Hash :
25390156
Author :
Date :
2025-08-21T00:13:19
Suppress unsafe buffers on a file-by-file basis in src/ [1 of N] In this CL, we suppress many files but stop short of actually enabling the warning by not removing the line from the unsafe_buffers_paths.txt file. That will happen in a follow-on CL, along with resolving any stragglers missed here. This is mostly a manual change so as to familiarize myself with the kinds of issues faced by the Angle codebase when applying buffer safety warnings. -- Re-generate affected hashes. -- Clang-format applied to all changed files. -- Add a few missing .reserve() calls to vectors as noticed. -- Fix some mismatches between file names and header comments. -- Be more consistent with header comment format (blank lines and trailing //-only lines when a filename comment adjoins license boilerplate). Bug: b/436880895 Change-Id: I3bde5cc2059acbe8345057289214f1a26f1c34aa Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/6869022 Reviewed-by: Geoff Lang <geofflang@chromium.org> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org> Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
//
// Copyright 2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// angletypes.cpp : Defines a variety of structures and enum types that are used throughout
// libGLESv2
#ifdef UNSAFE_BUFFERS_BUILD
# pragma allow_unsafe_buffers
#endif
#include "libANGLE/angletypes.h"
#include "libANGLE/Program.h"
#include "libANGLE/State.h"
#include "libANGLE/VertexArray.h"
#include "libANGLE/VertexAttribute.h"
#include <limits>
#define USE_SYSTEM_ZLIB
#include "compression_utils_portable.h"
namespace gl
{
namespace
{
bool IsStencilWriteMaskedOut(GLuint stencilWritemask, GLuint framebufferStencilSize)
{
const GLuint framebufferMask = angle::BitMask<GLuint>(framebufferStencilSize);
return (stencilWritemask & framebufferMask) == 0;
}
bool IsStencilNoOp(GLenum stencilFunc,
GLenum stencilFail,
GLenum stencilPassDepthFail,
GLenum stencilPassDepthPass)
{
const bool isNeverAndKeep = stencilFunc == GL_NEVER && stencilFail == GL_KEEP;
const bool isAlwaysAndKeepOrAllKeep = (stencilFunc == GL_ALWAYS || stencilFail == GL_KEEP) &&
stencilPassDepthFail == GL_KEEP &&
stencilPassDepthPass == GL_KEEP;
return isNeverAndKeep || isAlwaysAndKeepOrAllKeep;
}
// Calculate whether the range [outsideLow, outsideHigh] encloses the range [insideLow, insideHigh]
bool EnclosesRange(int outsideLow, int outsideHigh, int insideLow, int insideHigh)
{
return outsideLow <= insideLow && outsideHigh >= insideHigh;
}
bool IsAdvancedBlendEquation(gl::BlendEquationType blendEquation)
{
return blendEquation >= gl::BlendEquationType::Multiply &&
blendEquation <= gl::BlendEquationType::HslLuminosity;
}
bool IsExtendedBlendFactor(gl::BlendFactorType blendFactor)
{
return blendFactor >= gl::BlendFactorType::Src1Alpha &&
blendFactor <= gl::BlendFactorType::OneMinusSrc1Alpha;
}
} // anonymous namespace
RasterizerState::RasterizerState()
{
memset(this, 0, sizeof(RasterizerState));
cullFace = false;
cullMode = CullFaceMode::Back;
frontFace = GL_CCW;
polygonMode = PolygonMode::Fill;
polygonOffsetPoint = false;
polygonOffsetLine = false;
polygonOffsetFill = false;
polygonOffsetFactor = 0.0f;
polygonOffsetUnits = 0.0f;
polygonOffsetClamp = 0.0f;
depthClamp = false;
pointDrawMode = false;
multiSample = false;
rasterizerDiscard = false;
dither = true;
}
RasterizerState::RasterizerState(const RasterizerState &other)
{
memcpy(this, &other, sizeof(RasterizerState));
}
RasterizerState &RasterizerState::operator=(const RasterizerState &other)
{
memcpy(this, &other, sizeof(RasterizerState));
return *this;
}
bool operator==(const RasterizerState &a, const RasterizerState &b)
{
return memcmp(&a, &b, sizeof(RasterizerState)) == 0;
}
bool operator!=(const RasterizerState &a, const RasterizerState &b)
{
return !(a == b);
}
BlendState::BlendState()
{
memset(this, 0, sizeof(BlendState));
blend = false;
sourceBlendRGB = GL_ONE;
sourceBlendAlpha = GL_ONE;
destBlendRGB = GL_ZERO;
destBlendAlpha = GL_ZERO;
blendEquationRGB = GL_FUNC_ADD;
blendEquationAlpha = GL_FUNC_ADD;
colorMaskRed = true;
