Hash :
3d806ba6
        
        Author :
  
        
        Date :
2025-03-02T00:15:36
        
      
Translator: Split textureGather* ops ... based on whether the comp or refz arguments are present. Bug: angleproject:349994211 Change-Id: I19e638f6cb27cdb890c5e30c0662aad30888d2da Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/6313582 Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org> Reviewed-by: Cody Northrop <cnorthrop@google.com> Auto-Submit: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980
//
// Copyright 2002 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/ParseContext.h"
#include <stdarg.h>
#include <stdio.h>
#include "common/mathutil.h"
#include "common/utilities.h"
#include "compiler/preprocessor/SourceLocation.h"
#include "compiler/translator/Declarator.h"
#include "compiler/translator/StaticType.h"
#include "compiler/translator/ValidateGlobalInitializer.h"
#include "compiler/translator/ValidateSwitch.h"
#include "compiler/translator/glslang.h"
#include "compiler/translator/tree_util/IntermNode_util.h"
#include "compiler/translator/util.h"
namespace sh
{
///////////////////////////////////////////////////////////////////////
//
// Sub- vector and matrix fields
//
////////////////////////////////////////////////////////////////////////
namespace
{
const int kWebGLMaxStructNesting = 4;
struct IsSamplerFunc
{
    bool operator()(TBasicType type) { return IsSampler(type); }
};
struct IsOpaqueFunc
{
    bool operator()(TBasicType type) { return IsOpaqueType(type); }
};
template <typename OpaqueFunc>
bool ContainsOpaque(const TStructure *structType);
template <typename OpaqueFunc>
bool ContainsOpaque(const TType &type)
{
    if (OpaqueFunc{}(type.getBasicType()))
    {
        return true;
    }
    if (type.getBasicType() == EbtStruct)
    {
        return ContainsOpaque<OpaqueFunc>(type.getStruct());
    }
    return false;
}
template <typename OpaqueFunc>
bool ContainsOpaque(const TStructure *structType)
{
    for (const auto &field : structType->fields())
    {
        if (ContainsOpaque<OpaqueFunc>(*field->type()))
            return true;
    }
    return false;
}
// Get a token from an image argument to use as an error message token.
const char *GetImageArgumentToken(TIntermTyped *imageNode)
{
    ASSERT(IsImage(imageNode->getBasicType()));
    while (imageNode->getAsBinaryNode() &&
           (imageNode->getAsBinaryNode()->getOp() == EOpIndexIndirect ||
            imageNode->getAsBinaryNode()->getOp() == EOpIndexDirect))
    {
        imageNode = imageNode->getAsBinaryNode()->getLeft();
    }
    TIntermSymbol *imageSymbol = imageNode->getAsSymbolNode();
    if (imageSymbol)
    {
        return imageSymbol->getName().data();
    }
    return "image";
}
bool CanSetDefaultPrecisionOnType(const TPublicType &type)
{
    if (!SupportsPrecision(type.getBasicType()))
    {
        return false;
    }
    if (type.getBasicType() == EbtUInt)
    {
        // ESSL 3.00.4 section 4.5.4
        return false;
    }
    if (type.isAggregate())
    {
        // Not allowed to set for aggregate types
        return false;
    }
    return true;
}
// Map input primitive types to input array sizes in a geometry shader.
GLuint GetGeometryShaderInputArraySize(TLayoutPrimitiveType primitiveType)
{
    switch (primitiveType)
    {
        case EptPoints:
            return 1u;
        case EptLines:
            return 2u;
        case EptTriangles:
            return 3u;
        case EptLinesAdjacency:
            return 4u;
        case EptTrianglesAdjacency:
            return 6u;
        default:
            UNREACHABLE();
            return 0u;
    }
}
bool IsBufferOrSharedVariable(TIntermTyped *var)
{
    if (var->isInterfaceBlock() || var->getQualifier() == EvqBuffer ||
        var->getQualifier() == EvqShared)
    {
        return true;
    }
    return false;
}
TIntermTyped *FindLValueBase(TIntermTyped *node)
{
    do
    {
        const TIntermBinary *binary = node->getAsBinaryNode();
        if (binary == nullptr)
        {
            return node;
        }
        TOperator op = binary->getOp();
        if (op != EOpIndexDirect && op != EOpIndexIndirect)
        {
            return static_cast<TIntermTyped *>(nullptr);
        }
        node = binary->getLeft();
    } while (true);
}
void AddAdvancedBlendEquation(gl::BlendEquationType eq, TLayoutQualifier *qualifier)
{
    qualifier->advancedBlendEquations.set(static_cast<uint32_t>(eq));
}
constexpr bool IsValidWithPixelLocalStorage(TLayoutImageInternalFormat internalFormat)
{
    switch (internalFormat)
    {
        case EiifRGBA8:
        case EiifRGBA8I:
        case EiifRGBA8UI:
        case EiifR32F:
        case EiifR32UI:
            return true;
        default:
            return false;
    }
}
constexpr ShPixelLocalStorageFormat ImageFormatToPLSFormat(TLayoutImageInternalFormat format)
{
    switch (format)
    {
        default:
            return ShPixelLocalStorageFormat::NotPLS;
        case EiifRGBA8:
            return ShPixelLocalStorageFormat::RGBA8;
        case EiifRGBA8I:
            return ShPixelLocalStorageFormat::RGBA8I;
        case EiifRGBA8UI:
            return ShPixelLocalStorageFormat::RGBA8UI;
        case EiifR32F:
            return ShPixelLocalStorageFormat::R32F;
        case EiifR32UI:
            return ShPixelLocalStorageFormat::R32UI;
    }
}
bool UsesDerivatives(TIntermAggregate *functionCall)
{
    const TOperator op = functionCall->getOp();
    if (BuiltInGroup::IsDerivativesFS(op))
    {
        return true;
    }
    switch (op)
    {
        // TextureFirstVersions with implicit LOD
        case EOpTexture2D:
        case EOpTexture2DProj:
        case EOpTextureCube:
        case EOpTexture3D:
        case EOpTexture3DProj:
        case EOpShadow2DEXT:
        case EOpShadow2DProjEXT:
        // TextureFirstVersionsBias
        case EOpTexture2DBias:
        case EOpTexture2DProjBias:
        case EOpTextureCubeBias:
        case EOpTexture3DBias:
        case EOpTexture3DProjBias:
        // TextureNoBias
        case EOpTexture:
        case EOpTextureProj:
        // TextureBias
        case EOpTextureBias:
        case EOpTextureProjBias:
        // TextureOffsetNoBias
        case EOpTextureOffset:
        case EOpTextureProjOffset:
        // TextureOffsetBias
        case EOpTextureOffsetBias:
        case EOpTextureProjOffsetBias:
        // TextureQueryLod
        case EOpTextureQueryLOD:
            return true;
        default:
            return false;
    }
}
}  // namespace
// This tracks each binding point's current default offset for inheritance of subsequent
// variables using the same binding, and keeps offsets unique and non overlapping.
// See GLSL ES 3.1, section 4.4.6.
class TParseContext::AtomicCounterBindingState
{
  public:
    AtomicCounterBindingState() : mDefaultOffset(0) {}
    // Inserts a new span and returns -1 if overlapping, else returns the starting offset of
    // newly inserted span.
    int insertSpan(int start, size_t length)
    {
        gl::RangeI newSpan(start, start + static_cast<int>(length));
        for (const auto &span : mSpans)
        {
            if (newSpan.intersects(span))
            {
                return -1;
            }
        }
        mSpans.push_back(newSpan);
        mDefaultOffset = newSpan.high();
        return start;
    }
    // Inserts a new span starting from the default offset.
    int appendSpan(size_t length) { return insertSpan(mDefaultOffset, length); }
    void setDefaultOffset(int offset) { mDefaultOffset = offset; }
  private:
    int mDefaultOffset;
    std::vector<gl::RangeI> mSpans;
};
TParseContext::TParseContext(TSymbolTable &symt,
                             TExtensionBehavior &ext,
                             sh::GLenum type,
                             ShShaderSpec spec,
                             const ShCompileOptions &options,
                             TDiagnostics *diagnostics,
                             const ShBuiltInResources &resources,
                             ShShaderOutput outputType)
    : symbolTable(symt),
      mDeferredNonEmptyDeclarationErrorCheck(false),
      mShaderType(type),
      mShaderSpec(spec),
      mCompileOptions(options),
      mShaderVersion(100),
      mTreeRoot(nullptr),
      mLoopNestingLevel(0),
      mStructNestingLevel(0),
      mSwitchNestingLevel(0),
      mCurrentFunctionType(nullptr),
      mFunctionReturnsValue(false),
      mFragmentPrecisionHighOnESSL1(false),
      mEarlyFragmentTestsSpecified(false),
      mHasDiscard(false),
      mSampleQualifierSpecified(false),
      mPositionRedeclaredForSeparateShaderObject(false),
      mPointSizeRedeclaredForSeparateShaderObject(false),
      mPositionOrPointSizeUsedForSeparateShaderObject(false),
      mUsesDerivatives(false),
      mDefaultUniformMatrixPacking(EmpColumnMajor),
      mDefaultUniformBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared),
      mDefaultBufferMatrixPacking(EmpColumnMajor),
      mDefaultBufferBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared),
      mDiagnostics(diagnostics),
      mDirectiveHandler(ext, *mDiagnostics, mShaderVersion, mShaderType),
      mPreprocessor(mDiagnostics, &mDirectiveHandler, angle::pp::PreprocessorSettings(spec)),
      mScanner(nullptr),
      mMaxExpressionComplexity(static_cast<size_t>(options.limitExpressionComplexity
                                                       ? resources.MaxExpressionComplexity
                                                       : std::numeric_limits<size_t>::max())),
      mMaxStatementDepth(static_cast<size_t>(resources.MaxStatementDepth)),
      mMinProgramTexelOffset(resources.MinProgramTexelOffset),
      mMaxProgramTexelOffset(resources.MaxProgramTexelOffset),
      mMinProgramTextureGatherOffset(resources.MinProgramTextureGatherOffset),
      mMaxProgramTextureGatherOffset(resources.MaxProgramTextureGatherOffset),
      mComputeShaderLocalSizeDeclared(false),
      mComputeShaderLocalSize(-1),
      mNumViews(-1),
      mMaxNumViews(resources.MaxViewsOVR),
      mMaxImageUnits(resources.MaxImageUnits),
      mMaxCombinedTextureImageUnits(resources.MaxCombinedTextureImageUnits),
      mMaxUniformLocations(resources.MaxUniformLocations),
      mMaxUniformBufferBindings(resources.MaxUniformBufferBindings),
      mMaxVertexAttribs(resources.MaxVertexAttribs),
      mMaxAtomicCounterBindings(resources.MaxAtomicCounterBindings),
      mMaxAtomicCounterBufferSize(resources.MaxAtomicCounterBufferSize),
      mMaxShaderStorageBufferBindings(resources.MaxShaderStorageBufferBindings),
      mMaxPixelLocalStoragePlanes(resources.MaxPixelLocalStoragePlanes),
      mDeclaringFunction(false),
      mGeometryShaderInputPrimitiveType(EptUndefined),
      mGeometryShaderOutputPrimitiveType(EptUndefined),
      mGeometryShaderInvocations(0),
      mGeometryShaderMaxVertices(-1),
      mMaxGeometryShaderInvocations(resources.MaxGeometryShaderInvocations),
      mMaxGeometryShaderMaxVertices(resources.MaxGeometryOutputVertices),
      mGeometryInputArraySize(0),
      mMaxPatchVertices(resources.MaxPatchVertices),
      mTessControlShaderOutputVertices(0),
      mTessEvaluationShaderInputPrimitiveType(EtetUndefined),
      mTessEvaluationShaderInputVertexSpacingType(EtetUndefined),
      mTessEvaluationShaderInputOrderingType(EtetUndefined),
      mTessEvaluationShaderInputPointType(EtetUndefined),
      mHasAnyPreciseType(false),
      mAdvancedBlendEquations(0),
      mFunctionBodyNewScope(false),
      mOutputType(outputType)
{}
TParseContext::~TParseContext() {}
bool TParseContext::anyMultiviewExtensionAvailable()
{
    return isExtensionEnabled(TExtension::OVR_multiview) ||
           isExtensionEnabled(TExtension::OVR_multiview2);
}
bool TParseContext::parseVectorFields(const TSourceLoc &line,
                                      const ImmutableString &compString,
                                      int vecSize,
                                      TVector<int> *fieldOffsets)
{
    ASSERT(fieldOffsets);
    size_t fieldCount = compString.length();
    if (fieldCount > 4u)
    {
        error(line, "illegal vector field selection", compString);
        return false;
    }
    fieldOffsets->resize(fieldCount);
    enum
    {
        exyzw,
        ergba,
        estpq
    } fieldSet[4];
    for (unsigned int i = 0u; i < fieldOffsets->size(); ++i)
    {
        switch (compString[i])
        {
            case 'x':
                (*fieldOffsets)[i] = 0;
                fieldSet[i]        = exyzw;
                break;
            case 'r':
                (*fieldOffsets)[i] = 0;
                fieldSet[i]        = ergba;
                break;
            case 's':
                (*fieldOffsets)[i] = 0;
                fieldSet[i]        = estpq;
                break;
            case 'y':
                (*fieldOffsets)[i] = 1;
                fieldSet[i]        = exyzw;
                break;
            case 'g':
                (*fieldOffsets)[i] = 1;
                fieldSet[i]        = ergba;
                break;
            case 't':
                (*fieldOffsets)[i] = 1;
                fieldSet[i]        = estpq;
                break;
            case 'z':
                (*fieldOffsets)[i] = 2;
                fieldSet[i]        = exyzw;
                break;
            case 'b':
                (*fieldOffsets)[i] = 2;
                fieldSet[i]        = ergba;
                break;
            case 'p':
                (*fieldOffsets)[i] = 2;
                fieldSet[i]        = estpq;
                break;
            case 'w':
                (*fieldOffsets)[i] = 3;
                fieldSet[i]        = exyzw;
                break;
            case 'a':
                (*fieldOffsets)[i] = 3;
                fieldSet[i]        = ergba;
                break;
            case 'q':
                (*fieldOffsets)[i] = 3;
                fieldSet[i]        = estpq;
                break;
            default:
                error(line, "illegal vector field selection", compString);
                return false;
        }
    }
    for (unsigned int i = 0u; i < fieldOffsets->size(); ++i)
    {
        if ((*fieldOffsets)[i] >= vecSize)
        {
            error(line, "vector field selection out of range", compString);
            return false;
        }
        if (i > 0)
        {
            if (fieldSet[i] != fieldSet[i - 1])
            {
                error(line, "illegal - vector component fields not from the same set", compString);
                return false;
            }
        }
    }
    return true;
}
///////////////////////////////////////////////////////////////////////
//
// Errors
//
////////////////////////////////////////////////////////////////////////
//
// Used by flex/bison to output all syntax and parsing errors.
