Hash :
f128872e
        
        Author :
  
        
        Date :
2025-09-16T23:37:08
        
      
Translator: Compare variables by unique id instead of pointer Bug: angleproject:349994211 Change-Id: I32ab2ffe9a04e196330949484e704913d0f4e41d Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/6955119 Reviewed-by: Yuxin Hu <yuxinhu@google.com> Reviewed-by: Geoff Lang <geofflang@chromium.org> Auto-Submit: Shahbaz Youssefi <syoussefi@chromium.org> Commit-Queue: Yuxin Hu <yuxinhu@google.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
//
// Copyright 2021 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// MonomorphizeUnsupportedFunctions: Monomorphize functions that are called with
// parameters that are incompatible with both Vulkan GLSL and Metal.
//
#include "compiler/translator/tree_ops/MonomorphizeUnsupportedFunctions.h"
#include "compiler/translator/ImmutableStringBuilder.h"
#include "compiler/translator/SymbolTable.h"
#include "compiler/translator/tree_util/IntermNode_util.h"
#include "compiler/translator/tree_util/IntermTraverse.h"
#include "compiler/translator/tree_util/ReplaceVariable.h"
namespace sh
{
namespace
{
struct Argument
{
    size_t argumentIndex;
    TIntermTyped *argument;
};
struct FunctionData
{
    // Whether the original function is used.  If this is false, the function can be removed because
    // all callers have been modified.
    bool isOriginalUsed;
    // The original definition of the function, used to create the monomorphized version.
    TIntermFunctionDefinition *originalDefinition;
    // List of monomorphized versions of this function.  They will be added next to the original
    // version (or replace it).
    TVector<TIntermFunctionDefinition *> monomorphizedDefinitions;
};
using FunctionMap = angle::HashMap<const TFunction *, FunctionData>;
// Traverse the function definitions and initialize the map.  Allows visitAggregate to have access
// to TIntermFunctionDefinition even when the function is only forward declared at that point.
void InitializeFunctionMap(TIntermBlock *root, FunctionMap *functionMapOut)
{
    TIntermSequence &sequence = *root->getSequence();
    for (TIntermNode *node : sequence)
    {
        TIntermFunctionDefinition *asFuncDef = node->getAsFunctionDefinition();
        if (asFuncDef != nullptr)
        {
            const TFunction *function = asFuncDef->getFunction();
            ASSERT(function && functionMapOut->find(function) == functionMapOut->end());
            (*functionMapOut)[function] = FunctionData{false, asFuncDef, {}};
        }
    }
}
const TVariable *GetBaseUniform(TIntermTyped *node, bool *isSamplerInStructOut)
{
    *isSamplerInStructOut = false;
    while (node->getAsBinaryNode())
    {
        TIntermBinary *asBinary = node->getAsBinaryNode();
        TOperator op = asBinary->getOp();
        // No opaque uniform can be inside an interface block.
        if (op == EOpIndexDirectInterfaceBlock)
        {
            return nullptr;
        }
        if (op == EOpIndexDirectStruct)
        {
            *isSamplerInStructOut = true;
        }
        node = asBinary->getLeft();
    }
    // Only interested in uniform opaque types.  If a function call within another function uses
    // opaque uniforms in an unsupported way, it will be replaced in a follow up pass after the
    // calling function is monomorphized.
    if (node->getType().getQualifier() != EvqUniform)
    {
        return nullptr;
    }
    ASSERT(IsOpaqueType(node->getType().getBasicType()) ||
           node->getType().isStructureContainingSamplers());
    TIntermSymbol *asSymbol = node->getAsSymbolNode();
    ASSERT(asSymbol);
    return &asSymbol->variable();
}
TIntermTyped *ExtractSideEffects(TSymbolTable *symbolTable,
                                 TIntermTyped *node,
                                 TIntermSequence *replacementIndices)
{
    TIntermTyped *withoutSideEffects = node->deepCopy();
    for (TIntermBinary *asBinary = withoutSideEffects->getAsBinaryNode(); asBinary;
         asBinary                = asBinary->getLeft()->getAsBinaryNode())
    {
        TOperator op        = asBinary->getOp();
        TIntermTyped *index = asBinary->getRight();
        if (op == EOpIndexDirectStruct)
        {
            break;
        }
        // No side effects with constant expressions.
        if (op == EOpIndexDirect)
        {
            ASSERT(index->getAsConstantUnion());
            continue;
        }
        ASSERT(op == EOpIndexIndirect);
        // If the index is a symbol, there's no side effect, so leave it as-is.
        if (index->getAsSymbolNode())
        {
            continue;
        }
        // Otherwise create a temp variable initialized with the index and use that temp variable as
        // the index.