colorMaskGreen = true;
colorMaskBlue = true;
colorMaskAlpha = true;
}
BlendState::BlendState(const BlendState &other)
{
memcpy(this, &other, sizeof(BlendState));
}
bool operator==(const BlendState &a, const BlendState &b)
{
return memcmp(&a, &b, sizeof(BlendState)) == 0;
}
bool operator!=(const BlendState &a, const BlendState &b)
{
return !(a == b);
}
DepthStencilState::DepthStencilState()
{
memset(this, 0, sizeof(DepthStencilState));
depthTest = false;
depthFunc = GL_LESS;
depthMask = true;
stencilTest = false;
stencilFunc = GL_ALWAYS;
stencilMask = static_cast<GLuint>(-1);
stencilWritemask = static_cast<GLuint>(-1);
stencilBackFunc = GL_ALWAYS;
stencilBackMask = static_cast<GLuint>(-1);
stencilBackWritemask = static_cast<GLuint>(-1);
stencilFail = GL_KEEP;
stencilPassDepthFail = GL_KEEP;
stencilPassDepthPass = GL_KEEP;
stencilBackFail = GL_KEEP;
stencilBackPassDepthFail = GL_KEEP;
stencilBackPassDepthPass = GL_KEEP;
}
DepthStencilState::DepthStencilState(const DepthStencilState &other)
{
memcpy(this, &other, sizeof(DepthStencilState));
}
DepthStencilState &DepthStencilState::operator=(const DepthStencilState &other)
{
memcpy(this, &other, sizeof(DepthStencilState));
return *this;
}
bool DepthStencilState::isDepthMaskedOut() const
{
return !depthMask;
}
bool DepthStencilState::isStencilMaskedOut(GLuint framebufferStencilSize) const
{
return IsStencilWriteMaskedOut(stencilWritemask, framebufferStencilSize);
}
bool DepthStencilState::isStencilNoOp(GLuint framebufferStencilSize) const
{
return isStencilMaskedOut(framebufferStencilSize) ||
IsStencilNoOp(stencilFunc, stencilFail, stencilPassDepthFail, stencilPassDepthPass);
}
bool DepthStencilState::isStencilBackNoOp(GLuint framebufferStencilSize) const
{
return IsStencilWriteMaskedOut(stencilBackWritemask, framebufferStencilSize) ||
IsStencilNoOp(stencilBackFunc, stencilBackFail, stencilBackPassDepthFail,
stencilBackPassDepthPass);
}
bool operator==(const DepthStencilState &a, const DepthStencilState &b)
{
return memcmp(&a, &b, sizeof(DepthStencilState)) == 0;
}
bool operator!=(const DepthStencilState &a, const DepthStencilState &b)
{
return !(a == b);
}
SamplerState::SamplerState()
{
memset(this, 0, sizeof(SamplerState));
setMinFilter(GL_NEAREST_MIPMAP_LINEAR);
setMagFilter(GL_LINEAR);
setWrapS(GL_REPEAT);
setWrapT(GL_REPEAT);
setWrapR(GL_REPEAT);
setMaxAnisotropy(1.0f);
setMinLod(-1000.0f);
setMaxLod(1000.0f);
setCompareMode(GL_NONE);
setCompareFunc(GL_LEQUAL);
setSRGBDecode(GL_DECODE_EXT);
}
SamplerState::SamplerState(const SamplerState &other) = default;
SamplerState &SamplerState::operator=(const SamplerState &other) = default;
// static
SamplerState SamplerState::CreateDefaultForTarget(TextureType type)
{
SamplerState state;
// According to OES_EGL_image_external and ARB_texture_rectangle: For external textures, the
// default min filter is GL_LINEAR and the default s and t wrap modes are GL_CLAMP_TO_EDGE.
if (type == TextureType::External || type == TextureType::Rectangle)
{
state.mMinFilter = GL_LINEAR;
state.mWrapS = GL_CLAMP_TO_EDGE;
state.mWrapT = GL_CLAMP_TO_EDGE;
}
return state;
}
bool SamplerState::setMinFilter(GLenum minFilter)
{
if (mMinFilter != minFilter)
{
mMinFilter = minFilter;
mCompleteness.typed.minFilter = static_cast<uint8_t>(FromGLenum<FilterMode>(minFilter));
return true;
}
return false;
}
bool SamplerState::setMagFilter(GLenum magFilter)
{
if (mMagFilter != magFilter)
{
mMagFilter = magFilter;
mCompleteness.typed.magFilter = static_cast<uint8_t>(FromGLenum<FilterMode>(magFilter));
return true;
}
return false;
}
bool SamplerState::setWrapS(GLenum wrapS)
{
if (mWrapS != wrapS)
{
mWrapS = wrapS;
mCompleteness.typed.wrapS = static_cast<uint8_t>(FromGLenum<WrapMode>(wrapS));
return true;
}
return false;
}
bool SamplerState::setWrapT(GLenum wrapT)
{
if (mWrapT != wrapT)
{
mWrapT = wrapT;
updateWrapTCompareMode();
return true;
}
return false;
}
bool SamplerState::setWrapR(GLenum wrapR)
{
if (mWrapR != wrapR)
{
mWrapR = wrapR;
return true;
}
return false;
}
bool SamplerState::setMaxAnisotropy(float maxAnisotropy)
{
if (mMaxAnisotropy != maxAnisotropy)