//
void TParseContext::error(const TSourceLoc &loc, const char *reason, const char *token)
{
    mDiagnostics->error(loc, reason, token);
}
void TParseContext::error(const TSourceLoc &loc, const char *reason, const ImmutableString &token)
{
    mDiagnostics->error(loc, reason, token.data());
}
void TParseContext::warning(const TSourceLoc &loc, const char *reason, const char *token)
{
    mDiagnostics->warning(loc, reason, token);
}
void TParseContext::errorIfPLSDeclared(const TSourceLoc &loc, PLSIllegalOperations op)
{
    if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
    {
        return;
    }
    if (mPLSFormats.empty())
    {
        // No pixel local storage uniforms have been declared yet. Remember this potential error in
        // case PLS gets declared later.
        mPLSPotentialErrors.emplace_back(loc, op);
        return;
    }
    switch (op)
    {
        case PLSIllegalOperations::Discard:
            error(loc, "illegal discard when pixel local storage is declared", "discard");
            break;
        case PLSIllegalOperations::ReturnFromMain:
            error(loc, "illegal return from main when pixel local storage is declared", "return");
            break;
        case PLSIllegalOperations::AssignFragDepth:
            error(loc, "value not assignable when pixel local storage is declared", "gl_FragDepth");
            break;
        case PLSIllegalOperations::AssignSampleMask:
            error(loc, "value not assignable when pixel local storage is declared",
                  "gl_SampleMask");
            break;
        case PLSIllegalOperations::FragDataIndexNonzero:
            error(loc, "illegal nonzero index qualifier when pixel local storage is declared",
                  "layout");
            break;
        case PLSIllegalOperations::EnableAdvancedBlendEquation:
            error(loc, "illegal advanced blend equation when pixel local storage is declared",
                  "layout");
            break;
    }
}
void TParseContext::outOfRangeError(bool isError,
                                    const TSourceLoc &loc,
                                    const char *reason,
                                    const char *token)
{
    if (isError)
    {
        error(loc, reason, token);
    }
    else
    {
        warning(loc, reason, token);
    }
}
void TParseContext::setTreeRoot(TIntermBlock *treeRoot)
{
    mTreeRoot = treeRoot;
    mTreeRoot->setIsTreeRoot();
}
//
// Same error message for all places assignments don't work.
//
void TParseContext::assignError(const TSourceLoc &line,
                                const char *op,
                                const TType &left,
                                const TType &right)
{
    TInfoSinkBase reasonStream;
    reasonStream << "cannot convert from '" << right << "' to '" << left << "'";
    error(line, reasonStream.c_str(), op);
}
//
// Same error message for all places unary operations don't work.
//
void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, const TType &operand)
{
    TInfoSinkBase reasonStream;
    reasonStream << "wrong operand type - no operation '" << op
                 << "' exists that takes an operand of type " << operand
                 << " (or there is no acceptable conversion)";
    error(line, reasonStream.c_str(), op);
}
//
// Same error message for all binary operations don't work.
//
void TParseContext::binaryOpError(const TSourceLoc &line,
                                  const char *op,
                                  const TType &left,
                                  const TType &right)
{
    TInfoSinkBase reasonStream;
    reasonStream << "wrong operand types - no operation '" << op
                 << "' exists that takes a left-hand operand of type '" << left
                 << "' and a right operand of type '" << right
                 << "' (or there is no acceptable conversion)";
    error(line, reasonStream.c_str(), op);
}
void TParseContext::checkPrecisionSpecified(const TSourceLoc &line,
                                            TPrecision precision,
                                            TBasicType type)
{
    if (precision != EbpUndefined && !SupportsPrecision(type))
    {
        error(line, "illegal type for precision qualifier", getBasicString(type));
    }
    if (precision == EbpUndefined)
    {
        switch (type)
        {
            case EbtFloat:
                error(line, "No precision specified for (float)", "");
                return;
            case EbtInt:
            case EbtUInt:
                UNREACHABLE();  // there's always a predeclared qualifier
                error(line, "No precision specified (int)", "");
                return;
            default:
                if (IsOpaqueType(type))
                {
                    error(line, "No precision specified", getBasicString(type));
                    return;
                }
        }
    }
}
void TParseContext::markStaticReadIfSymbol(TIntermNode *node)
{
    TIntermSwizzle *swizzleNode = node->getAsSwizzleNode();
    if (swizzleNode)
    {
        markStaticReadIfSymbol(swizzleNode->getOperand());
        return;
    }
    TIntermBinary *binaryNode = node->getAsBinaryNode();
    if (binaryNode)
    {
        switch (binaryNode->getOp())
        {
            case EOpIndexDirect:
            case EOpIndexIndirect:
            case EOpIndexDirectStruct:
            case EOpIndexDirectInterfaceBlock:
                markStaticReadIfSymbol(binaryNode->getLeft());
                return;
            default:
                return;
        }
    }
    TIntermSymbol *symbolNode = node->getAsSymbolNode();
    if (symbolNode)
    {
        symbolTable.markStaticRead(symbolNode->variable());
    }
}
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node)
{
    TIntermSwizzle *swizzleNode = node->getAsSwizzleNode();
    if (swizzleNode)
    {
        bool ok = checkCanBeLValue(line, op, swizzleNode->getOperand());
        if (ok && swizzleNode->hasDuplicateOffsets())
        {
            error(line, " l-value of swizzle cannot have duplicate components", op);
            return false;
        }
        return ok;
    }
    TIntermBinary *binaryNode = node->getAsBinaryNode();
    if (binaryNode)
    {
        switch (binaryNode->getOp())
        {
            case EOpIndexDirect:
            case EOpIndexIndirect:
            case EOpIndexDirectStruct:
            case EOpIndexDirectInterfaceBlock:
                if (node->getMemoryQualifier().readonly)
                {
                    error(line, "can't modify a readonly variable", op);
                    return false;
                }
                return checkCanBeLValue(line, op, binaryNode->getLeft());
            default:
                break;
        }
        error(line, " l-value required", op);
        return false;
    }
    std::string message;
    switch (node->getQualifier())
    {
        case EvqConst:
            message = "can't modify a const";
            break;
        case EvqParamConst:
            message = "can't modify a const";
            break;
        case EvqAttribute:
            message = "can't modify an attribute";
            break;
        case EvqFragmentIn:
        case EvqVertexIn:
        case EvqGeometryIn:
        case EvqTessControlIn:
        case EvqTessEvaluationIn:
        case EvqSmoothIn:
        case EvqFlatIn:
        case EvqNoPerspectiveIn:
        case EvqCentroidIn:
        case EvqSampleIn:
        case EvqNoPerspectiveCentroidIn:
        case EvqNoPerspectiveSampleIn:
            message = "can't modify an input";
            break;
        case EvqUniform:
            message = "can't modify a uniform";
            break;
        case EvqVaryingIn:
            message = "can't modify a varying";
            break;
        case EvqFragCoord:
            message = "can't modify gl_FragCoord";
            break;
        case EvqFrontFacing:
            message = "can't modify gl_FrontFacing";
            break;
        case EvqHelperInvocation:
            message = "can't modify gl_HelperInvocation";
            break;
        case EvqPointCoord:
            message = "can't modify gl_PointCoord";
            break;
        case EvqNumWorkGroups:
            message = "can't modify gl_NumWorkGroups";
            break;
        case EvqWorkGroupSize:
            message = "can't modify gl_WorkGroupSize";
            break;
        case EvqWorkGroupID:
            message = "can't modify gl_WorkGroupID";
            break;
        case EvqLocalInvocationID:
            message = "can't modify gl_LocalInvocationID";
            break;
        case EvqGlobalInvocationID:
            message = "can't modify gl_GlobalInvocationID";
            break;
        case EvqLocalInvocationIndex:
            message = "can't modify gl_LocalInvocationIndex";
            break;
        case EvqViewIDOVR:
            message = "can't modify gl_ViewID_OVR";
            break;
        case EvqComputeIn:
            message = "can't modify work group size variable";
            break;
        case EvqPerVertexIn:
            message = "can't modify any member in gl_in";
            break;
        case EvqPrimitiveIDIn:
            message = "can't modify gl_PrimitiveIDIn";
            break;
        case EvqInvocationID:
            message = "can't modify gl_InvocationID";
            break;
        case EvqPrimitiveID:
            if (mShaderType == GL_FRAGMENT_SHADER)
            {
                message = "can't modify gl_PrimitiveID in a fragment shader";
            }
            break;
        case EvqLayerIn:
            message = "can't modify gl_Layer in a fragment shader";
            break;
        case EvqSampleID:
            message = "can't modify gl_SampleID";
            break;
        case EvqSampleMaskIn:
            message = "can't modify gl_SampleMaskIn";
            break;
        case EvqSamplePosition:
            message = "can't modify gl_SamplePosition";
            break;
        case EvqClipDistance:
            if (mShaderType == GL_FRAGMENT_SHADER)
            {
                message = "can't modify gl_ClipDistance in a fragment shader";
            }
            break;
        case EvqCullDistance:
            if (mShaderType == GL_FRAGMENT_SHADER)
            {
                message = "can't modify gl_CullDistance in a fragment shader";
            }
            break;
        case EvqFragDepth:
            errorIfPLSDeclared(line, PLSIllegalOperations::AssignFragDepth);
            break;
        case EvqSampleMask:
            errorIfPLSDeclared(line, PLSIllegalOperations::AssignSampleMask);
            break;
        default:
            //
            // Type that can't be written to?
            //
            if (node->getBasicType() == EbtVoid)
            {
                message = "can't modify void";
            }
            if (IsOpaqueType(node->getBasicType()))
            {
                message = "can't modify a variable with type ";
                message += getBasicString(node->getBasicType());
            }
            else if (node->getMemoryQualifier().readonly)
            {
                message = "can't modify a readonly variable";
            }
    }
    ASSERT(binaryNode == nullptr && swizzleNode == nullptr);
    TIntermSymbol *symNode = node->getAsSymbolNode();
    if (message.empty() && symNode != nullptr)
    {
        symbolTable.markStaticWrite(symNode->variable());
        return true;
    }
    std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
    reasonStream << "l-value required";
    if (!message.empty())
    {
        if (symNode)
        {
            // Symbol inside an expression can't be nameless.
