compare(5, 4, "Load") == 0)
{
if (memoryQualifier.writeonly)
{
error(imageNode->getLine(),
"'imageLoad' cannot be used with images qualified as 'writeonly'",
imageSymbol->getSymbol().c_str());
}
}
}
}
// GLSL ES 3.10 Revision 4, 13.51 Matching of Memory Qualifiers in Function Parameters
void TParseContext::checkImageMemoryAccessForUserDefinedFunctions(
const TFunction *functionDefinition,
const TIntermAggregate *functionCall)
{
ASSERT(functionCall->getOp() == EOpCallFunctionInAST);
const TIntermSequence &arguments = *functionCall->getSequence();
ASSERT(functionDefinition->getParamCount() == arguments.size());
for (size_t i = 0; i < arguments.size(); ++i)
{
const TType &functionArgumentType = arguments[i]->getAsTyped()->getType();
const TType &functionParameterType = *functionDefinition->getParam(i).type;
ASSERT(functionArgumentType.getBasicType() == functionParameterType.getBasicType());
if (IsImage(functionArgumentType.getBasicType()))
{
const TMemoryQualifier &functionArgumentMemoryQualifier =
functionArgumentType.getMemoryQualifier();
const TMemoryQualifier &functionParameterMemoryQualifier =
functionParameterType.getMemoryQualifier();
if (functionArgumentMemoryQualifier.readonly &&
!functionParameterMemoryQualifier.readonly)
{
error(functionCall->getLine(),
"Function call discards the 'readonly' qualifier from image",
arguments[i]->getAsSymbolNode()->getSymbol().c_str());
}
if (functionArgumentMemoryQualifier.writeonly &&
!functionParameterMemoryQualifier.writeonly)
{
error(functionCall->getLine(),
"Function call discards the 'writeonly' qualifier from image",
arguments[i]->getAsSymbolNode()->getSymbol().c_str());
}
if (functionArgumentMemoryQualifier.coherent &&
!functionParameterMemoryQualifier.coherent)
{
error(functionCall->getLine(),
"Function call discards the 'coherent' qualifier from image",
arguments[i]->getAsSymbolNode()->getSymbol().c_str());
}
if (functionArgumentMemoryQualifier.volatileQualifier &&
!functionParameterMemoryQualifier.volatileQualifier)
{
error(functionCall->getLine(),
"Function call discards the 'volatile' qualifier from image",
arguments[i]->getAsSymbolNode()->getSymbol().c_str());
}
}
}
}
TIntermSequence *TParseContext::createEmptyArgumentsList()
{
return new TIntermSequence();
}
TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall,
TIntermSequence *arguments,
TIntermNode *thisNode,
const TSourceLoc &loc)
{
if (thisNode != nullptr)
{
return addMethod(fnCall, arguments, thisNode, loc);
}
TOperator op = fnCall->getBuiltInOp();
if (op != EOpNull)
{
return addConstructor(arguments, op, fnCall->getReturnType(), loc);
}
else
{
return addNonConstructorFunctionCall(fnCall, arguments, loc);
}
}
TIntermTyped *TParseContext::addMethod(TFunction *fnCall,
TIntermSequence *arguments,
TIntermNode *thisNode,
const TSourceLoc &loc)
{
TConstantUnion *unionArray = new TConstantUnion[1];
int arraySize = 0;
TIntermTyped *typedThis = thisNode->getAsTyped();
// It's possible for the name pointer in the TFunction to be null in case it gets parsed as
// a constructor. But such a TFunction can't reach here, since the lexer goes into FIELDS
// mode after a dot, which makes type identifiers to be parsed as FIELD_SELECTION instead.
// So accessing fnCall->getName() below is safe.
if (fnCall->getName() != "length")
{
error(loc, "invalid method", fnCall->getName().c_str());
}
else if (!arguments->empty())
{
error(loc, "method takes no parameters", "length");
}
else if (typedThis == nullptr || !typedThis->isArray())
{
error(loc, "length can only be called on arrays", "length");
}
else
{
arraySize = typedThis->getArraySize();
if (typedThis->getAsSymbolNode() == nullptr)
{
// This code path can be hit with expressions like these:
// (a = b).length()
// (func()).length()
// (int[3](0, 1, 2)).length()
// ESSL 3.00 section 5.9 defines expressions so that this is not actually a valid
// expression.
// It allows "An array name with the length method applied" in contrast to GLSL 4.4
// spec section 5.9 which allows "An array, vector or matrix expression with the
// length method applied".
error(loc, "length can only be called on array names, not on array expressions",
"length");
}
}
unionArray->setIConst(arraySize);
return intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), loc);
}
TIntermTyped *TParseContext::addNonConstructorFunctionCall(TFunction *fnCall,
TIntermSequence *arguments,
const TSourceLoc &loc)
{
// First find by unmangled name to check whether the function name has been
// hidden by a variable name or struct typename.