{
mMaxAnisotropy = maxAnisotropy;
return true;
}
return false;
}
bool SamplerState::setMinLod(GLfloat minLod)
{
if (mMinLod != minLod)
{
mMinLod = minLod;
return true;
}
return false;
}
bool SamplerState::setMaxLod(GLfloat maxLod)
{
if (mMaxLod != maxLod)
{
mMaxLod = maxLod;
return true;
}
return false;
}
bool SamplerState::setCompareMode(GLenum compareMode)
{
if (mCompareMode != compareMode)
{
mCompareMode = compareMode;
updateWrapTCompareMode();
return true;
}
return false;
}
bool SamplerState::setCompareFunc(GLenum compareFunc)
{
if (mCompareFunc != compareFunc)
{
mCompareFunc = compareFunc;
return true;
}
return false;
}
bool SamplerState::setSRGBDecode(GLenum sRGBDecode)
{
if (mSRGBDecode != sRGBDecode)
{
mSRGBDecode = sRGBDecode;
return true;
}
return false;
}
bool SamplerState::setBorderColor(const ColorGeneric &color)
{
if (mBorderColor != color)
{
mBorderColor = color;
return true;
}
return false;
}
void SamplerState::updateWrapTCompareMode()
{
uint8_t wrap = static_cast<uint8_t>(FromGLenum<WrapMode>(mWrapT));
uint8_t compare = static_cast<uint8_t>(mCompareMode == GL_NONE ? 0x10 : 0x00);
mCompleteness.typed.wrapTCompareMode = wrap | compare;
}
ImageUnit::ImageUnit()
: texture(), level(0), layered(false), layer(0), access(GL_READ_ONLY), format(GL_R32UI)
{}
ImageUnit::ImageUnit(const ImageUnit &other) = default;
ImageUnit::~ImageUnit() = default;
BlendStateExt::BlendStateExt(const size_t drawBufferCount)
: mParameterMask(FactorStorage::GetMask(drawBufferCount)),
mSrcColor(FactorStorage::GetReplicatedValue(BlendFactorType::One, mParameterMask)),
mDstColor(FactorStorage::GetReplicatedValue(BlendFactorType::Zero, mParameterMask)),
mSrcAlpha(FactorStorage::GetReplicatedValue(BlendFactorType::One, mParameterMask)),
mDstAlpha(FactorStorage::GetReplicatedValue(BlendFactorType::Zero, mParameterMask)),
mEquationColor(EquationStorage::GetReplicatedValue(BlendEquationType::Add, mParameterMask)),
mEquationAlpha(EquationStorage::GetReplicatedValue(BlendEquationType::Add, mParameterMask)),
mAllColorMask(
ColorMaskStorage::GetReplicatedValue(PackColorMask(true, true, true, true),
ColorMaskStorage::GetMask(drawBufferCount))),
mColorMask(mAllColorMask),
mAllEnabledMask(0xFF >> (8 - drawBufferCount)),
mDrawBufferCount(drawBufferCount)
{}
BlendStateExt::BlendStateExt(const BlendStateExt &other) = default;
BlendStateExt &BlendStateExt::operator=(const BlendStateExt &other) = default;
void BlendStateExt::setEnabled(const bool enabled)
{
mEnabledMask = enabled ? mAllEnabledMask : DrawBufferMask::Zero();
}
void BlendStateExt::setEnabledIndexed(const size_t index, const bool enabled)
{
ASSERT(index < mDrawBufferCount);
mEnabledMask.set(index, enabled);
}
BlendStateExt::ColorMaskStorage::Type BlendStateExt::expandColorMaskValue(const bool red,
const bool green,
const bool blue,
const bool alpha) const
{
return BlendStateExt::ColorMaskStorage::GetReplicatedValue(
PackColorMask(red, green, blue, alpha), mAllColorMask);
}
BlendStateExt::ColorMaskStorage::Type BlendStateExt::expandColorMaskIndexed(
const size_t index) const
{
return ColorMaskStorage::GetReplicatedValue(
ColorMaskStorage::GetValueIndexed(index, mColorMask), mAllColorMask);
}
void BlendStateExt::setColorMask(const bool red,
const bool green,
const bool blue,
const bool alpha)
{
mColorMask = expandColorMaskValue(red, green, blue, alpha);
}
void BlendStateExt::setColorMaskIndexed(const size_t index, const uint8_t value)
{
ASSERT(index < mDrawBufferCount);
ASSERT(value <= 0xF);
ColorMaskStorage::SetValueIndexed(index, value, &mColorMask);
}
void BlendStateExt::setColorMaskIndexed(const size_t index,
const bool red,
const bool green,
const bool blue,
const bool alpha)
{
ASSERT(index < mDrawBufferCount);
ColorMaskStorage::SetValueIndexed(index, PackColorMask(red, green, blue, alpha), &mColorMask);
}
uint8_t BlendStateExt::getColorMaskIndexed(const size_t index) const
{
ASSERT(index < mDrawBufferCount);
return ColorMaskStorage::GetValueIndexed(index, mColorMask);
}
void BlendStateExt::getColorMaskIndexed(const size_t index,
bool *red,
bool *green,
bool *blue,
bool *alpha) const
{