            ASSERT(symNode->variable().symbolType() != SymbolType::Empty);
            const ImmutableString &symbol = symNode->getName();
            reasonStream << " (" << message << " \"" << symbol << "\")";
        }
        else
        {
            reasonStream << " (" << message << ")";
        }
    }
    std::string reason = reasonStream.str();
    error(line, reason.c_str(), op);
    return false;
}
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
void TParseContext::checkIsConst(TIntermTyped *node)
{
    if (node->getQualifier() != EvqConst)
    {
        error(node->getLine(), "constant expression required", "");
    }
}
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token)
{
    if (!node->isScalarInt())
    {
        error(node->getLine(), "integer expression required", token);
    }
}
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token)
{
    if (!symbolTable.atGlobalLevel())
    {
        error(line, "only allowed at global scope", token);
        return false;
    }
    return true;
}
void TParseContext::checkIsValidExpressionStatement(const TSourceLoc &line, TIntermTyped *expr)
{
    if (expr->isInterfaceBlock())
    {
        error(line, "expression statement is not allowed for interface blocks", "");
    }
}
// ESSL 3.00.5 sections 3.8 and 3.9.
// If it starts "gl_" or contains two consecutive underscores, it's reserved.
// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a webgl shader.
bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const ImmutableString &identifier)
{
    static const char *reservedErrMsg = "reserved built-in name";
    if (gl::IsBuiltInName(identifier.data()))
    {
        error(line, reservedErrMsg, "gl_");
        return false;
    }
    if (sh::IsWebGLBasedSpec(mShaderSpec))
    {
        if (identifier.beginsWith("webgl_"))
        {
            error(line, reservedErrMsg, "webgl_");
            return false;
        }
        if (identifier.beginsWith("_webgl_"))
        {
            error(line, reservedErrMsg, "_webgl_");
            return false;
        }
    }
    if (identifier.contains("__"))
    {
        if (sh::IsWebGLBasedSpec(mShaderSpec))
        {
            error(line,
                  "identifiers containing two consecutive underscores (__) are reserved as "
                  "possible future keywords",
                  identifier);
            return false;
        }
        else
        {
            // Using double underscores is allowed, but may result in unintended behaviors, so a
            // warning is issued.
            // OpenGL ES Shader Language 3.2 specification:
            // > 3.7. Keywords
            // > ...
            // > In addition, all identifiers containing two consecutive underscores (__) are
            // > reserved for use by underlying software layers. Defining such a name in a shader
            // > does not itself result in an error, but may result in unintended behaviors that
            // > stem from having multiple definitions of the same name.
            warning(line,
                    "all identifiers containing two consecutive underscores (__) are reserved - "
                    "unintented behaviors are possible",
                    identifier.data());
        }
    }
    return true;
}
// Make sure the argument types are correct for constructing a specific type.
bool TParseContext::checkConstructorArguments(const TSourceLoc &line,
                                              const TIntermSequence &arguments,
                                              const TType &type)
{
    if (arguments.empty())
    {
        error(line, "constructor does not have any arguments", "constructor");
        return false;
    }
    for (TIntermNode *arg : arguments)
    {
        markStaticReadIfSymbol(arg);
        const TIntermTyped *argTyped = arg->getAsTyped();
        ASSERT(argTyped != nullptr);
        if (type.getBasicType() != EbtStruct && IsOpaqueType(argTyped->getBasicType()))
        {
            std::string reason("cannot convert a variable with type ");
            reason += getBasicString(argTyped->getBasicType());
            error(line, reason.c_str(), "constructor");
            return false;
        }
        else if (argTyped->getMemoryQualifier().writeonly)
        {
            error(line, "cannot convert a variable with writeonly", "constructor");
            return false;
        }
        if (argTyped->getBasicType() == EbtVoid)
        {
            error(line, "cannot convert a void", "constructor");
            return false;
        }
    }
    if (type.isArray())
    {
        // The size of an unsized constructor should already have been determined.
        ASSERT(!type.isUnsizedArray());
        if (static_cast<size_t>(type.getOutermostArraySize()) != arguments.size())
        {
            error(line, "array constructor needs one argument per array element", "constructor");
            return false;
        }
        // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of
        // the array.
        for (TIntermNode *const &argNode : arguments)
        {
            const TType &argType = argNode->getAsTyped()->getType();
            if (mShaderVersion < 310 && argType.isArray())
            {
                error(line, "constructing from a non-dereferenced array", "constructor");
                return false;
            }
            if (!argType.isElementTypeOf(type))
            {
                error(line, "Array constructor argument has an incorrect type", "constructor");
                return false;
            }
        }
    }
    else if (type.getBasicType() == EbtStruct)
    {
        const TFieldList &fields = type.getStruct()->fields();
        if (fields.size() != arguments.size())
        {
            error(line,
                  "Number of constructor parameters does not match the number of structure fields",
                  "constructor");
            return false;
        }
        for (size_t i = 0; i < fields.size(); i++)
        {
            if (i >= arguments.size() ||
                arguments[i]->getAsTyped()->getType() != *fields[i]->type())
            {
                error(line, "Structure constructor arguments do not match structure fields",
                      "constructor");
                return false;
            }
        }
    }
    else
    {
        // We're constructing a scalar, vector, or matrix.
        // Note: It's okay to have too many components available, but not okay to have unused
        // arguments. 'full' will go to true when enough args have been seen. If we loop again,
        // there is an extra argument, so 'overFull' will become true.
        size_t size    = 0;
        bool full      = false;
        bool overFull  = false;
        bool matrixArg = false;
        for (TIntermNode *arg : arguments)
        {
            const TIntermTyped *argTyped = arg->getAsTyped();
            ASSERT(argTyped != nullptr);
            if (argTyped->getBasicType() == EbtStruct)
            {
                error(line, "a struct cannot be used as a constructor argument for this type",
                      "constructor");
                return false;
            }
            if (argTyped->getBasicType() == EbtInterfaceBlock)
            {
                error(line,
                      "an interface block cannot be used as a constructor argument for this type",
                      "constructor");
                return false;
            }
            if (argTyped->getType().isArray())
            {
                error(line, "constructing from a non-dereferenced array", "constructor");
                return false;
            }
            if (argTyped->getType().isMatrix())
            {
                matrixArg = true;
            }
            size += argTyped->getType().getObjectSize();
            if (full)
            {
                overFull = true;
            }
            if (size >= type.getObjectSize())
            {
                full = true;
            }
        }
        if (type.isMatrix() && matrixArg)
        {
            if (arguments.size() != 1)
            {
                error(line, "constructing matrix from matrix can only take one argument",
                      "constructor");
                return false;
            }
        }
        else
        {
            if (size != 1 && size < type.getObjectSize())
            {
                error(line, "not enough data provided for construction", "constructor");
                return false;
            }
            if (overFull)
            {
                error(line, "too many arguments", "constructor");
                return false;
            }
        }
    }
    return true;
}
// This function checks to see if a void variable has been declared and raise an error message for
// such a case
//
// returns true in case of an error
//
bool TParseContext::checkIsNonVoid(const TSourceLoc &line,
                                   const ImmutableString &identifier,
                                   const TBasicType &type)
{
    if (type == EbtVoid)
    {
        error(line, "illegal use of type 'void'", identifier);
        return false;
    }
    return true;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression
// or not.
bool TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type)
{
    if (type->getBasicType() != EbtBool || !type->isScalar())
    {
        error(line, "boolean expression expected", "");
        return false;
    }
    return true;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression
// or not.
void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType)
{
    if (pType.getBasicType() != EbtBool || pType.isAggregate())
    {
        error(line, "boolean expression expected", "");
    }
}
bool TParseContext::checkIsNotOpaqueType(const TSourceLoc &line,
                                         const TTypeSpecifierNonArray &pType,
                                         const char *reason)
{
    if (pType.type == EbtStruct)
    {
        if (ContainsOpaque<IsSamplerFunc>(pType.userDef))
        {
            std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
            reasonStream << reason << " (structure contains a sampler)";
            std::string reasonStr = reasonStream.str();
            error(line, reasonStr.c_str(), getBasicString(pType.type));
            return false;
        }
        // only samplers need to be checked from structs, since other opaque types can't be struct
        // members.
        return true;
    }
    else if (IsOpaqueType(pType.type))
    {
        error(line, reason, getBasicString(pType.type));
        return false;
    }
    return true;
}
void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line,
                                                          const TPublicType &pType)
{
    if (pType.layoutQualifier.location != -1)
    {
        error(line, "location must only be specified for a single input or output variable",
              "location");
    }
}
void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location,
                                                const TLayoutQualifier &layoutQualifier)
{
    if (layoutQualifier.location != -1)
    {
        const char *errorMsg = "invalid layout qualifier: only valid on program inputs and outputs";
        if (mShaderVersion >= 310)
        {
            errorMsg =
                "invalid layout qualifier: only valid on shader inputs, outputs, and uniforms";
        }
        error(location, errorMsg, "location");
    }
}
void TParseContext::checkStd430IsForShaderStorageBlock(const TSourceLoc &location,
                                                       const TLayoutBlockStorage &blockStorage,
                                                       const TQualifier &qualifier)
{
    if (blockStorage == EbsStd430 && qualifier != EvqBuffer)
    {
        error(location, "The std430 layout is supported only for shader storage blocks.", "std430");
    }
}
// Do size checking for an array type's size.
unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr)
{
    TIntermConstantUnion *constant = expr->getAsConstantUnion();
    // ANGLE should be able to fold any EvqConst expressions resulting in an integer - but to be
    // safe against corner cases we still check for constant folding. Some interpretations of the
    // spec have allowed constant expressions with side effects - like array length() method on a
    // non-constant array.
    if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt())
    {
        error(line, "array size must be a constant integer expression", "");
        return 1u;
    }
    unsigned int size = 0u;
    if (constant->getBasicType() == EbtUInt)
    {
        size = constant->getUConst(0);
    }
    else
    {
        int signedSize = constant->getIConst(0);
        if (signedSize < 0)
        {
            error(line, "array size must be non-negative", "");
            return 1u;
        }
        size = static_cast<unsigned int>(signedSize);
    }
    if (size == 0u)
    {
        error(line, "array size must be greater than zero", "");
        return 1u;
    }
    if (IsOutputHLSL(getOutputType()))
    {
        // The size of arrays is restricted here to prevent issues further down the
        // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to
        // 4096 registers so this should be reasonable even for aggressively optimizable code.
        const unsigned int sizeLimit = 65536;
        if (size > sizeLimit)
        {
            error(line, "array size too large", "");
            return 1u;
        }
    }
    return size;
}
bool TParseContext::checkIsValidArrayDimension(const TSourceLoc &line,
                                               TVector<unsigned int> *arraySizes)
{
    if (arraySizes->size() > mMaxExpressionComplexity)
    {
        error(line, "array has too many dimensions", "");
        return false;
    }
    return true;
}
// See if this qualifier can be an array.
bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line,
                                                  const TPublicType &elementQualifier)
{
    if ((elementQualifier.qualifier == EvqAttribute) ||
        (elementQualifier.qualifier == EvqVertexIn) ||
        (elementQualifier.qualifier == EvqConst && mShaderVersion < 300))
    {
        error(line, "cannot declare arrays of this qualifier",
              TType(elementQualifier).getQualifierString());
        return false;
    }
    return true;
}
// See if this element type can be formed into an array.
bool TParseContext::checkArrayElementIsNotArray(const TSourceLoc &line,
                                                const TPublicType &elementType)
{
    if (mShaderVersion < 310 && elementType.isArray())
    {
        TInfoSinkBase typeString;
        typeString << TType(elementType);
        error(line, "cannot declare arrays of arrays", typeString.c_str());
        return false;
    }
    return true;
}
// Check for array-of-arrays being used as non-allowed shader inputs/outputs.
bool TParseContext::checkArrayOfArraysInOut(const TSourceLoc &line,
                                            const TPublicType &elementType,
                                            const TType &arrayType)
{
    if (arrayType.isArrayOfArrays())
    {
        if (elementType.qualifier == EvqVertexOut)
        {
            error(line, "vertex shader output cannot be an array of arrays",
                  TType(elementType).getQualifierString());
            return false;
        }
        if (elementType.qualifier == EvqFragmentIn)
        {
            error(line, "fragment shader input cannot be an array of arrays",
                  TType(elementType).getQualifierString());
            return false;
        }
        if (elementType.qualifier == EvqFragmentOut || elementType.qualifier == EvqFragmentInOut)
        {
            error(line, "fragment shader output cannot be an array of arrays",
                  TType(elementType).getQualifierString());
            return false;
        }
    }
    return true;
}
// Check if this qualified element type can be formed into an array. This is only called when array
// brackets are associated with an identifier in a declaration, like this:
//   float a[2];
// Similar checks are done in addFullySpecifiedType for array declarations where the array brackets
// are associated with the type, like this:
//   float[2] a;
bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation,
                                                         const TPublicType &elementType)
{
    if (!checkArrayElementIsNotArray(indexLocation, elementType))
    {
        return false;
    }
    // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere.
    // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section
    // 4.3.4).