        TIntermDeclaration *tempDecl = nullptr;
        TVariable *tempVar = DeclareTempVariable(symbolTable, index, EvqTemporary, &tempDecl);
        replacementIndices->push_back(tempDecl);
        asBinary->replaceChildNode(index, new TIntermSymbol(tempVar));
    }
    return withoutSideEffects;
}
void CreateMonomorphizedFunctionCallArgs(const TIntermSequence &originalCallArguments,
                                         const TVector<Argument> &replacedArguments,
                                         TIntermSequence *substituteArgsOut)
{
    size_t nextReplacedArg = 0;
    for (size_t argIndex = 0; argIndex < originalCallArguments.size(); ++argIndex)
    {
        if (nextReplacedArg >= replacedArguments.size() ||
            argIndex != replacedArguments[nextReplacedArg].argumentIndex)
        {
            // Not replaced, keep argument as is.
            substituteArgsOut->push_back(originalCallArguments[argIndex]);
        }
        else
        {
            TIntermTyped *argument = replacedArguments[nextReplacedArg].argument;
            // Iterate over indices of the argument and create a new arg for every non-const
            // index.  Note that the index itself may be an expression, and it may require further
            // substitution in the next pass.
            while (argument->getAsBinaryNode())
            {
                TIntermBinary *asBinary = argument->getAsBinaryNode();
                if (asBinary->getOp() == EOpIndexIndirect)
                {
                    TIntermTyped *index = asBinary->getRight();
                    substituteArgsOut->push_back(index->deepCopy());
                }
                argument = asBinary->getLeft();
            }
            ++nextReplacedArg;
        }
    }
}
const TFunction *MonomorphizeFunction(TSymbolTable *symbolTable,
                                      const TFunction *original,
                                      TVector<Argument> *replacedArguments,
                                      VariableReplacementMap *argumentMapOut)
{
    TFunction *substituteFunction =
        new TFunction(symbolTable, kEmptyImmutableString, SymbolType::AngleInternal,
                      &original->getReturnType(), original->isKnownToNotHaveSideEffects());
    size_t nextReplacedArg = 0;
    for (size_t paramIndex = 0; paramIndex < original->getParamCount(); ++paramIndex)
    {
        const TVariable *originalParam = original->getParam(paramIndex);
        if (nextReplacedArg >= replacedArguments->size() ||
            paramIndex != (*replacedArguments)[nextReplacedArg].argumentIndex)
        {
            TVariable *substituteArgument =
                new TVariable(symbolTable, originalParam->name(), &originalParam->getType(),
                              originalParam->symbolType());
            // Not replaced, add an identical parameter.
            substituteFunction->addParameter(substituteArgument);
            (*argumentMapOut)[originalParam->uniqueId()] = new TIntermSymbol(substituteArgument);
        }
        else
        {
            TIntermTyped *substituteArgument = (*replacedArguments)[nextReplacedArg].argument;
            (*argumentMapOut)[originalParam->uniqueId()] = substituteArgument;
            // Iterate over indices of the argument and create a new parameter for every non-const
            // index (which may be an expression).  Replace the symbol in the argument with a
            // variable of the index type.  This is later used to replace the parameter in the
            // function body.
            while (substituteArgument->getAsBinaryNode())
            {
                TIntermBinary *asBinary = substituteArgument->getAsBinaryNode();
                if (asBinary->getOp() == EOpIndexIndirect)
                {
                    TIntermTyped *index = asBinary->getRight();
                    TType *indexType    = new TType(index->getType());
                    indexType->setQualifier(EvqParamIn);
                    TVariable *param = new TVariable(symbolTable, kEmptyImmutableString, indexType,
                                                     SymbolType::AngleInternal);
                    substituteFunction->addParameter(param);
                    // The argument now uses the function parameters as indices.