ASSERT(index < mDrawBufferCount);
UnpackColorMask(ColorMaskStorage::GetValueIndexed(index, mColorMask), red, green, blue, alpha);
}
DrawBufferMask BlendStateExt::compareColorMask(ColorMaskStorage::Type other) const
{
return ColorMaskStorage::GetDiffMask(mColorMask, other);
}
BlendStateExt::EquationStorage::Type BlendStateExt::expandEquationValue(const GLenum mode) const
{
return EquationStorage::GetReplicatedValue(FromGLenum<BlendEquationType>(mode), mParameterMask);
}
BlendStateExt::EquationStorage::Type BlendStateExt::expandEquationValue(
const gl::BlendEquationType equation) const
{
return EquationStorage::GetReplicatedValue(equation, mParameterMask);
}
BlendStateExt::EquationStorage::Type BlendStateExt::expandEquationColorIndexed(
const size_t index) const
{
return EquationStorage::GetReplicatedValue(
EquationStorage::GetValueIndexed(index, mEquationColor), mParameterMask);
}
BlendStateExt::EquationStorage::Type BlendStateExt::expandEquationAlphaIndexed(
const size_t index) const
{
return EquationStorage::GetReplicatedValue(
EquationStorage::GetValueIndexed(index, mEquationAlpha), mParameterMask);
}
void BlendStateExt::setEquations(const GLenum modeColor, const GLenum modeAlpha)
{
const gl::BlendEquationType colorEquation = FromGLenum<BlendEquationType>(modeColor);
const gl::BlendEquationType alphaEquation = FromGLenum<BlendEquationType>(modeAlpha);
mEquationColor = expandEquationValue(colorEquation);
mEquationAlpha = expandEquationValue(alphaEquation);
// Note that advanced blend equations cannot be independently set for color and alpha, so only
// the color equation can be checked.
if (IsAdvancedBlendEquation(colorEquation))
{
mUsesAdvancedBlendEquationMask = mAllEnabledMask;
}
else
{
mUsesAdvancedBlendEquationMask.reset();
}
}
void BlendStateExt::setEquationsIndexed(const size_t index,
const GLenum modeColor,
const GLenum modeAlpha)
{
ASSERT(index < mDrawBufferCount);
const gl::BlendEquationType colorEquation = FromGLenum<BlendEquationType>(modeColor);
const gl::BlendEquationType alphaEquation = FromGLenum<BlendEquationType>(modeAlpha);
EquationStorage::SetValueIndexed(index, colorEquation, &mEquationColor);
EquationStorage::SetValueIndexed(index, alphaEquation, &mEquationAlpha);
mUsesAdvancedBlendEquationMask.set(index, IsAdvancedBlendEquation(colorEquation));
}
void BlendStateExt::setEquationsIndexed(const size_t index,
const size_t sourceIndex,
const BlendStateExt &source)
{
ASSERT(index < mDrawBufferCount);
ASSERT(sourceIndex < source.mDrawBufferCount);
const gl::BlendEquationType colorEquation =
EquationStorage::GetValueIndexed(sourceIndex, source.mEquationColor);
const gl::BlendEquationType alphaEquation =
EquationStorage::GetValueIndexed(sourceIndex, source.mEquationAlpha);
EquationStorage::SetValueIndexed(index, colorEquation, &mEquationColor);
EquationStorage::SetValueIndexed(index, alphaEquation, &mEquationAlpha);
mUsesAdvancedBlendEquationMask.set(index, IsAdvancedBlendEquation(colorEquation));
}
DrawBufferMask BlendStateExt::compareEquations(const EquationStorage::Type color,
const EquationStorage::Type alpha) const
{
return EquationStorage::GetDiffMask(mEquationColor, color) |
EquationStorage::GetDiffMask(mEquationAlpha, alpha);
}
BlendStateExt::FactorStorage::Type BlendStateExt::expandFactorValue(const GLenum func) const
{
return FactorStorage::GetReplicatedValue(FromGLenum<BlendFactorType>(func), mParameterMask);
}
BlendStateExt::FactorStorage::Type BlendStateExt::expandFactorValue(
const gl::BlendFactorType func) const
{
return FactorStorage::GetReplicatedValue(func, mParameterMask);
}
BlendStateExt::FactorStorage::Type BlendStateExt::expandSrcColorIndexed(const size_t index) const
{
ASSERT(index < mDrawBufferCount);
return FactorStorage::GetReplicatedValue(FactorStorage::GetValueIndexed(index, mSrcColor),
mParameterMask);
}
BlendStateExt::FactorStorage::Type BlendStateExt::expandDstColorIndexed(const size_t index) const
{
ASSERT(index < mDrawBufferCount);
return FactorStorage::GetReplicatedValue(FactorStorage::GetValueIndexed(index, mDstColor),
mParameterMask);
}