    // Geometry shader requires each user-defined input be declared as arrays or inside input
    // blocks declared as arrays (GL_EXT_geometry_shader section 11.1gs.4.3). For the purposes of
    // interface matching, such variables and blocks are treated as though they were not declared
    // as arrays (GL_EXT_geometry_shader section 7.4.1).
    if (mShaderVersion >= 300 && elementType.getBasicType() == EbtStruct &&
        sh::IsVarying(elementType.qualifier) &&
        !IsGeometryShaderInput(mShaderType, elementType.qualifier) &&
        !IsTessellationControlShaderInput(mShaderType, elementType.qualifier) &&
        !IsTessellationEvaluationShaderInput(mShaderType, elementType.qualifier) &&
        !IsTessellationControlShaderOutput(mShaderType, elementType.qualifier))
    {
        TInfoSinkBase typeString;
        typeString << TType(elementType);
        error(indexLocation, "cannot declare arrays of structs of this qualifier",
              typeString.c_str());
        return false;
    }
    return checkIsValidQualifierForArray(indexLocation, elementType);
}
void TParseContext::checkNestingLevel(const TSourceLoc &line)
{
    if (static_cast<size_t>(mLoopNestingLevel + mSwitchNestingLevel) > mMaxStatementDepth)
    {
        error(line, "statement is too deeply nested", "");
    }
}
// Enforce non-initializer type/qualifier rules.
void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line,
                                                         const ImmutableString &identifier,
                                                         TType *type)
{
    ASSERT(type != nullptr);
    if (type->getQualifier() == EvqConst)
    {
        // Make the qualifier make sense.
        type->setQualifier(EvqTemporary);
        // Generate informative error messages for ESSL1.
        // In ESSL3 arrays and structures containing arrays can be constant.
        if (mShaderVersion < 300 && type->isStructureContainingArrays())
        {
            error(line,
                  "structures containing arrays may not be declared constant since they cannot be "
                  "initialized",
                  identifier);
        }
        else
        {
            error(line, "variables with qualifier 'const' must be initialized", identifier);
        }
    }
}
void TParseContext::checkDeclarationIsValidArraySize(const TSourceLoc &line,
                                                     const ImmutableString &identifier,
                                                     TType *type)
{
    // Implicitly declared arrays are only allowed with tessellation or geometry shader inputs
    if (type->isUnsizedArray() &&
        ((mShaderType != GL_TESS_CONTROL_SHADER && mShaderType != GL_TESS_EVALUATION_SHADER &&
          mShaderType != GL_GEOMETRY_SHADER) ||
         (mShaderType == GL_GEOMETRY_SHADER && type->getQualifier() == EvqGeometryOut)))
    {
        error(line,
              "implicitly sized arrays only allowed for tessellation shaders "
              "or geometry shader inputs",
              identifier);
    }
}
// Do some simple checks that are shared between all variable declarations,
// and update the symbol table.
//
// Returns true if declaring the variable succeeded.
//
bool TParseContext::declareVariable(const TSourceLoc &line,
                                    const ImmutableString &identifier,
                                    const TType *type,
                                    TVariable **variable)
{
    ASSERT((*variable) == nullptr);
    SymbolType symbolType = SymbolType::UserDefined;
    switch (type->getQualifier())
    {
        case EvqClipDistance:
        case EvqCullDistance:
        case EvqFragDepth:
        case EvqLastFragData:
        case EvqLastFragColor:
        case EvqLastFragDepth:
        case EvqLastFragStencil:
            symbolType = SymbolType::BuiltIn;
            break;
        default:
            break;
    }
    (*variable) = new TVariable(&symbolTable, identifier, type, symbolType);
    if (type->getQualifier() == EvqFragmentOut)
    {
        if (type->getLayoutQualifier().index != -1 && type->getLayoutQualifier().location == -1)
        {
            error(line,
                  "If index layout qualifier is specified for a fragment output, location must "
                  "also be specified.",
                  "index");
            return false;
        }
    }
    else
    {
        checkIndexIsNotSpecified(line, type->getLayoutQualifier().index);
    }
    if (!((identifier.beginsWith("gl_LastFragData") || type->getQualifier() == EvqFragmentInOut) &&
          (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) ||
           isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent))))
    {
        checkNoncoherentIsNotSpecified(line, type->getLayoutQualifier().noncoherent);
    }
    else if (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent) &&
             !isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch))
    {
        checkNoncoherentIsSpecified(line, type->getLayoutQualifier().noncoherent);
    }
    checkBindingIsValid(line, *type);
    bool needsReservedCheck = true;
    // gl_LastFragData may be redeclared with a new precision qualifier
    if (type->isArray() && identifier.beginsWith("gl_LastFragData"))
    {
        const TVariable *maxDrawBuffers = static_cast<const TVariable *>(
            symbolTable.findBuiltIn(ImmutableString("gl_MaxDrawBuffers"), mShaderVersion));
        if (type->isArrayOfArrays())
        {
            error(line, "redeclaration of gl_LastFragData as an array of arrays", identifier);
            return false;
        }
        else if (static_cast<int>(type->getOutermostArraySize()) ==
                 maxDrawBuffers->getConstPointer()->getIConst())
        {
            if (const TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion))
            {
                needsReservedCheck = !checkCanUseOneOfExtensions(line, builtInSymbol->extensions());
            }
        }
        else
        {
            error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers",
                  identifier);
            return false;
        }
    }
    else if (identifier.beginsWith("gl_LastFragColorARM") ||
             identifier.beginsWith("gl_LastFragDepthARM") ||
             identifier.beginsWith("gl_LastFragStencilARM"))
    {
        // gl_LastFrag{Color,Depth,Stencil}ARM may be redeclared with a new precision qualifier
        if (const TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion))
        {
            needsReservedCheck = !checkCanUseOneOfExtensions(line, builtInSymbol->extensions());
        }
    }
    else if (type->isArray() && identifier == "gl_ClipDistance")
    {
        // gl_ClipDistance can be redeclared with smaller size than gl_MaxClipDistances
        const TVariable *maxClipDistances = static_cast<const TVariable *>(
            symbolTable.findBuiltIn(ImmutableString("gl_MaxClipDistances"), mShaderVersion));
        if (!maxClipDistances)
        {
            // Unsupported extension
            needsReservedCheck = true;
        }
        else if (type->isArrayOfArrays())
        {
            error(line, "redeclaration of gl_ClipDistance as an array of arrays", identifier);
            return false;
        }
        else if (static_cast<int>(type->getOutermostArraySize()) <=
                 maxClipDistances->getConstPointer()->getIConst())
        {
            const TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion);
            if (builtInSymbol)
            {
                needsReservedCheck = !checkCanUseOneOfExtensions(line, builtInSymbol->extensions());
            }
        }
        else
        {
            error(line, "redeclaration of gl_ClipDistance with size > gl_MaxClipDistances",
                  identifier);
            return false;
        }
    }
    else if (type->isArray() && identifier == "gl_CullDistance")
    {
        // gl_CullDistance can be redeclared with smaller size than gl_MaxCullDistances
        const TVariable *maxCullDistances = static_cast<const TVariable *>(
            symbolTable.findBuiltIn(ImmutableString("gl_MaxCullDistances"), mShaderVersion));
        if (!maxCullDistances)
        {
            // Unsupported extension
            needsReservedCheck = true;
        }
        else if (type->isArrayOfArrays())
        {
            error(line, "redeclaration of gl_CullDistance as an array of arrays", identifier);
            return false;
        }
        else if (static_cast<int>(type->getOutermostArraySize()) <=
                 maxCullDistances->getConstPointer()->getIConst())
        {
            if (const TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion))
            {
                needsReservedCheck = !checkCanUseOneOfExtensions(line, builtInSymbol->extensions());
            }
        }
        else
        {
            error(line, "redeclaration of gl_CullDistance with size > gl_MaxCullDistances",
                  identifier);
            return false;
        }
    }
    else if (isExtensionEnabled(TExtension::EXT_conservative_depth) &&
             mShaderType == GL_FRAGMENT_SHADER && identifier == "gl_FragDepth")
    {
        if (type->getBasicType() != EbtFloat || type->getNominalSize() != 1 ||
            type->getSecondarySize() != 1 || type->isArray())
        {
            error(line, "gl_FragDepth can only be redeclared as float", identifier);
            return false;
        }
        needsReservedCheck = false;
    }
    else if (isExtensionEnabled(TExtension::EXT_separate_shader_objects) &&
             mShaderType == GL_VERTEX_SHADER)
    {
        bool isRedefiningPositionOrPointSize = false;
        if (identifier == "gl_Position")
        {
            if (type->getBasicType() != EbtFloat || type->getNominalSize() != 4 ||
                type->getSecondarySize() != 1 || type->isArray())
            {
                error(line, "gl_Position can only be redeclared as vec4", identifier);
                return false;
            }
            needsReservedCheck                         = false;
            mPositionRedeclaredForSeparateShaderObject = true;
            isRedefiningPositionOrPointSize            = true;
        }
        else if (identifier == "gl_PointSize")
        {
            if (type->getBasicType() != EbtFloat || type->getNominalSize() != 1 ||
                type->getSecondarySize() != 1 || type->isArray())
            {
                error(line, "gl_PointSize can only be redeclared as float", identifier);
                return false;
            }
            needsReservedCheck                          = false;
            mPointSizeRedeclaredForSeparateShaderObject = true;
            isRedefiningPositionOrPointSize             = true;
        }
        if (isRedefiningPositionOrPointSize && mPositionOrPointSizeUsedForSeparateShaderObject)
        {
            error(line,
                  "When EXT_separate_shader_objects is enabled, both gl_Position and "
                  "gl_PointSize must be redeclared before either is used",
                  identifier);
        }
    }
    if (needsReservedCheck && !checkIsNotReserved(line, identifier))
        return false;
    if (!symbolTable.declare(*variable))
    {
        error(line, "redefinition", identifier);
        return false;
    }
    if (!checkIsNonVoid(line, identifier, type->getBasicType()))
        return false;
    return true;
}
void TParseContext::parseParameterQualifier(const TSourceLoc &line,
                                            const TTypeQualifierBuilder &typeQualifierBuilder,
                                            TPublicType &type)
{
    // The only parameter qualifiers a parameter can have are in, out, inout or const.
    TTypeQualifier typeQualifier =
        typeQualifierBuilder.getParameterTypeQualifier(type.getBasicType(), mDiagnostics);
    if (typeQualifier.qualifier == EvqParamOut || typeQualifier.qualifier == EvqParamInOut)
    {
        if (IsOpaqueType(type.getBasicType()))
        {
            error(line, "opaque types cannot be output parameters", type.getBasicString());
        }
    }
    if (!IsImage(type.getBasicType()))
    {
        checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, line);
    }
    else
    {
        type.setMemoryQualifier(typeQualifier.memoryQualifier);
    }
    type.setQualifier(typeQualifier.qualifier);
    if (typeQualifier.precision != EbpUndefined)
    {
        type.setPrecision(typeQualifier.precision);
    }
    if (typeQualifier.precise)
    {
        type.setPrecise(true);
    }
}
template <size_t size>
bool TParseContext::checkCanUseOneOfExtensions(const TSourceLoc &line,
                                               const std::array<TExtension, size> &extensions)
{
    ASSERT(!extensions.empty());
    const TExtensionBehavior &extBehavior = extensionBehavior();
    bool canUseWithWarning    = false;
    bool canUseWithoutWarning = false;
    const char *errorMsgString   = "";
    TExtension errorMsgExtension = TExtension::UNDEFINED;
    for (TExtension extension : extensions)
    {
        auto extIter = extBehavior.find(extension);
        if (canUseWithWarning)
        {
            // We already have an extension that we can use, but with a warning.
            // See if we can use the alternative extension without a warning.
            if (extIter == extBehavior.end())
            {
                continue;
            }
            if (extIter->second == EBhEnable || extIter->second == EBhRequire)
            {
                canUseWithoutWarning = true;
                break;
            }
            continue;
        }
        if (extension == TExtension::UNDEFINED)
        {
            continue;
        }
        else if (extIter == extBehavior.end())
        {
            errorMsgString    = "extension is not supported";
            errorMsgExtension = extension;
        }
        else if (extIter->second == EBhUndefined || extIter->second == EBhDisable)
        {
            errorMsgString    = "extension is disabled";
            errorMsgExtension = extension;
        }
        else if (extIter->second == EBhWarn)
        {
            errorMsgExtension = extension;
            canUseWithWarning = true;
        }
        else
        {
            ASSERT(extIter->second == EBhEnable || extIter->second == EBhRequire);
            canUseWithoutWarning = true;
            break;
        }
    }
    if (canUseWithoutWarning)
    {
        return true;
    }
    if (canUseWithWarning)
    {
        warning(line, "extension is being used", GetExtensionNameString(errorMsgExtension));
        return true;
    }
    error(line, errorMsgString, GetExtensionNameString(errorMsgExtension));
    return false;
}
template bool TParseContext::checkCanUseOneOfExtensions(
    const TSourceLoc &line,
    const std::array<TExtension, 1> &extensions);
template bool TParseContext::checkCanUseOneOfExtensions(
    const TSourceLoc &line,
    const std::array<TExtension, 2> &extensions);
template bool TParseContext::checkCanUseOneOfExtensions(
    const TSourceLoc &line,
    const std::array<TExtension, 3> &extensions);
bool TParseContext::checkCanUseExtension(const TSourceLoc &line, TExtension extension)
{
    ASSERT(extension != TExtension::UNDEFINED);
    return checkCanUseOneOfExtensions(line, std::array<TExtension, 1u>{{extension}});
}
// ESSL 3.00.6 section 4.8 Empty Declarations: "The combinations of qualifiers that cause
// compile-time or link-time errors are the same whether or not the declaration is empty".