                    asBinary->replaceChildNode(asBinary->getRight(), new TIntermSymbol(param));
                }
                substituteArgument = asBinary->getLeft();
            }
            ++nextReplacedArg;
        }
    }
    return substituteFunction;
}
class MonomorphizeTraverser final : public TIntermTraverser
{
  public:
    explicit MonomorphizeTraverser(TCompiler *compiler,
                                   TSymbolTable *symbolTable,
                                   UnsupportedFunctionArgsBitSet unsupportedFunctionArgs,
                                   FunctionMap *functionMap)
        : TIntermTraverser(true, false, false, symbolTable),
          mCompiler(compiler),
          mUnsupportedFunctionArgs(unsupportedFunctionArgs),
          mFunctionMap(functionMap)
    {}
    bool visitAggregate(Visit visit, TIntermAggregate *node) override
    {
        if (node->getOp() != EOpCallFunctionInAST)
        {
            return true;
        }
        const TFunction *function = node->getFunction();
        ASSERT(function && mFunctionMap->find(function) != mFunctionMap->end());
        FunctionData &data = (*mFunctionMap)[function];
        TIntermFunctionDefinition *monomorphized =
            processFunctionCall(node, data.originalDefinition, &data.isOriginalUsed);
        if (monomorphized)
        {
            data.monomorphizedDefinitions.push_back(monomorphized);
        }
        return true;
    }
    bool getAnyMonomorphized() const { return mAnyMonomorphized; }
  private:
    bool isUnsupportedArgument(TIntermTyped *callArgument, const TVariable *funcArgument) const
    {
        // Only interested in opaque uniforms and structs that contain samplers.
        const bool isOpaqueType = IsOpaqueType(funcArgument->getType().getBasicType());
        const bool isStructContainingSamplers =
            funcArgument->getType().isStructureContainingSamplers();
        if (!isOpaqueType && !isStructContainingSamplers)
        {
            return false;
        }
        // If not uniform (the variable was itself a function parameter), don't process it in
        // this pass, as we don't know which actual uniform it corresponds to.
        bool isSamplerInStruct   = false;
        const TVariable *uniform = GetBaseUniform(callArgument, &isSamplerInStruct);
        if (uniform == nullptr)
        {
            return false;
        }
        const TType &type = uniform->getType();
        if (mUnsupportedFunctionArgs[UnsupportedFunctionArgs::StructContainingSamplers])
        {
            // Monomorphize if the parameter is a structure that contains samplers (so in
            // RewriteStructSamplers we don't need to rewrite the functions to accept multiple
            // parameters split from the struct).
            if (isStructContainingSamplers)
            {
                return true;
            }
        }
        if (mUnsupportedFunctionArgs[UnsupportedFunctionArgs::ArrayOfArrayOfSamplerOrImage])
        {
            // Monomorphize if:
            //
            // - The opaque uniform is a sampler in a struct (which can create an array-of-array
            //   situation), and the function expects an array of samplers, or
            //
            // - The opaque uniform is an array of array of sampler or image, and it's partially
            //   subscripted (i.e. the function itself expects an array)
            //
            const bool isParameterArrayOfOpaqueType = funcArgument->getType().isArray();
            const bool isArrayOfArrayOfSamplerOrImage =
                (type.isSampler() || type.isImage()) && type.isArrayOfArrays();
            if (isSamplerInStruct && isParameterArrayOfOpaqueType)
            {
                return true;
            }
            if (isArrayOfArrayOfSamplerOrImage && isParameterArrayOfOpaqueType)
            {
                return true;
            }
        }
        if (mUnsupportedFunctionArgs[UnsupportedFunctionArgs::AtomicCounter])
        {
            if (type.isAtomicCounter())
            {
                return true;
            }
        }
        if (mUnsupportedFunctionArgs[UnsupportedFunctionArgs::Image])
        {
            if (type.isImage())
            {
                return true;
            }
        }
        if (mUnsupportedFunctionArgs[UnsupportedFunctionArgs::PixelLocalStorage])
        {
            if (type.isPixelLocal())
            {
                return true;
            }
        }
        return false;
    }
    TIntermFunctionDefinition *processFunctionCall(TIntermAggregate *functionCall,
                                                   TIntermFunctionDefinition *originalDefinition,
                                                   bool *isOriginalUsedOut)
    {
        const TFunction *function            = functionCall->getFunction();
        const TIntermSequence &callArguments = *functionCall->getSequence();
        TVector<Argument> replacedArguments;
        TIntermSequence replacementIndices;
        // Go through function call arguments, and see if any is used in an unsupported way.