BlendStateExt::FactorStorage::Type BlendStateExt::expandSrcAlphaIndexed(const size_t index) const
{
ASSERT(index < mDrawBufferCount);
return FactorStorage::GetReplicatedValue(FactorStorage::GetValueIndexed(index, mSrcAlpha),
mParameterMask);
}
BlendStateExt::FactorStorage::Type BlendStateExt::expandDstAlphaIndexed(const size_t index) const
{
ASSERT(index < mDrawBufferCount);
return FactorStorage::GetReplicatedValue(FactorStorage::GetValueIndexed(index, mDstAlpha),
mParameterMask);
}
void BlendStateExt::setFactors(const GLenum srcColor,
const GLenum dstColor,
const GLenum srcAlpha,
const GLenum dstAlpha)
{
const gl::BlendFactorType srcColorFactor = FromGLenum<BlendFactorType>(srcColor);
const gl::BlendFactorType dstColorFactor = FromGLenum<BlendFactorType>(dstColor);
const gl::BlendFactorType srcAlphaFactor = FromGLenum<BlendFactorType>(srcAlpha);
const gl::BlendFactorType dstAlphaFactor = FromGLenum<BlendFactorType>(dstAlpha);
mSrcColor = expandFactorValue(srcColorFactor);
mDstColor = expandFactorValue(dstColorFactor);
mSrcAlpha = expandFactorValue(srcAlphaFactor);
mDstAlpha = expandFactorValue(dstAlphaFactor);
if (IsExtendedBlendFactor(srcColorFactor) || IsExtendedBlendFactor(dstColorFactor) ||
IsExtendedBlendFactor(srcAlphaFactor) || IsExtendedBlendFactor(dstAlphaFactor))
{
mUsesExtendedBlendFactorMask = mAllEnabledMask;
}
else
{
mUsesExtendedBlendFactorMask.reset();
}
}
void BlendStateExt::setFactorsIndexed(const size_t index,
const gl::BlendFactorType srcColorFactor,
const gl::BlendFactorType dstColorFactor,
const gl::BlendFactorType srcAlphaFactor,
const gl::BlendFactorType dstAlphaFactor)
{
ASSERT(index < mDrawBufferCount);
FactorStorage::SetValueIndexed(index, srcColorFactor, &mSrcColor);
FactorStorage::SetValueIndexed(index, dstColorFactor, &mDstColor);
FactorStorage::SetValueIndexed(index, srcAlphaFactor, &mSrcAlpha);
FactorStorage::SetValueIndexed(index, dstAlphaFactor, &mDstAlpha);
const bool isExtended =
IsExtendedBlendFactor(srcColorFactor) || IsExtendedBlendFactor(dstColorFactor) ||
IsExtendedBlendFactor(srcAlphaFactor) || IsExtendedBlendFactor(dstAlphaFactor);
mUsesExtendedBlendFactorMask.set(index, isExtended);
}
void BlendStateExt::setFactorsIndexed(const size_t index,
const GLenum srcColor,
const GLenum dstColor,
const GLenum srcAlpha,
const GLenum dstAlpha)
{
const gl::BlendFactorType srcColorFactor = FromGLenum<BlendFactorType>(srcColor);
const gl::BlendFactorType dstColorFactor = FromGLenum<BlendFactorType>(dstColor);
const gl::BlendFactorType srcAlphaFactor = FromGLenum<BlendFactorType>(srcAlpha);
const gl::BlendFactorType dstAlphaFactor = FromGLenum<BlendFactorType>(dstAlpha);
setFactorsIndexed(index, srcColorFactor, dstColorFactor, srcAlphaFactor, dstAlphaFactor);
}
void BlendStateExt::setFactorsIndexed(const size_t index,
const size_t sourceIndex,
const BlendStateExt &source)
{
ASSERT(index < mDrawBufferCount);
ASSERT(sourceIndex < source.mDrawBufferCount);
const gl::BlendFactorType srcColorFactor =
FactorStorage::GetValueIndexed(sourceIndex, source.mSrcColor);
const gl::BlendFactorType dstColorFactor =
FactorStorage::GetValueIndexed(sourceIndex, source.mDstColor);
const gl::BlendFactorType srcAlphaFactor =
FactorStorage::GetValueIndexed(sourceIndex, source.mSrcAlpha);
const gl::BlendFactorType dstAlphaFactor =
FactorStorage::GetValueIndexed(sourceIndex, source.mDstAlpha);
FactorStorage::SetValueIndexed(index, srcColorFactor, &mSrcColor);
FactorStorage::SetValueIndexed(index, dstColorFactor, &mDstColor);
FactorStorage::SetValueIndexed(index, srcAlphaFactor, &mSrcAlpha);
FactorStorage::SetValueIndexed(index, dstAlphaFactor, &mDstAlpha);
const bool isExtended =
IsExtendedBlendFactor(srcColorFactor) || IsExtendedBlendFactor(dstColorFactor) ||
IsExtendedBlendFactor(srcAlphaFactor) || IsExtendedBlendFactor(dstAlphaFactor);
mUsesExtendedBlendFactorMask.set(index, isExtended);
}
DrawBufferMask BlendStateExt::compareFactors(const FactorStorage::Type srcColor,
const FactorStorage::Type dstColor,
const FactorStorage::Type srcAlpha,
const FactorStorage::Type dstAlpha) const
{
return FactorStorage::GetDiffMask(mSrcColor, srcColor) |