// This function implements all the checks that are done on qualifiers regardless of if the
// declaration is empty.
void TParseContext::declarationQualifierErrorCheck(const sh::TQualifier qualifier,
                                                   const sh::TLayoutQualifier &layoutQualifier,
                                                   const TSourceLoc &location)
{
    if (qualifier == EvqShared && !layoutQualifier.isEmpty())
    {
        error(location, "Shared memory declarations cannot have layout specified", "layout");
    }
    if (layoutQualifier.matrixPacking != EmpUnspecified)
    {
        error(location, "layout qualifier only valid for interface blocks",
              getMatrixPackingString(layoutQualifier.matrixPacking));
        return;
    }
    if (layoutQualifier.blockStorage != EbsUnspecified)
    {
        error(location, "layout qualifier only valid for interface blocks",
              getBlockStorageString(layoutQualifier.blockStorage));
        return;
    }
    if (qualifier != EvqFragDepth)
    {
        checkDepthIsNotSpecified(location, layoutQualifier.depth);
    }
    if (qualifier == EvqFragmentOut)
    {
        if (layoutQualifier.location != -1 && layoutQualifier.yuv == true)
        {
            error(location, "invalid layout qualifier combination", "yuv");
            return;
        }
    }
    else
    {
        checkYuvIsNotSpecified(location, layoutQualifier.yuv);
    }
    if (qualifier != EvqFragmentIn)
    {
        checkEarlyFragmentTestsIsNotSpecified(location, layoutQualifier.earlyFragmentTests);
    }
    // If multiview extension is enabled, "in" qualifier is allowed in the vertex shader in previous
    // parsing steps. So it needs to be checked here.
    if (anyMultiviewExtensionAvailable() && mShaderVersion < 300 && qualifier == EvqVertexIn)
    {
        error(location, "storage qualifier supported in GLSL ES 3.00 and above only", "in");
    }
    bool canHaveLocation = qualifier == EvqVertexIn || qualifier == EvqFragmentOut;
    if (mShaderVersion >= 300 &&
        (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) ||
         isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent)))
    {
        // In the case of EXT_shader_framebuffer_fetch or EXT_shader_framebuffer_fetch_non_coherent
        // extension, the location of inout qualifier is used to set the input attachment index
        canHaveLocation = canHaveLocation || qualifier == EvqFragmentInOut;
    }
    if (mShaderVersion >= 310)
    {
        canHaveLocation = canHaveLocation || qualifier == EvqUniform || IsVarying(qualifier);
        // We're not checking whether the uniform location is in range here since that depends on
        // the type of the variable.
        // The type can only be fully determined for non-empty declarations.
    }
    if (!canHaveLocation)
    {
        checkLocationIsNotSpecified(location, layoutQualifier);
    }
}
void TParseContext::atomicCounterQualifierErrorCheck(const TPublicType &publicType,
                                                     const TSourceLoc &location)
{
    if (publicType.precision != EbpHigh)
    {
        error(location, "Can only be highp", "atomic counter");
    }
    // dEQP enforces compile error if location is specified. See uniform_location.test.
    if (publicType.layoutQualifier.location != -1)
    {
        error(location, "location must not be set for atomic_uint", "layout");
    }
    if (publicType.layoutQualifier.binding == -1)
    {
        error(location, "no binding specified", "atomic counter");
    }
}
void TParseContext::emptyDeclarationErrorCheck(const TType &type, const TSourceLoc &location)
{
    if (type.isUnsizedArray())
    {
        // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an
        // error. It is assumed that this applies to empty declarations as well.
        error(location, "empty array declaration needs to specify a size", "");
    }
    if (type.getQualifier() != EvqFragmentOut)
    {
        checkIndexIsNotSpecified(location, type.getLayoutQualifier().index);
    }
}
// These checks are done for all declarations that are non-empty. They're done for non-empty
// declarations starting a declarator list, and declarators that follow an empty declaration.
void TParseContext::nonEmptyDeclarationErrorCheck(const TPublicType &publicType,
                                                  const TSourceLoc &identifierLocation)
{
    switch (publicType.qualifier)
    {
        case EvqVaryingIn:
        case EvqVaryingOut:
        case EvqAttribute:
        case EvqVertexIn:
        case EvqFragmentOut:
        case EvqFragmentInOut:
        case EvqComputeIn:
            if (publicType.getBasicType() == EbtStruct)
            {
                error(identifierLocation, "cannot be used with a structure",
                      getQualifierString(publicType.qualifier));
                return;
            }
            break;
        case EvqBuffer:
            if (publicType.getBasicType() != EbtInterfaceBlock)
            {
                error(identifierLocation,
                      "cannot declare buffer variables at global scope(outside a block)",
                      getQualifierString(publicType.qualifier));
                return;
            }
            break;
        default:
            break;
    }
    std::string reason(getBasicString(publicType.getBasicType()));
    reason += "s must be uniform";
    if (publicType.qualifier != EvqUniform &&
        !checkIsNotOpaqueType(identifierLocation, publicType.typeSpecifierNonArray, reason.c_str()))
    {
        return;
    }
    if ((publicType.qualifier != EvqTemporary && publicType.qualifier != EvqGlobal &&
         publicType.qualifier != EvqConst) &&
        publicType.getBasicType() == EbtYuvCscStandardEXT)
    {
        error(identifierLocation, "cannot be used with a yuvCscStandardEXT",
              getQualifierString(publicType.qualifier));
        return;
    }
    if (mShaderVersion >= 310 && publicType.qualifier == EvqUniform)
    {
        // Valid uniform declarations can't be unsized arrays since uniforms can't be initialized.
        // But invalid shaders may still reach here with an unsized array declaration.
        TType type(publicType);
        if (!type.isUnsizedArray())
        {
            checkUniformLocationInRange(identifierLocation, type.getLocationCount(),
                                        publicType.layoutQualifier);
        }
    }
    if (mShaderVersion >= 300 && publicType.qualifier == EvqVertexIn)
    {
        // Valid vertex input declarations can't be unsized arrays since they can't be initialized.
        // But invalid shaders may still reach here with an unsized array declaration.
        TType type(publicType);
        if (!type.isUnsizedArray())
        {
            checkAttributeLocationInRange(identifierLocation, type.getLocationCount(),
                                          publicType.layoutQualifier);
        }
    }
    // check for layout qualifier issues
    const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
    if (IsImage(publicType.getBasicType()))
    {
        switch (layoutQualifier.imageInternalFormat)
        {
            case EiifRGBA32F:
            case EiifRGBA16F:
            case EiifR32F:
            case EiifRGBA8:
            case EiifRGBA8_SNORM:
                if (!IsFloatImage(publicType.getBasicType()))
                {
                    error(identifierLocation,
                          "internal image format requires a floating image type",
                          getBasicString(publicType.getBasicType()));
                    return;
                }
                break;
            case EiifRGBA32I:
            case EiifRGBA16I:
            case EiifRGBA8I:
            case EiifR32I:
                if (!IsIntegerImage(publicType.getBasicType()))
                {
                    error(identifierLocation,
                          "internal image format requires an integer image type",
                          getBasicString(publicType.getBasicType()));
                    return;
                }
                break;
            case EiifRGBA32UI:
            case EiifRGBA16UI:
            case EiifRGBA8UI:
            case EiifR32UI:
                if (!IsUnsignedImage(publicType.getBasicType()))
                {
                    error(identifierLocation,
                          "internal image format requires an unsigned image type",
                          getBasicString(publicType.getBasicType()));
                    return;
                }
                break;
            case EiifUnspecified:
                error(identifierLocation, "layout qualifier", "No image internal format specified");
                return;
            default:
                error(identifierLocation, "layout qualifier", "unrecognized token");
                return;
        }
        // GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
        switch (layoutQualifier.imageInternalFormat)
        {
            case EiifR32F:
            case EiifR32I:
            case EiifR32UI:
                break;
            default:
                if (!publicType.memoryQualifier.readonly && !publicType.memoryQualifier.writeonly)
                {
                    error(identifierLocation, "layout qualifier",
                          "Except for images with the r32f, r32i and r32ui format qualifiers, "
                          "image variables must be qualified readonly and/or writeonly");
                    return;
                }
                break;
        }
    }
    else if (IsPixelLocal(publicType.getBasicType()))
    {
        if (getShaderType() != GL_FRAGMENT_SHADER)
        {
            error(identifierLocation,
                  "undefined use of pixel local storage outside a fragment shader",
                  getBasicString(publicType.getBasicType()));
            return;
        }
        switch (layoutQualifier.imageInternalFormat)
        {
            case EiifR32F:
            case EiifRGBA8:
                if (publicType.getBasicType() != EbtPixelLocalANGLE)
                {
                    error(identifierLocation, "pixel local storage format requires pixelLocalANGLE",
                          getImageInternalFormatString(layoutQualifier.imageInternalFormat));
                }
                break;
            case EiifRGBA8I:
                if (publicType.getBasicType() != EbtIPixelLocalANGLE)
                {
                    error(identifierLocation,
                          "pixel local storage format requires ipixelLocalANGLE",
                          getImageInternalFormatString(layoutQualifier.imageInternalFormat));
                }
                break;
            case EiifR32UI:
            case EiifRGBA8UI:
                if (publicType.getBasicType() != EbtUPixelLocalANGLE)
                {
                    error(identifierLocation,
                          "pixel local storage format requires upixelLocalANGLE",
                          getImageInternalFormatString(layoutQualifier.imageInternalFormat));
                }
                break;
            case EiifR32I:
            case EiifRGBA8_SNORM:
            case EiifRGBA16F:
            case EiifRGBA32F:
            case EiifRGBA16I:
            case EiifRGBA32I:
            case EiifRGBA16UI:
            case EiifRGBA32UI:
            default:
                ASSERT(!IsValidWithPixelLocalStorage(layoutQualifier.imageInternalFormat));
                error(identifierLocation, "illegal pixel local storage format",
                      getImageInternalFormatString(layoutQualifier.imageInternalFormat));
                break;
            case EiifUnspecified:
                error(identifierLocation, "pixel local storage requires a format specifier",
                      "layout qualifier");
                break;
        }
        checkMemoryQualifierIsNotSpecified(publicType.memoryQualifier, identifierLocation);
        checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
    }
    else
    {
        checkInternalFormatIsNotSpecified(identifierLocation, layoutQualifier.imageInternalFormat);
        checkMemoryQualifierIsNotSpecified(publicType.memoryQualifier, identifierLocation);
    }
    if (IsAtomicCounter(publicType.getBasicType()))
    {
        atomicCounterQualifierErrorCheck(publicType, identifierLocation);
    }
    else
    {
        checkOffsetIsNotSpecified(identifierLocation, layoutQualifier.offset);
    }
}
void TParseContext::checkBindingIsValid(const TSourceLoc &identifierLocation, const TType &type)
{
    TLayoutQualifier layoutQualifier = type.getLayoutQualifier();
    // Note that the ESSL 3.10 section 4.4.5 is not particularly clear on how the binding qualifier
    // on arrays of arrays should be handled. We interpret the spec so that the binding value is
    // incremented for each element of the innermost nested arrays. This is in line with how arrays
    // of arrays of blocks are specified to behave in GLSL 4.50 and a conservative interpretation
    // when it comes to which shaders are accepted by the compiler.