        for (size_t argIndex = 0; argIndex < callArguments.size(); ++argIndex)
        {
            TIntermTyped *callArgument    = callArguments[argIndex]->getAsTyped();
            const TVariable *funcArgument = function->getParam(argIndex);
            if (isUnsupportedArgument(callArgument, funcArgument))
            {
                // Copy the argument and extract the side effects.
                TIntermTyped *argument =
                    ExtractSideEffects(mSymbolTable, callArgument, &replacementIndices);
                replacedArguments.push_back({argIndex, argument});
            }
        }
        if (replacedArguments.empty())
        {
            *isOriginalUsedOut = true;
            return nullptr;
        }
        mAnyMonomorphized = true;
        insertStatementsInParentBlock(replacementIndices);
        // Create the arguments for the substitute function call.  Done before monomorphizing the
        // function, which transforms the arguments to what needs to be replaced in the function
        // body.
        TIntermSequence newCallArgs;
        CreateMonomorphizedFunctionCallArgs(callArguments, replacedArguments, &newCallArgs);
        // Duplicate the function and substitute the replaced arguments with only the non-const
        // indices.  Additionally, substitute the non-const indices of arguments with the new
        // function parameters.
        VariableReplacementMap argumentMap;
        const TFunction *monomorphized =
            MonomorphizeFunction(mSymbolTable, function, &replacedArguments, &argumentMap);
        // Replace this function call with a call to the new one.
        queueReplacement(TIntermAggregate::CreateFunctionCall(*monomorphized, &newCallArgs),
                         OriginalNode::IS_DROPPED);
        // Create a new function definition, with the body of the old function but with the replaced
        // parameters substituted with the calling expressions.
        TIntermFunctionPrototype *substitutePrototype = new TIntermFunctionPrototype(monomorphized);
        TIntermBlock *substituteBlock                 = originalDefinition->getBody()->deepCopy();
        GetDeclaratorReplacements(mSymbolTable, substituteBlock, &argumentMap);
        bool valid = ReplaceVariables(mCompiler, substituteBlock, argumentMap);
        ASSERT(valid);
        return new TIntermFunctionDefinition(substitutePrototype, substituteBlock);
    }
    TCompiler *mCompiler;
    UnsupportedFunctionArgsBitSet mUnsupportedFunctionArgs;
    bool mAnyMonomorphized = false;
    // Map of original to monomorphized functions.
    FunctionMap *mFunctionMap;
};
class UpdateFunctionsDefinitionsTraverser final : public TIntermTraverser
{
  public:
    explicit UpdateFunctionsDefinitionsTraverser(TSymbolTable *symbolTable,
                                                 const FunctionMap &functionMap)
        : TIntermTraverser(true, false, false, symbolTable), mFunctionMap(functionMap)
    {}
    void visitFunctionPrototype(TIntermFunctionPrototype *node) override
    {
        const bool isInFunctionDefinition = getParentNode()->getAsFunctionDefinition() != nullptr;
        if (isInFunctionDefinition)
        {
            return;
        }
        // Add to and possibly replace the function prototype with replacement prototypes.
        const TFunction *function = node->getFunction();
        ASSERT(function && mFunctionMap.find(function) != mFunctionMap.end());
        const FunctionData &data = mFunctionMap.at(function);
        // If nothing to do, leave it be.
        if (data.monomorphizedDefinitions.empty())
        {
            ASSERT(data.isOriginalUsed || function->isMain());
            return;
        }
        // Replace the prototype with itself (if function is still used) as well as any
        // monomorphized versions.