// If a function is found, check for one with a matching argument list.
bool builtIn;
const TSymbol *symbol = symbolTable.find(fnCall->getName(), mShaderVersion, &builtIn);
if (symbol != nullptr && !symbol->isFunction())
{
error(loc, "function name expected", fnCall->getName().c_str());
}
else
{
symbol = symbolTable.find(TFunction::GetMangledNameFromCall(fnCall->getName(), *arguments),
mShaderVersion, &builtIn);
if (symbol == nullptr)
{
error(loc, "no matching overloaded function found", fnCall->getName().c_str());
}
else
{
const TFunction *fnCandidate = static_cast<const TFunction *>(symbol);
//
// A declared function.
//
if (builtIn && !fnCandidate->getExtension().empty())
{
checkCanUseExtension(loc, fnCandidate->getExtension());
}
TOperator op = fnCandidate->getBuiltInOp();
if (builtIn && op != EOpNull)
{
// A function call mapped to a built-in operation.
if (fnCandidate->getParamCount() == 1)
{
// Treat it like a built-in unary operator.
TIntermNode *unaryParamNode = arguments->front();
TIntermTyped *callNode = createUnaryMath(op, unaryParamNode->getAsTyped(), loc);
ASSERT(callNode != nullptr);
return callNode;
}
else
{
TIntermAggregate *callNode =
new TIntermAggregate(fnCandidate->getReturnType(), op, arguments);
callNode->setLine(loc);
// Some built-in functions have out parameters too.
functionCallLValueErrorCheck(fnCandidate, callNode);
// See if we can constant fold a built-in. Note that this may be possible even
// if it is not const-qualified.
TIntermTyped *foldedNode =
intermediate.foldAggregateBuiltIn(callNode, mDiagnostics);
if (foldedNode)
{
return foldedNode;
}
return callNode;
}
}
else
{
// This is a real function call
TIntermAggregate *callNode = nullptr;
// If builtIn == false, the function is user defined - could be an overloaded
// built-in as well.
// if builtIn == true, it's a builtIn function with no op associated with it.
// This needs to happen after the function info including name is set.
if (builtIn)
{
callNode = new TIntermAggregate(fnCandidate->getReturnType(),
EOpCallBuiltInFunction, arguments);
// Note that name needs to be set before texture function type is determined.
callNode->getFunctionSymbolInfo()->setFromFunction(*fnCandidate);
callNode->setBuiltInFunctionPrecision();
checkTextureOffsetConst(callNode);
checkImageMemoryAccessForBuiltinFunctions(callNode);
}
else
{
callNode = new TIntermAggregate(fnCandidate->getReturnType(),
EOpCallFunctionInAST, arguments);
callNode->getFunctionSymbolInfo()->setFromFunction(*fnCandidate);
checkImageMemoryAccessForUserDefinedFunctions(fnCandidate, callNode);
}
functionCallLValueErrorCheck(fnCandidate, callNode);
callNode->setLine(loc);
return callNode;
}
}
}
// Error message was already written. Put on a dummy node for error recovery.
return TIntermTyped::CreateZero(TType(EbtFloat, EbpMedium, EvqConst));
}
TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond,
TIntermTyped *trueExpression,
TIntermTyped *falseExpression,
const TSourceLoc &loc)
{
checkIsScalarBool(loc, cond);
if (trueExpression->getType() != falseExpression->getType())
{
binaryOpError(loc, ":", trueExpression->getCompleteString(),
falseExpression->getCompleteString());
return falseExpression;
}
if (IsOpaqueType(trueExpression->getBasicType()))
{
// ESSL 1.00 section 4.1.7
// ESSL 3.00 section 4.1.7
// Opaque/sampler types are not allowed in most types of expressions, including ternary.
// Note that structs containing opaque types don't need to be checked as structs are
// forbidden below.
error(loc, "ternary operator is not allowed for opaque types", ":");
return falseExpression;
}
// ESSL1 sections 5.2 and 5.7:
// ESSL3 section 5.7:
// Ternary operator is not among the operators allowed for structures/arrays.
if (trueExpression->isArray() || trueExpression->getBasicType() == EbtStruct)
{
error(loc, "ternary operator is not allowed for structures or arrays", ":");
return falseExpression;
}
// WebGL2 section 5.26, the following results in an error:
// "Ternary operator applied to void, arrays, or structs containing arrays"
if (mShaderSpec == SH_WEBGL2_SPEC && trueExpression->getBasicType() == EbtVoid)
{
error(loc, "ternary operator is not allowed for void", ":");
return falseExpression;
}
return TIntermediate::AddTernarySelection(cond, trueExpression, falseExpression, loc);
}
//
// Parse an array of strings using yyparse.
//
// Returns 0 for success.
//
int PaParseStrings(size_t count,
const char *const string[],
const int length[],
TParseContext *context)
{
if ((count == 0) || (string == NULL))
return 1;
if (glslang_initialize(context))
return 1;
int error = glslang_scan(count, string, length, context);
if (!error)
error = glslang_parse(context);
glslang_finalize(context);
return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
}
} // namespace sh