    int arrayTotalElementCount = type.getArraySizeProduct();
    if (IsPixelLocal(type.getBasicType()))
    {
        checkPixelLocalStorageBindingIsValid(identifierLocation, type);
    }
    else if (mShaderVersion < 310)
    {
        checkBindingIsNotSpecified(identifierLocation, layoutQualifier.binding);
    }
    else if (IsImage(type.getBasicType()))
    {
        checkImageBindingIsValid(identifierLocation, layoutQualifier.binding,
                                 arrayTotalElementCount);
    }
    else if (IsSampler(type.getBasicType()))
    {
        checkSamplerBindingIsValid(identifierLocation, layoutQualifier.binding,
                                   arrayTotalElementCount);
    }
    else if (IsAtomicCounter(type.getBasicType()))
    {
        checkAtomicCounterBindingIsValid(identifierLocation, layoutQualifier.binding);
    }
    else
    {
        ASSERT(!IsOpaqueType(type.getBasicType()));
        checkBindingIsNotSpecified(identifierLocation, layoutQualifier.binding);
    }
}
void TParseContext::checkCanUseLayoutQualifier(const TSourceLoc &location)
{
    constexpr std::array<TExtension, 4u> extensions{
        {TExtension::EXT_shader_framebuffer_fetch,
         TExtension::EXT_shader_framebuffer_fetch_non_coherent,
         TExtension::KHR_blend_equation_advanced, TExtension::ANGLE_shader_pixel_local_storage}};
    if (getShaderVersion() < 300 && !checkCanUseOneOfExtensions(location, extensions))
    {
        error(location, "qualifier supported in GLSL ES 3.00 and above only", "layout");
    }
}
bool TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location,
                                                  const ImmutableString &layoutQualifierName,
                                                  int versionRequired)
{
    if (mShaderVersion < versionRequired)
    {
        error(location, "invalid layout qualifier: not supported", layoutQualifierName);
        return false;
    }
    return true;
}
bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location,
                                                     const TLayoutQualifier &layoutQualifier)
{
    const sh::WorkGroupSize &localSize = layoutQualifier.localSize;
    for (size_t i = 0u; i < localSize.size(); ++i)
    {
        if (localSize[i] != -1)
        {
            error(location,
                  "invalid layout qualifier: only valid when used with 'in' in a compute shader "
                  "global layout declaration",
                  getWorkGroupSizeString(i));
            return false;
        }
    }
    return true;
}
void TParseContext::checkInternalFormatIsNotSpecified(const TSourceLoc &location,
                                                      TLayoutImageInternalFormat internalFormat)
{
    if (internalFormat != EiifUnspecified)
    {
        if (mShaderVersion < 310)
        {
            if (IsValidWithPixelLocalStorage(internalFormat))
            {
                error(location,
                      "invalid layout qualifier: not supported before GLSL ES 3.10, except pixel "
                      "local storage",
                      getImageInternalFormatString(internalFormat));
            }
            else
            {
                error(location, "invalid layout qualifier: not supported before GLSL ES 3.10",
                      getImageInternalFormatString(internalFormat));
            }
        }
        else
        {
            if (IsValidWithPixelLocalStorage(internalFormat))
            {
                error(location,
                      "invalid layout qualifier: only valid when used with images or pixel local "
                      "storage ",
                      getImageInternalFormatString(internalFormat));
            }
            else
            {
                error(location, "invalid layout qualifier: only valid when used with images",
                      getImageInternalFormatString(internalFormat));
            }
        }
    }
}
void TParseContext::checkIndexIsNotSpecified(const TSourceLoc &location, int index)
{
    if (index != -1)
    {
        error(location,
              "invalid layout qualifier: only valid when used with a fragment shader output in "
              "ESSL version >= 3.00 and EXT_blend_func_extended is enabled",
              "index");
    }
}
void TParseContext::checkBindingIsNotSpecified(const TSourceLoc &location, int binding)
{
    if (binding != -1)
    {
        if (mShaderVersion < 310)
        {
            error(location,
                  "invalid layout qualifier: only valid when used with pixel local storage",
                  "binding");
        }
        else
        {
            error(location,
                  "invalid layout qualifier: only valid when used with opaque types or blocks",
                  "binding");
        }
    }
}
void TParseContext::checkOffsetIsNotSpecified(const TSourceLoc &location, int offset)
{
    if (offset != -1)
    {
        error(location, "invalid layout qualifier: only valid when used with atomic counters",
              "offset");
    }
}
void TParseContext::checkImageBindingIsValid(const TSourceLoc &location,
                                             int binding,
                                             int arrayTotalElementCount)
{
    // Expects arraySize to be 1 when setting binding for only a single variable.
    if (binding >= 0 && binding + arrayTotalElementCount > mMaxImageUnits)
    {
        error(location, "image binding greater than gl_MaxImageUnits", "binding");
    }
}
void TParseContext::checkSamplerBindingIsValid(const TSourceLoc &location,
                                               int binding,
                                               int arrayTotalElementCount)
{
    // Expects arraySize to be 1 when setting binding for only a single variable.
    if (binding >= 0 && binding + arrayTotalElementCount > mMaxCombinedTextureImageUnits)
    {
        error(location, "sampler binding greater than maximum texture units", "binding");
    }
}
void TParseContext::checkBlockBindingIsValid(const TSourceLoc &location,
                                             const TQualifier &qualifier,
                                             int binding,
                                             int arraySize)
{
    int size = (arraySize == 0 ? 1 : arraySize);
    if (qualifier == EvqUniform)
    {
        if (binding + size > mMaxUniformBufferBindings)
        {
            error(location, "uniform block binding greater than MAX_UNIFORM_BUFFER_BINDINGS",
                  "binding");
        }
    }
    else if (qualifier == EvqBuffer)
    {
        if (binding + size > mMaxShaderStorageBufferBindings)
        {
            error(location,
                  "shader storage block binding greater than MAX_SHADER_STORAGE_BUFFER_BINDINGS",
                  "binding");
        }
    }
}
void TParseContext::checkAtomicCounterBindingIsValid(const TSourceLoc &location, int binding)
{
    if (binding >= mMaxAtomicCounterBindings)
    {
        error(location, "atomic counter binding greater than gl_MaxAtomicCounterBindings",
              "binding");
    }
}
void TParseContext::checkPixelLocalStorageBindingIsValid(const TSourceLoc &location,
                                                         const TType &type)
{
    TLayoutQualifier layoutQualifier = type.getLayoutQualifier();
    if (type.isArray())
    {
        // PLS is not allowed in arrays.
        // TODO(anglebug.com/40096838): Consider allowing this once more backends are implemented.
        error(location, "pixel local storage handles cannot be aggregated in arrays", "array");
    }
    else if (layoutQualifier.binding < 0)
    {
        error(location, "pixel local storage requires a binding index", "layout qualifier");
    }
    // TODO(anglebug.com/40096838):
    else if (layoutQualifier.binding >= mMaxPixelLocalStoragePlanes)
    {
        error(location, "pixel local storage binding out of range", "layout qualifier");
    }
    else if (mPLSFormats.find(layoutQualifier.binding) != mPLSFormats.end())
    {
        error(location, "duplicate pixel local storage binding index",
              std::to_string(layoutQualifier.binding).c_str());
    }
    else
    {
        mPLSFormats[layoutQualifier.binding] =
            ImageFormatToPLSFormat(layoutQualifier.imageInternalFormat);
        // "mPLSFormats" is how we know whether any pixel local storage uniforms have been declared,
        // so flush the queue of potential errors once mPLSFormats isn't empty.
        if (!mPLSPotentialErrors.empty())
        {
            for (const auto &[loc, op] : mPLSPotentialErrors)
            {
                errorIfPLSDeclared(loc, op);
            }
            mPLSPotentialErrors.clear();
        }
    }
}
void TParseContext::checkUniformLocationInRange(const TSourceLoc &location,
                                                int objectLocationCount,
                                                const TLayoutQualifier &layoutQualifier)
{
    int loc = layoutQualifier.location;
    if (loc >= 0)  // Shader-specified location
    {
        if (loc >= mMaxUniformLocations || objectLocationCount > mMaxUniformLocations ||
            static_cast<unsigned int>(loc) + static_cast<unsigned int>(objectLocationCount) >
                static_cast<unsigned int>(mMaxUniformLocations))
        {
            error(location, "Uniform location out of range", "location");
        }
    }
}
void TParseContext::checkAttributeLocationInRange(const TSourceLoc &location,
                                                  int objectLocationCount,
                                                  const TLayoutQualifier &layoutQualifier)
{
    int loc = layoutQualifier.location;
    if (loc >= 0)  // Shader-specified location
    {
        if (loc >= mMaxVertexAttribs || objectLocationCount > mMaxVertexAttribs ||
            static_cast<unsigned int>(loc) + static_cast<unsigned int>(objectLocationCount) >
                static_cast<unsigned int>(mMaxVertexAttribs))
        {
            error(location, "Attribute location out of range", "location");
        }
    }
}
void TParseContext::checkDepthIsNotSpecified(const TSourceLoc &location, TLayoutDepth depth)
{
    if (depth != EdUnspecified)
    {
        error(location, "invalid layout qualifier: only valid on gl_FragDepth",
              getDepthString(depth));
    }
}
void TParseContext::checkYuvIsNotSpecified(const TSourceLoc &location, bool yuv)
{
    if (yuv != false)
    {
        error(location, "invalid layout qualifier: only valid on program outputs", "yuv");
    }
}
void TParseContext::checkEarlyFragmentTestsIsNotSpecified(const TSourceLoc &location,
                                                          bool earlyFragmentTests)
{
    if (earlyFragmentTests != false)
    {
        error(location,
              "invalid layout qualifier: only valid when used with 'in' in a fragment shader",
              "early_fragment_tests");
    }
}
void TParseContext::checkNoncoherentIsSpecified(const TSourceLoc &location, bool noncoherent)
{
    if (noncoherent == false)
    {
        error(location,
              "'noncoherent' qualifier must be used when "
              "GL_EXT_shader_framebuffer_fetch_non_coherent extension is used",
              "noncoherent");
    }
}
void TParseContext::checkNoncoherentIsNotSpecified(const TSourceLoc &location, bool noncoherent)
{
    if (noncoherent != false)
    {
        error(location,
              "invalid layout qualifier: only valid when used with 'gl_LastFragData' or the "
              "variable decorated with 'inout' in a fragment shader",
              "noncoherent");
    }
}
void TParseContext::checkTCSOutVarIndexIsValid(TIntermBinary *binaryExpression,
                                               const TSourceLoc &location)
{
    ASSERT(binaryExpression->getOp() == EOpIndexIndirect ||
           binaryExpression->getOp() == EOpIndexDirect);
    const TIntermSymbol *intermSymbol = binaryExpression->getRight()->getAsSymbolNode();
    if ((intermSymbol == nullptr) || (intermSymbol->getName() != "gl_InvocationID"))
    {
        error(location,
              "tessellation-control per-vertex output l-value must be indexed with "
              "gl_InvocationID",
              "[");
    }
}
void TParseContext::functionCallRValueLValueErrorCheck(const TFunction *fnCandidate,
                                                       TIntermAggregate *fnCall)
{
    for (size_t i = 0; i < fnCandidate->getParamCount(); ++i)
    {
        TQualifier qual        = fnCandidate->getParam(i)->getType().getQualifier();
        TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped();
        bool argumentIsRead    = (IsQualifierUnspecified(qual) || qual == EvqParamIn ||
                               qual == EvqParamInOut || qual == EvqParamConst);
        if (argumentIsRead)
        {
            markStaticReadIfSymbol(argument);
            if (!IsImage(argument->getBasicType()))
            {
                if (argument->getMemoryQualifier().writeonly)
                {
                    error(argument->getLine(),
                          "Writeonly value cannot be passed for 'in' or 'inout' parameters.",
                          fnCall->functionName());
                    return;
                }
            }
        }
        if (qual == EvqParamOut || qual == EvqParamInOut)
        {
            if (!checkCanBeLValue(argument->getLine(), "assign", argument))
            {
                error(argument->getLine(),
                      "Constant value cannot be passed for 'out' or 'inout' parameters.",
                      fnCall->functionName());
                return;
            }
        }
    }
}
void TParseContext::checkInvariantVariableQualifier(bool invariant,
                                                    const TQualifier qualifier,
                                                    const TSourceLoc &invariantLocation)
{
    if (!invariant)
        return;
    if (mShaderVersion < 300)
    {
        // input variables in the fragment shader can be also qualified as invariant
        if (!sh::CanBeInvariantESSL1(qualifier))
        {
            error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
        }
    }
    else
    {
        if (!sh::CanBeInvariantESSL3OrGreater(qualifier))
        {
            error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
        }
    }
}
void TParseContext::checkAdvancedBlendEquationsNotSpecified(
    const TSourceLoc &location,
    const AdvancedBlendEquations &advancedBlendEquations,
    const TQualifier &qualifier)
{
    if (advancedBlendEquations.any() && qualifier != EvqFragmentOut)
    {
        error(location,
              "invalid layout qualifier: blending equation qualifiers are only permitted on the "
              "fragment 'out' qualifier ",
              "blend_support_qualifier");
    }
}
bool TParseContext::isExtensionEnabled(TExtension extension) const
{
    return IsExtensionEnabled(extensionBehavior(), extension);
}
void TParseContext::handleExtensionDirective(const TSourceLoc &loc,
                                             const char *extName,
                                             const char *behavior)
{
    angle::pp::SourceLocation srcLoc;
    srcLoc.file = loc.first_file;
    srcLoc.line = loc.first_line;
    mDirectiveHandler.handleExtension(srcLoc, extName, behavior);
}
void TParseContext::handlePragmaDirective(const TSourceLoc &loc,
                                          const char *name,
                                          const char *value,
                                          bool stdgl)
{
    angle::pp::SourceLocation srcLoc;
    srcLoc.file = loc.first_file;
    srcLoc.line = loc.first_line;
    mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl);
}
sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const
{
    sh::WorkGroupSize result(-1);
    for (size_t i = 0u; i < result.size(); ++i)
    {
        if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1)
        {
            result[i] = 1;
        }
        else
        {
            result[i] = mComputeShaderLocalSize[i];
        }
    }
    return result;
}
TIntermConstantUnion *TParseContext::addScalarLiteral(const TConstantUnion *constantUnion,
                                                      const TSourceLoc &line)
{
    TIntermConstantUnion *node = new TIntermConstantUnion(
        constantUnion, TType(constantUnion->getType(), EbpUndefined, EvqConst));
    node->setLine(line);
    return node;
}
/////////////////////////////////////////////////////////////////////////////////
//
// Non-Errors.