FactorStorage::GetDiffMask(mDstColor, dstColor) |
FactorStorage::GetDiffMask(mSrcAlpha, srcAlpha) |
FactorStorage::GetDiffMask(mDstAlpha, dstAlpha);
}
static void MinMax(int a, int b, int *minimum, int *maximum)
{
if (a < b)
{
*minimum = a;
*maximum = b;
}
else
{
*minimum = b;
*maximum = a;
}
}
template <>
bool RectangleImpl<int>::empty() const
{
return width == 0 && height == 0;
}
template <>
bool RectangleImpl<float>::empty() const
{
return std::abs(width) < std::numeric_limits<float>::epsilon() &&
std::abs(height) < std::numeric_limits<float>::epsilon();
}
bool ClipRectangle(const Rectangle &source, const Rectangle &clip, Rectangle *intersection)
{
angle::CheckedNumeric<int> sourceX2(source.x);
sourceX2 += source.width;
if (!sourceX2.IsValid())
{
return false;
}
angle::CheckedNumeric<int> sourceY2(source.y);
sourceY2 += source.height;
if (!sourceY2.IsValid())
{
return false;
}
int minSourceX, maxSourceX, minSourceY, maxSourceY;
MinMax(source.x, sourceX2.ValueOrDie(), &minSourceX, &maxSourceX);
MinMax(source.y, sourceY2.ValueOrDie(), &minSourceY, &maxSourceY);
angle::CheckedNumeric<int> clipX2(clip.x);
clipX2 += clip.width;
if (!clipX2.IsValid())
{
return false;
}
angle::CheckedNumeric<int> clipY2(clip.y);
clipY2 += clip.height;
if (!clipY2.IsValid())
{
return false;
}
int minClipX, maxClipX, minClipY, maxClipY;
MinMax(clip.x, clipX2.ValueOrDie(), &minClipX, &maxClipX);
MinMax(clip.y, clipY2.ValueOrDie(), &minClipY, &maxClipY);
if (minSourceX >= maxClipX || maxSourceX <= minClipX || minSourceY >= maxClipY ||
maxSourceY <= minClipY)
{
return false;
}
int x = std::max(minSourceX, minClipX);
int y = std::max(minSourceY, minClipY);
int width = std::min(maxSourceX, maxClipX) - x;
int height = std::min(maxSourceY, maxClipY) - y;
if (intersection)
{
intersection->x = x;
intersection->y = y;
intersection->width = width;
intersection->height = height;
}
return width != 0 && height != 0;
}
void GetEnclosingRectangle(const Rectangle &rect1, const Rectangle &rect2, Rectangle *rectUnion)
{
// All callers use non-flipped framebuffer-size-clipped rectangles, so both flip and overflow
// are impossible.
ASSERT(!rect1.isReversedX() && !rect1.isReversedY());
ASSERT(!rect2.isReversedX() && !rect2.isReversedY());
ASSERT((angle::CheckedNumeric<int>(rect1.x) + rect1.width).IsValid());
ASSERT((angle::CheckedNumeric<int>(rect1.y) + rect1.height).IsValid());
ASSERT((angle::CheckedNumeric<int>(rect2.x) + rect2.width).IsValid());
ASSERT((angle::CheckedNumeric<int>(rect2.y) + rect2.height).IsValid());
// This function calculates a rectangle that covers both input rectangles:
//
// +---------+
// rect1 --> | |
// | +---+-----+
// | | | | <-- rect2
// +-----+---+ |
// | |
// +---------+
//
// xy0 = min(rect1.xy0, rect2.xy0)
// \
// +---------+-----+
// union --> | . |
// | + . + . . +
// | . . |
// + . . + . + |
// | . |
// +-----+---------+
// /
// xy1 = max(rect1.xy1, rect2.xy1)
int x0 = std::min(rect1.x0(), rect2.x0());
int y0 = std::min(rect1.y0(), rect2.y0());
int x1 = std::max(rect1.x1(), rect2.x1());
int y1 = std::max(rect1.y1(), rect2.y1());
rectUnion->x = x0;
rectUnion->y = y0;
rectUnion->width = x1 - x0;
rectUnion->height = y1 - y0;
}
void ExtendRectangle(const Rectangle &source, const Rectangle &extend, Rectangle *extended)
{
// All callers use non-flipped framebuffer-size-clipped rectangles, so both flip and overflow
// are impossible.
ASSERT(!source.isReversedX() && !source.isReversedY());
ASSERT(!extend.isReversedX() && !extend.isReversedY());
ASSERT((angle::CheckedNumeric<int>(source.x) + source.width).IsValid());
ASSERT((angle::CheckedNumeric<int>(source.y) + source.height).IsValid());
ASSERT((angle::CheckedNumeric<int>(extend.x) + extend.width).IsValid());
ASSERT((angle::CheckedNumeric<int>(extend.y) + extend.height).IsValid());
int x0 = source.x0();
int x1 = source.x1();
int y0 = source.y0();
int y1 = source.y1();
const int extendX0 = extend.x0();
const int extendX1 = extend.x1();
const int extendY0 = extend.y0();
const int extendY1 = extend.y1();
// For each side of the rectangle, calculate whether it can be extended by the second rectangle.