        TIntermSequence replacement;
        if (data.isOriginalUsed)
        {
            replacement.push_back(node);
        }
        for (TIntermFunctionDefinition *monomorphizedDefinition : data.monomorphizedDefinitions)
        {
            replacement.push_back(new TIntermFunctionPrototype(
                monomorphizedDefinition->getFunctionPrototype()->getFunction()));
        }
        mMultiReplacements.emplace_back(getParentNode()->getAsBlock(), node,
                                        std::move(replacement));
    }
    bool visitFunctionDefinition(Visit visit, TIntermFunctionDefinition *node) override
    {
        // Add to and possibly replace the function definition with replacement definitions.
        const TFunction *function = node->getFunction();
        ASSERT(function && mFunctionMap.find(function) != mFunctionMap.end());
        const FunctionData &data = mFunctionMap.at(function);
        // If nothing to do, leave it be.
        if (data.monomorphizedDefinitions.empty())
        {
            ASSERT(data.isOriginalUsed || function->isMain());
            return false;
        }
        // Replace the definition with itself (if function is still used) as well as any
        // monomorphized versions.
        TIntermSequence replacement;
        if (data.isOriginalUsed)
        {
            replacement.push_back(node);
        }
        for (TIntermFunctionDefinition *monomorphizedDefinition : data.monomorphizedDefinitions)
        {
            replacement.push_back(monomorphizedDefinition);
        }
        mMultiReplacements.emplace_back(getParentNode()->getAsBlock(), node,
                                        std::move(replacement));
        return false;
    }
  private:
    const FunctionMap &mFunctionMap;
};
void SortDeclarations(TIntermBlock *root)
{
    TIntermSequence *original = root->getSequence();
    TIntermSequence replacement;
    TIntermSequence functionDefs;
    // Accumulate non-function-definition declarations in |replacement| and function definitions in
    // |functionDefs|.
    for (TIntermNode *node : *original)
    {
        if (node->getAsFunctionDefinition() || node->getAsFunctionPrototypeNode())
        {
            functionDefs.push_back(node);
        }
        else
        {
            replacement.push_back(node);
        }
    }
    // Append function definitions to |replacement|.
    replacement.insert(replacement.end(), functionDefs.begin(), functionDefs.end());
    // Replace root's sequence with |replacement|.
    root->replaceAllChildren(std::move(replacement));
}
bool MonomorphizeUnsupportedFunctionsImpl(TCompiler *compiler,
                                          TIntermBlock *root,
                                          TSymbolTable *symbolTable,
                                          UnsupportedFunctionArgsBitSet unsupportedFunctionArgs)
{
    // First, sort out the declarations such that all non-function declarations are placed before
    // function definitions.  This way when the function is replaced with one that references said
    // declarations (i.e. uniforms), the uniform declaration is already present above it.
    SortDeclarations(root);
    while (true)
    {
        FunctionMap functionMap;
        InitializeFunctionMap(root, &functionMap);
        MonomorphizeTraverser monomorphizer(compiler, symbolTable, unsupportedFunctionArgs,
                                            &functionMap);
        root->traverse(&monomorphizer);
        if (!monomorphizer.getAnyMonomorphized())
        {
            break;
        }
        if (!monomorphizer.updateTree(compiler, root))
        {
            return false;
        }
        UpdateFunctionsDefinitionsTraverser functionUpdater(symbolTable, functionMap);
        root->traverse(&functionUpdater);
        if (!functionUpdater.updateTree(compiler, root))
        {
            return false;
        }
    }
    return true;
}
}  // anonymous namespace
bool MonomorphizeUnsupportedFunctions(TCompiler *compiler,
                                      TIntermBlock *root,
                                      TSymbolTable *symbolTable,
                                      UnsupportedFunctionArgsBitSet unsupportedFunctionArgs)
{
    // This function actually applies multiple transformation, and the AST may not be valid until
    // the transformations are entirely done.  Some validation is momentarily disabled.
    bool enableValidateFunctionCall = compiler->disableValidateFunctionCall();
    bool result =
        MonomorphizeUnsupportedFunctionsImpl(compiler, root, symbolTable, unsupportedFunctionArgs);
    compiler->restoreValidateFunctionCall(enableValidateFunctionCall);
    return result && compiler->validateAST(root);
}
}  // namespace sh