//
/////////////////////////////////////////////////////////////////////////////////
const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location,
                                                 const ImmutableString &name,
                                                 const TSymbol *symbol)
{
    if (!symbol)
    {
        error(location, "undeclared identifier", name);
        return nullptr;
    }
    if (!symbol->isVariable())
    {
        error(location, "variable expected", name);
        return nullptr;
    }
    const TVariable *variable = static_cast<const TVariable *>(symbol);
    if (!variable->extensions().empty() && variable->extensions()[0] != TExtension::UNDEFINED)
    {
        checkCanUseOneOfExtensions(location, variable->extensions());
    }
    // GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables
    if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared &&
        variable->getType().getQualifier() == EvqWorkGroupSize)
    {
        error(location,
              "It is an error to use gl_WorkGroupSize before declaring the local group size",
              "gl_WorkGroupSize");
    }
    // If EXT_shader_framebuffer_fetch_non_coherent is used, gl_LastFragData should be decorated
    // with 'layout(noncoherent)' EXT_shader_framebuffer_fetch_non_coherent spec: "Unless the
    // GL_EXT_shader_framebuffer_fetch extension  has been enabled in addition, it's an error to use
    // gl_LastFragData if it hasn't been explicitly redeclared with layout(noncoherent)."
    if (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent) &&
        !isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) &&
        variable->getType().getQualifier() == EvqLastFragData)
    {
        checkNoncoherentIsSpecified(location, variable->getType().getLayoutQualifier().noncoherent);
    }
    // When EXT_separate_shader_objects is enabled, gl_Position and gl_PointSize must both be
    // redeclared before either is accessed:
    //
    // > The following vertex shader outputs may be redeclared at global scope to
    // > specify a built-in output interface, with or without special qualifiers:
    // >
    // >     gl_Position
    // >     gl_PointSize
    // >
    // >   When compiling shaders using either of the above variables, both such
    // >   variables must be redeclared prior to use.  ((Note:  This restriction
    // >   applies only to shaders using version 300 that enable the
    // >   EXT_separate_shader_objects extension; shaders not enabling the
    // >   extension do not have this requirement.))
    //
    // However, there are dEQP tests that enable all extensions and don't actually redeclare these
    // variables.  Per https://gitlab.khronos.org/opengl/API/-/issues/169, there are drivers that do
    // enforce this, but they fail linking instead of compilation.
    //
    // In ANGLE, we make sure that they are both redeclared before use if any is redeclared, but if
    // neither are redeclared, we don't fail compilation.  Currently, linking also doesn't fail in
    // ANGLE (similarly to almost all other drivers).
    if (isExtensionEnabled(TExtension::EXT_separate_shader_objects) &&
        mShaderType == GL_VERTEX_SHADER)
    {
        if (variable->getType().getQualifier() == EvqPosition ||
            variable->getType().getQualifier() == EvqPointSize)
        {
            mPositionOrPointSizeUsedForSeparateShaderObject = true;
            const bool eitherIsRedeclared = mPositionRedeclaredForSeparateShaderObject ||
                                            mPointSizeRedeclaredForSeparateShaderObject;
            const bool bothAreRedeclared = mPositionRedeclaredForSeparateShaderObject &&
                                           mPointSizeRedeclaredForSeparateShaderObject;
            if (eitherIsRedeclared && !bothAreRedeclared)
            {
                error(location,
                      "When EXT_separate_shader_objects is enabled, both gl_Position and "
                      "gl_PointSize must be redeclared before either is used",
                      name);
            }
        }
    }
    return variable;
}
TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location,
                                                     const ImmutableString &name,
                                                     const TSymbol *symbol)
{
    const TVariable *variable = getNamedVariable(location, name, symbol);
    if (!variable)
    {
        TIntermTyped *node = CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst));
        node->setLine(location);
        return node;
    }
    const TType &variableType = variable->getType();
    TIntermTyped *node        = nullptr;
    if (variable->getConstPointer() && variableType.canReplaceWithConstantUnion())
    {
        const TConstantUnion *constArray = variable->getConstPointer();
        node                             = new TIntermConstantUnion(constArray, variableType);
    }
    else if (variableType.getQualifier() == EvqWorkGroupSize && mComputeShaderLocalSizeDeclared)
    {
        // gl_WorkGroupSize can be used to size arrays according to the ESSL 3.10.4 spec, so it
        // needs to be added to the AST as a constant and not as a symbol.
        sh::WorkGroupSize workGroupSize = getComputeShaderLocalSize();
        TConstantUnion *constArray      = new TConstantUnion[3];
        for (size_t i = 0; i < 3; ++i)
        {
            constArray[i].setUConst(static_cast<unsigned int>(workGroupSize[i]));
        }
        ASSERT(variableType.getBasicType() == EbtUInt);
        ASSERT(variableType.getObjectSize() == 3);
        TType type(variableType);
        type.setQualifier(EvqConst);
        node = new TIntermConstantUnion(constArray, type);
    }
    else if ((mGeometryShaderInputPrimitiveType != EptUndefined) &&
             (variableType.getQualifier() == EvqPerVertexIn))
    {
        ASSERT(symbolTable.getGlInVariableWithArraySize() != nullptr);
        node = new TIntermSymbol(symbolTable.getGlInVariableWithArraySize());
    }
    else
    {
        // gl_LastFragDepthARM and gl_LastFragStencilARM cannot be accessed if early_fragment_tests
        // is specified.
        if ((variableType.getQualifier() == EvqLastFragDepth ||
             variableType.getQualifier() == EvqLastFragStencil) &&
            isEarlyFragmentTestsSpecified())
        {
            error(location,
                  "gl_LastFragDepthARM and gl_LastFragStencilARM cannot be accessed because "
                  "early_fragment_tests is specified",
                  name);
        }
        node = new TIntermSymbol(variable);
    }
    ASSERT(node != nullptr);
    node->setLine(location);
    return node;
}
void TParseContext::adjustRedeclaredBuiltInType(const TSourceLoc &line,
                                                const ImmutableString &identifier,
                                                TType *type)
{
    if (identifier == "gl_ClipDistance")
    {
        const TQualifier qualifier = type->getQualifier();
        if ((mShaderType == GL_VERTEX_SHADER &&
             !(qualifier == EvqVertexOut || qualifier == EvqVaryingOut)) ||
            (mShaderType == GL_FRAGMENT_SHADER && qualifier != EvqFragmentIn))
        {
            error(line, "invalid or missing storage qualifier", identifier);
            return;
        }
        type->setQualifier(EvqClipDistance);
    }
    else if (identifier == "gl_CullDistance")
    {
        const TQualifier qualifier = type->getQualifier();
        if ((mShaderType == GL_VERTEX_SHADER && qualifier != EvqVertexOut) ||
            (mShaderType == GL_FRAGMENT_SHADER && qualifier != EvqFragmentIn))
        {
            error(line, "invalid or missing storage qualifier", identifier);
            return;
        }
        type->setQualifier(EvqCullDistance);
    }
    else if (identifier == "gl_LastFragData")
    {
        type->setQualifier(EvqLastFragData);
    }
    else if (identifier == "gl_LastFragColorARM")
    {
        type->setQualifier(EvqLastFragColor);
    }
    else if (identifier == "gl_LastFragDepthARM")
    {
        type->setQualifier(EvqLastFragDepth);
    }
    else if (identifier == "gl_LastFragStencilARM")
    {
        type->setQualifier(EvqLastFragStencil);
    }
    else if (identifier == "gl_Position")
    {
        type->setQualifier(EvqPosition);
    }
    else if (identifier == "gl_PointSize")
    {
        type->setQualifier(EvqPointSize);
    }
}
// Initializers show up in several places in the grammar.  Have one set of
// code to handle them here.
//
// Returns true on success.
bool TParseContext::executeInitializer(const TSourceLoc &line,
                                       const ImmutableString &identifier,
                                       TType *type,
                                       TIntermTyped *initializer,
                                       TIntermBinary **initNode)
{
    ASSERT(initNode != nullptr);
    ASSERT(*initNode == nullptr);
    if (type->isUnsizedArray())
    {
        // In case initializer is not an array or type has more dimensions than initializer, this
        // will default to setting array sizes to 1. We have not checked yet whether the initializer
        // actually is an array or not. Having a non-array initializer for an unsized array will
        // result in an error later, so we don't generate an error message here.
        type->sizeUnsizedArrays(initializer->getType().getArraySizes());
    }
    const TQualifier qualifier = type->getQualifier();
    bool constError = false;
    if (qualifier == EvqConst)
    {
        if (EvqConst != initializer->getType().getQualifier())
        {
            TInfoSinkBase reasonStream;
            reasonStream << "assigning non-constant to '" << *type << "'";
            error(line, reasonStream.c_str(), "=");
            // We're still going to declare the variable to avoid extra error messages.
            type->setQualifier(EvqTemporary);
            constError = true;
        }
    }
    TVariable *variable = nullptr;
    if (!declareVariable(line, identifier, type, &variable))
    {
        return false;
    }
    if (constError)
    {
        return false;
    }
    bool nonConstGlobalInitializers =
        IsExtensionEnabled(mDirectiveHandler.extensionBehavior(),
                           TExtension::EXT_shader_non_constant_global_initializers);
    bool globalInitWarning = false;
    if (symbolTable.atGlobalLevel() &&
        !ValidateGlobalInitializer(initializer, mShaderVersion, sh::IsWebGLBasedSpec(mShaderSpec),
                                   nonConstGlobalInitializers, &globalInitWarning))
    {
        // Error message does not completely match behavior with ESSL 1.00, but
        // we want to steer developers towards only using constant expressions.
        error(line, "global variable initializers must be constant expressions", "=");
        return false;
    }
    if (globalInitWarning)
    {
        warning(
            line,
            "global variable initializers should be constant expressions "
            "(uniforms and globals are allowed in global initializers for legacy compatibility)",
            "=");
    }
    // identifier must be of type constant, a global, or a temporary
    if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst))
    {
        error(line, " cannot initialize this type of qualifier ",
              variable->getType().getQualifierString());
        return false;
    }
    TIntermSymbol *intermSymbol = new TIntermSymbol(variable);
    intermSymbol->setLine(line);
    if (!binaryOpCommonCheck(EOpInitialize, intermSymbol, initializer, line))
    {
        assignError(line, "=", variable->getType(), initializer->getType());
        return false;
    }
    if (qualifier == EvqConst)
    {
        // Save the constant folded value to the variable if possible.
        const TConstantUnion *constArray = initializer->getConstantValue();
        if (constArray)
        {
            variable->shareConstPointer(constArray);
            if (initializer->getType().canReplaceWithConstantUnion())
            {
                ASSERT(*initNode == nullptr);
                return true;
            }
        }
    }
    *initNode = new TIntermBinary(EOpInitialize, intermSymbol, initializer);
    markStaticReadIfSymbol(initializer);
    (*initNode)->setLine(line);
    return true;
}
TIntermNode *TParseContext::addConditionInitializer(const TPublicType &pType,
                                                    const ImmutableString &identifier,
                                                    TIntermTyped *initializer,
                                                    const TSourceLoc &loc)
{
    checkIsScalarBool(loc, pType);
    TIntermBinary *initNode = nullptr;
    TType *type             = new TType(pType);
    if (executeInitializer(loc, identifier, type, initializer, &initNode))
    {
        // The initializer is valid. The init condition needs to have a node - either the
        // initializer node, or a constant node in case the initialized variable is const and won't
        // be recorded in the AST.
        if (initNode == nullptr)
        {
            return initializer;
        }
        else
        {
            TIntermDeclaration *declaration = new TIntermDeclaration();
            declaration->appendDeclarator(initNode);
            return declaration;
        }
    }
    return nullptr;
}
TIntermNode *TParseContext::addLoop(TLoopType type,
                                    TIntermNode *init,
                                    TIntermNode *cond,
                                    TIntermTyped *expr,
                                    TIntermNode *body,
                                    const TSourceLoc &line)
{
    TIntermNode *node       = nullptr;
    TIntermTyped *typedCond = nullptr;
    if (cond)
    {
        markStaticReadIfSymbol(cond);
        typedCond = cond->getAsTyped();
    }
    if (expr)
    {
        markStaticReadIfSymbol(expr);
    }
    // In case the loop body was not parsed as a block and contains a statement that simply refers
    // to a variable, we need to mark it as statically used.
    if (body)
    {
        markStaticReadIfSymbol(body);
    }
    if (cond == nullptr || typedCond)
    {
        if (type == ELoopDoWhile && typedCond)
        {
            checkIsScalarBool(line, typedCond);
        }
        // In the case of other loops, it was checked before that the condition is a scalar boolean.
