Hash :
01074255
Author :
Date :
2016-11-28T15:55:51
D3D: Implement multi-thread shader compilation. Choose to use std::async for now to implement multi-threaded compiles. This should work across platforms and also be usable for other threading tasks. Note that std::async does not have a good way to wait for multiple std::futures. Also the Linux compile of std::async is broken due to a bug in an old STL version, so disable it on this platform. The implementation uses a static polymorphism approach, which should have very good performance (no virtual calls). This design leaves the door open for other future implementations, such as a Win32 thread pool, or one based on angle::Platform. BUG=angleproject:422 Change-Id: Ia2f13c3af0339efaca1d19b40b3e08ecca61b8e8 Reviewed-on: https://chromium-review.googlesource.com/413712 Commit-Queue: Jamie Madill <jmadill@chromium.org> Reviewed-by: Geoff Lang <geofflang@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// WorkerThread:
// Task running thread for ANGLE, similar to a TaskRunner in Chromium.
// Might be implemented differently depending on platform.
//
#include "libANGLE/WorkerThread.h"
namespace angle
{
namespace priv
{
// SingleThreadedWorkerPool implementation.
SingleThreadedWorkerPool::SingleThreadedWorkerPool(size_t maxThreads)
: WorkerThreadPoolBase(maxThreads)
{
}
SingleThreadedWorkerPool::~SingleThreadedWorkerPool()
{
}
SingleThreadedWaitableEvent SingleThreadedWorkerPool::postWorkerTaskImpl(Closure *task)
{
(*task)();
return SingleThreadedWaitableEvent(EventResetPolicy::Automatic, EventInitialState::Signaled);
}
// SingleThreadedWaitableEvent implementation.
SingleThreadedWaitableEvent::SingleThreadedWaitableEvent()
: SingleThreadedWaitableEvent(EventResetPolicy::Automatic, EventInitialState::NonSignaled)
{
}
SingleThreadedWaitableEvent::SingleThreadedWaitableEvent(EventResetPolicy resetPolicy,
EventInitialState initialState)
: WaitableEventBase(resetPolicy, initialState)
{
}
SingleThreadedWaitableEvent::~SingleThreadedWaitableEvent()
{
}
SingleThreadedWaitableEvent::SingleThreadedWaitableEvent(SingleThreadedWaitableEvent &&other)
: WaitableEventBase(std::move(other))
{
}
SingleThreadedWaitableEvent &SingleThreadedWaitableEvent::operator=(
SingleThreadedWaitableEvent &&other)
{
return copyBase(std::move(other));
}
void SingleThreadedWaitableEvent::resetImpl()
{
mSignaled = false;
}
void SingleThreadedWaitableEvent::waitImpl()
{
}
void SingleThreadedWaitableEvent::signalImpl()
{
mSignaled = true;
}
#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
// AsyncWorkerPool implementation.
AsyncWorkerPool::AsyncWorkerPool(size_t maxThreads) : WorkerThreadPoolBase(maxThreads)
{
}
AsyncWorkerPool::~AsyncWorkerPool()
{
}
AsyncWaitableEvent AsyncWorkerPool::postWorkerTaskImpl(Closure *task)
{
auto future = std::async(std::launch::async, [task] { (*task)(); });
AsyncWaitableEvent waitable(EventResetPolicy::Automatic, EventInitialState::NonSignaled);
waitable.setFuture(std::move(future));
return waitable;
}
// AsyncWaitableEvent implementation.
AsyncWaitableEvent::AsyncWaitableEvent()
: AsyncWaitableEvent(EventResetPolicy::Automatic, EventInitialState::NonSignaled)
{
}
AsyncWaitableEvent::AsyncWaitableEvent(EventResetPolicy resetPolicy, EventInitialState initialState)
: WaitableEventBase(resetPolicy, initialState)
{
}
AsyncWaitableEvent::~AsyncWaitableEvent()
{
}
AsyncWaitableEvent::AsyncWaitableEvent(AsyncWaitableEvent &&other)
: WaitableEventBase(std::move(other)), mFuture(std::move(other.mFuture))
{
}
AsyncWaitableEvent &AsyncWaitableEvent::operator=(AsyncWaitableEvent &&other)
{
std::swap(mFuture, other.mFuture);
return copyBase(std::move(other));
}
void AsyncWaitableEvent::setFuture(std::future<void> &&future)
{
mFuture = std::move(future);
}
void AsyncWaitableEvent::resetImpl()
{
mSignaled = false;
mFuture = std::future<void>();
}
void AsyncWaitableEvent::waitImpl()
{
if (mSignaled || !mFuture.valid())
{
return;
}
mFuture.wait();
signal();
}
void AsyncWaitableEvent::signalImpl()
{
mSignaled = true;
if (mResetPolicy == EventResetPolicy::Automatic)
{
reset();
}
}
#endif // (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
} // namespace priv
} // namespace angle