// If so, extend it and continue for the next side with the new dimensions.
// Left: Reduce x0 if the second rectangle's vertical edge covers the source's:
//
// +--- - - - +--- - - -
// | |
// | +--------------+ +-----------------+
// | | source | --> | source |
// | +--------------+ +-----------------+
// | |
// +--- - - - +--- - - -
//
const bool enclosesHeight = EnclosesRange(extendY0, extendY1, y0, y1);
if (extendX0 < x0 && extendX1 >= x0 && enclosesHeight)
{
x0 = extendX0;
}
// Right: Increase x1 simiarly.
if (extendX0 <= x1 && extendX1 > x1 && enclosesHeight)
{
x1 = extendX1;
}
// Top: Reduce y0 if the second rectangle's horizontal edge covers the source's potentially
// extended edge.
const bool enclosesWidth = EnclosesRange(extendX0, extendX1, x0, x1);
if (extendY0 < y0 && extendY1 >= y0 && enclosesWidth)
{
y0 = extendY0;
}
// Right: Increase y1 simiarly.
if (extendY0 <= y1 && extendY1 > y1 && enclosesWidth)
{
y1 = extendY1;
}
extended->x = x0;
extended->y = y0;
extended->width = x1 - x0;
extended->height = y1 - y0;
}
bool Box::valid() const
{
return width != 0 && height != 0 && depth != 0;
}
bool Box::operator==(const Box &other) const
{
return (x == other.x && y == other.y && z == other.z && width == other.width &&
height == other.height && depth == other.depth);
}
bool Box::operator!=(const Box &other) const
{
return !(*this == other);
}
Rectangle Box::toRect() const
{
ASSERT(z == 0 && depth == 1);
return Rectangle(x, y, width, height);
}
bool Box::coversSameExtent(const Extents &size) const
{
return x == 0 && y == 0 && z == 0 && width == size.width && height == size.height &&
depth == size.depth;
}
bool Box::contains(const Box &other) const
{
return x <= other.x && y <= other.y && z <= other.z && x + width >= other.x + other.width &&
y + height >= other.y + other.height && z + depth >= other.z + other.depth;
}
size_t Box::volume() const
{
return width * height * depth;
}
void Box::extend(const Box &other)
{
// This extends the logic of "ExtendRectangle" to 3 dimensions
int x0 = x;
int x1 = x + width;
int y0 = y;
int y1 = y + height;
int z0 = z;
int z1 = z + depth;
const int otherx0 = other.x;
const int otherx1 = other.x + other.width;
const int othery0 = other.y;
const int othery1 = other.y + other.height;
const int otherz0 = other.z;
const int otherz1 = other.z + other.depth;
// For each side of the box, calculate whether it can be extended by the other box.
// If so, extend it and continue to the next side with the new dimensions.
const bool enclosesWidth = EnclosesRange(otherx0, otherx1, x0, x1);
const bool enclosesHeight = EnclosesRange(othery0, othery1, y0, y1);
const bool enclosesDepth = EnclosesRange(otherz0, otherz1, z0, z1);
// Left: Reduce x0 if the other box's Y and Z plane encloses the source
if (otherx0 < x0 && otherx1 >= x0 && enclosesHeight && enclosesDepth)
{
x0 = otherx0;
}
// Right: Increase x1 simiarly.
if (otherx0 <= x1 && otherx1 > x1 && enclosesHeight && enclosesDepth)
{
x1 = otherx1;
}
// Bottom: Reduce y0 if the other box's X and Z plane encloses the source
if (othery0 < y0 && othery1 >= y0 && enclosesWidth && enclosesDepth)
{
y0 = othery0;
}
// Top: Increase y1 simiarly.
if (othery0 <= y1 && othery1 > y1 && enclosesWidth && enclosesDepth)
{
y1 = othery1;
}
// Front: Reduce z0 if the other box's X and Y plane encloses the source
if (otherz0 < z0 && otherz1 >= z0 && enclosesWidth && enclosesHeight)
{
z0 = otherz0;
}
// Back: Increase z1 simiarly.
if (otherz0 <= z1 && otherz1 > z1 && enclosesWidth && enclosesHeight)
{
z1 = otherz1;
}
// Update member var with new dimensions
x = x0;
width = x1 - x0;
y = y0;
height = y1 - y0;
z = z0;
depth = z1 - z0;
}
bool ValidateComponentTypeMasks(uint64_t outputTypes,
uint64_t inputTypes,
uint64_t outputMask,
uint64_t inputMask)
{
static_assert(IMPLEMENTATION_MAX_DRAW_BUFFERS <= kMaxComponentTypeMaskIndex,
"Output/input masks should fit into 16 bits - 1 bit per draw buffer. The "
"corresponding type masks should fit into 32 bits - 2 bits per draw buffer.");
static_assert(MAX_VERTEX_ATTRIBS <= kMaxComponentTypeMaskIndex,
"Output/input masks should fit into 16 bits - 1 bit per attrib. The "
"corresponding type masks should fit into 32 bits - 2 bits per attrib.");
// For performance reasons, draw buffer and attribute type validation is done using bit masks.
// We store two bits representing the type split, with the low bit in the lower 16 bits of the
// variable, and the high bit in the upper 16 bits of the variable. This is done so we can AND
// with the elswewhere used DrawBufferMask or AttributeMask.
// OR the masks with themselves, shifted 16 bits. This is to match our split type bits.
outputMask |= (outputMask << kMaxComponentTypeMaskIndex);
inputMask |= (inputMask << kMaxComponentTypeMaskIndex);
// To validate:
// 1. Remove any indexes that are not enabled in the input (& inputMask)
// 2. Remove any indexes that exist in output, but not in input (& outputMask)
// 3. Use == to verify equality
return (outputTypes & inputMask) == ((inputTypes & outputMask) & inputMask);
}
GLsizeiptr GetBoundBufferAvailableSize(const OffsetBindingPointer<Buffer> &binding)
{
Buffer *buffer = binding.get();
if (buffer == nullptr)
{
return 0;
}
const GLsizeiptr bufferSize = static_cast<GLsizeiptr>(buffer->getSize());
if (binding.getSize() == 0)
{
return bufferSize;
}
const GLintptr offset = binding.getOffset();
const GLsizeiptr size = binding.getSize();
ASSERT(offset >= 0 && bufferSize >= 0);
if (bufferSize <= offset)
{
return 0;
}
return std::min(size, bufferSize - offset);
}
} // namespace gl
//
namespace angle
{
bool CompressBlob(const size_t cacheSize, const uint8_t *cacheData, MemoryBuffer *compressedData)
{
uLong uncompressedSize = static_cast<uLong>(cacheSize);
uLong expectedCompressedSize = zlib_internal::GzipExpectedCompressedSize(uncompressedSize);
uLong actualCompressedSize = expectedCompressedSize;
// Clear previous contents and reserve enough memory.
if (!compressedData->clearAndReserve(expectedCompressedSize))
{
ERR() << "Failed to allocate memory for compression";
return false;
}
int zResult = zlib_internal::GzipCompressHelper(compressedData->data(), &actualCompressedSize,
cacheData, uncompressedSize, nullptr, nullptr);
if (zResult != Z_OK)
{
ERR() << "Failed to compress cache data: " << zResult;
return false;
}
// Trim to actual size.
ASSERT(actualCompressedSize <= expectedCompressedSize);
compressedData->setSize(actualCompressedSize);
return true;
}
bool DecompressBlob(const uint8_t *compressedData,
const size_t compressedSize,
size_t maxUncompressedDataSize,
MemoryBuffer *uncompressedData)
{
// Call zlib function to decompress.
uint32_t uncompressedSize =
zlib_internal::GetGzipUncompressedSize(compressedData, compressedSize);
if (uncompressedSize == 0)
{
ERR() << "Decompressed data size is zero. Wrong or corrupted data? (compressed size is: "
<< compressedSize << ")";
return false;
}
if (uncompressedSize > maxUncompressedDataSize)
{
ERR() << "Decompressed data size is larger than the maximum supported (" << uncompressedSize
<< " vs " << maxUncompressedDataSize << ")";
return false;
}
// Clear previous contents and reserve enough memory.
if (!uncompressedData->clearAndReserve(uncompressedSize))
{
ERR() << "Failed to allocate memory for decompression";
return false;
}
uLong destLen = uncompressedSize;
int zResult = zlib_internal::GzipUncompressHelper(
uncompressedData->data(), &destLen, compressedData, static_cast<uLong>(compressedSize));
if (zResult != Z_OK)
{
WARN() << "Failed to decompress data: " << zResult << "\n";
return false;
}
// Trim to actual size.
ASSERT(destLen <= uncompressedSize);
uncompressedData->setSize(destLen);
return true;
}
uint32_t GenerateCRC32(const uint8_t *data, size_t size)
{
return UpdateCRC32(InitCRC32(), data, size);
}
uint32_t InitCRC32()
{
// To get required initial value for the crc, need to pass nullptr into buf.
return static_cast<uint32_t>(crc32_z(0u, nullptr, 0u));
}
uint32_t UpdateCRC32(uint32_t prevCrc32, const uint8_t *data, size_t size)
{
return static_cast<uint32_t>(crc32_z(static_cast<uLong>(prevCrc32), data, size));
}
UnlockedTailCall::UnlockedTailCall() = default;
UnlockedTailCall::~UnlockedTailCall()
{
ASSERT(mCalls.empty());
}
void UnlockedTailCall::add(CallType &&call)
{
mCalls.push_back(std::move(call));
}
void UnlockedTailCall::runImpl(void *resultOut)
{
if (mCalls.empty())
{
return;
}
// Clear `mCalls` before calling, because Android sometimes calls back into ANGLE through EGL
// calls which don't expect there to be any pre-existing tail calls.
auto calls(std::move(mCalls));
ASSERT(mCalls.empty());
for (CallType &call : calls)
{
call(resultOut);
}
}
} // namespace angle