        ASSERT(mDiagnostics->numErrors() > 0 || typedCond == nullptr ||
               (typedCond->getBasicType() == EbtBool && !typedCond->isArray() &&
                !typedCond->isVector()));
        node = new TIntermLoop(type, init, typedCond, expr, EnsureLoopBodyBlock(body));
        node->setLine(line);
        return node;
    }
    ASSERT(type != ELoopDoWhile);
    TIntermDeclaration *declaration = cond->getAsDeclarationNode();
    ASSERT(declaration);
    TIntermBinary *declarator = declaration->getSequence()->front()->getAsBinaryNode();
    ASSERT(declarator->getLeft()->getAsSymbolNode());
    // The condition is a declaration. In the AST representation we don't support declarations as
    // loop conditions. Wrap the loop to a block that declares the condition variable and contains
    // the loop.
    TIntermBlock *block = new TIntermBlock();
    TIntermDeclaration *declareCondition = new TIntermDeclaration();
    declareCondition->appendDeclarator(declarator->getLeft()->deepCopy());
    block->appendStatement(declareCondition);
    TIntermBinary *conditionInit = new TIntermBinary(EOpAssign, declarator->getLeft()->deepCopy(),
                                                     declarator->getRight()->deepCopy());
    TIntermLoop *loop = new TIntermLoop(type, init, conditionInit, expr, EnsureLoopBodyBlock(body));
    block->appendStatement(loop);
    loop->setLine(line);
    block->setLine(line);
    return block;
}
TIntermNode *TParseContext::addIfElse(TIntermTyped *cond,
                                      TIntermNodePair code,
                                      const TSourceLoc &loc)
{
    bool isScalarBool = checkIsScalarBool(loc, cond);
    // In case the conditional statements were not parsed as blocks and contain a statement that
    // simply refers to a variable, we need to mark them as statically used.
    if (code.node1)
    {
        markStaticReadIfSymbol(code.node1);
    }
    if (code.node2)
    {
        markStaticReadIfSymbol(code.node2);
    }
    // For compile time constant conditions, prune the code now.
    if (isScalarBool && cond->getAsConstantUnion())
    {
        if (cond->getAsConstantUnion()->getBConst(0) == true)
        {
            return EnsureBlock(code.node1);
        }
        else
        {
            return EnsureBlock(code.node2);
        }
    }
    TIntermIfElse *node = new TIntermIfElse(cond, EnsureBlock(code.node1), EnsureBlock(code.node2));
    markStaticReadIfSymbol(cond);
    node->setLine(loc);
    return node;
}
void TParseContext::addFullySpecifiedType(TPublicType *typeSpecifier)
{
    checkPrecisionSpecified(typeSpecifier->getLine(), typeSpecifier->precision,
                            typeSpecifier->getBasicType());
    if (mShaderVersion < 300 && typeSpecifier->isArray())
    {
        error(typeSpecifier->getLine(), "not supported", "first-class array");
        typeSpecifier->clearArrayness();
    }
}
TPublicType TParseContext::addFullySpecifiedType(const TTypeQualifierBuilder &typeQualifierBuilder,
                                                 const TPublicType &typeSpecifier)
{
    TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
    TPublicType returnType     = typeSpecifier;
    returnType.qualifier       = typeQualifier.qualifier;
    returnType.invariant       = typeQualifier.invariant;
    returnType.precise         = typeQualifier.precise;
    returnType.layoutQualifier = typeQualifier.layoutQualifier;
    returnType.memoryQualifier = typeQualifier.memoryQualifier;
    returnType.precision       = typeSpecifier.precision;
    if (typeQualifier.precision != EbpUndefined)
    {
        returnType.precision = typeQualifier.precision;
    }
    checkPrecisionSpecified(typeSpecifier.getLine(), returnType.precision,
                            typeSpecifier.getBasicType());
    checkInvariantVariableQualifier(returnType.invariant, returnType.qualifier,
                                    typeSpecifier.getLine());
    checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier);
    checkEarlyFragmentTestsIsNotSpecified(typeSpecifier.getLine(),
                                          returnType.layoutQualifier.earlyFragmentTests);
    if (returnType.qualifier == EvqSampleIn || returnType.qualifier == EvqSampleOut ||
        returnType.qualifier == EvqNoPerspectiveSampleIn ||
        returnType.qualifier == EvqNoPerspectiveSampleOut)
    {
        mSampleQualifierSpecified = true;
    }
    if (mShaderVersion < 300)
    {
        if (typeSpecifier.isArray())
        {
            error(typeSpecifier.getLine(), "not supported", "first-class array");
            returnType.clearArrayness();
        }
        if (returnType.qualifier == EvqAttribute &&
            (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
        {
            error(typeSpecifier.getLine(), "cannot be bool or int",
                  getQualifierString(returnType.qualifier));
        }
        if ((returnType.qualifier == EvqVaryingIn || returnType.qualifier == EvqVaryingOut) &&
            (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
        {
            error(typeSpecifier.getLine(), "cannot be bool or int",
                  getQualifierString(returnType.qualifier));
        }
    }
    else
    {
        if (!returnType.layoutQualifier.isEmpty())
        {
            checkIsAtGlobalLevel(typeSpecifier.getLine(), "layout");
        }
        if (sh::IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn ||
            returnType.qualifier == EvqFragmentOut || returnType.qualifier == EvqFragmentInOut)
        {
            checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier,
                                           typeSpecifier.getLine());
        }
        if (returnType.qualifier == EvqComputeIn)
        {
            error(typeSpecifier.getLine(), "'in' can be only used to specify the local group size",
                  "in");
        }
    }
    return returnType;
}
void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier,
                                                   const TPublicType &type,
                                                   const TSourceLoc &qualifierLocation)
{
    // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere.
    if (type.getBasicType() == EbtBool)
    {
        error(qualifierLocation, "cannot be bool", getQualifierString(qualifier));
    }
    // Specific restrictions apply for vertex shader inputs and fragment shader outputs.
    switch (qualifier)
    {
        case EvqVertexIn:
            // ESSL 3.00 section 4.3.4
            if (type.isArray())
            {
                error(qualifierLocation, "cannot be array", getQualifierString(qualifier));
            }
            // Vertex inputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck
            return;
        case EvqFragmentOut:
        case EvqFragmentInOut:
            // ESSL 3.00 section 4.3.6
            if (type.typeSpecifierNonArray.isMatrix())
            {
                error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier));
            }
            // Fragment outputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck
            return;
        default:
            break;
    }
    // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of
    // restrictions.
    bool typeContainsIntegers =
        (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt ||
         type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt));
    bool extendedShaderTypes = mShaderVersion >= 320 ||
                               isExtensionEnabled(TExtension::EXT_geometry_shader) ||
                               isExtensionEnabled(TExtension::OES_geometry_shader) ||
                               isExtensionEnabled(TExtension::EXT_tessellation_shader) ||
                               isExtensionEnabled(TExtension::OES_tessellation_shader);
    if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut &&
        (!extendedShaderTypes || mShaderType == GL_FRAGMENT_SHADER))
    {
        error(qualifierLocation, "must use 'flat' interpolation here",
              getQualifierString(qualifier));
    }
    if (type.getBasicType() == EbtStruct)
    {
        // ESSL 3.00 sections 4.3.4 and 4.3.6.
        // These restrictions are only implied by the ESSL 3.00 spec, but
        // the ESSL 3.10 spec lists these restrictions explicitly.
        if (type.isArray())
        {
            error(qualifierLocation, "cannot be an array of structures",
                  getQualifierString(qualifier));
        }
        if (type.isStructureContainingArrays())
        {
            error(qualifierLocation, "cannot be a structure containing an array",
                  getQualifierString(qualifier));
        }
        if (type.isStructureContainingType(EbtStruct))
        {
            error(qualifierLocation, "cannot be a structure containing a structure",
                  getQualifierString(qualifier));
        }
        if (type.isStructureContainingType(EbtBool))
        {
            error(qualifierLocation, "cannot be a structure containing a bool",
                  getQualifierString(qualifier));
        }
    }
}
void TParseContext::checkLocalVariableConstStorageQualifier(const TQualifierWrapperBase &qualifier)
{
    if (qualifier.getType() == QtStorage)
    {
        const TStorageQualifierWrapper &storageQualifier =
            static_cast<const TStorageQualifierWrapper &>(qualifier);
        if (!declaringFunction() && storageQualifier.getQualifier() != EvqConst &&
            !symbolTable.atGlobalLevel())
        {
            error(storageQualifier.getLine(),
                  "Local variables can only use the const storage qualifier.",
                  storageQualifier.getQualifierString());
        }
    }
}
void TParseContext::checkMemoryQualifierIsNotSpecified(const TMemoryQualifier &memoryQualifier,
                                                       const TSourceLoc &location)
{
    const std::string reason(
        "Only allowed with shader storage blocks, variables declared within shader storage blocks "
        "and variables declared as image types.");
    if (memoryQualifier.readonly)
    {
        error(location, reason.c_str(), "readonly");
    }
    if (memoryQualifier.writeonly)
    {
        error(location, reason.c_str(), "writeonly");
    }
    if (memoryQualifier.coherent)
    {
        error(location, reason.c_str(), "coherent");
    }
    if (memoryQualifier.restrictQualifier)
    {
        error(location, reason.c_str(), "restrict");
    }
    if (memoryQualifier.volatileQualifier)
    {
        error(location, reason.c_str(), "volatile");
    }
}
// Make sure there is no offset overlapping, and store the newly assigned offset to "type" in
// intermediate tree.
void TParseContext::checkAtomicCounterOffsetDoesNotOverlap(bool forceAppend,
                                                           const TSourceLoc &loc,
                                                           TType *type)
{
    const size_t size = type->isArray() ? kAtomicCounterArrayStride * type->getArraySizeProduct()
                                        : kAtomicCounterSize;
    TLayoutQualifier layoutQualifier = type->getLayoutQualifier();
    auto &bindingState               = mAtomicCounterBindingStates[layoutQualifier.binding];
    int offset;
    if (layoutQualifier.offset == -1 || forceAppend)
    {
        offset = bindingState.appendSpan(size);
    }
    else
    {
        offset = bindingState.insertSpan(layoutQualifier.offset, size);
    }
    if (offset == -1)
    {
        error(loc, "Offset overlapping", "atomic counter");
        return;
    }
    layoutQualifier.offset = offset;
    type->setLayoutQualifier(layoutQualifier);
}
void TParseContext::checkAtomicCounterOffsetAlignment(const TSourceLoc &location, const TType &type)
{
    TLayoutQualifier layoutQualifier = type.getLayoutQualifier();
    // OpenGL ES 3.1 Table 6.5, Atomic counter offset must be a multiple of 4
    if (layoutQualifier.offset % 4 != 0)
    {
        error(location, "Offset must be multiple of 4", "atomic counter");
    }
}
void TParseContext::checkAtomicCounterOffsetLimit(const TSourceLoc &location, const TType &type)
{
    TLayoutQualifier layoutQualifier = type.getLayoutQualifier();
    if (layoutQualifier.offset >= mMaxAtomicCounterBufferSize)
    {
        error(location, "Offset must not exceed the maximum atomic counter buffer size",
              "atomic counter");
    }
}
void TParseContext::checkAtomicCounterOffsetIsValid(bool forceAppend,
                                                    const TSourceLoc &loc,
                                                    TType *type)
{
    checkAtomicCounterOffsetDoesNotOverlap(forceAppend, loc, type);
    checkAtomicCounterOffsetAlignment(loc, *type);
    checkAtomicCounterOffsetLimit(loc, *type);
}
void TParseContext::checkGeometryShaderInputAndSetArraySize(const TSourceLoc &location,
                                                            const ImmutableString &token,
                                                            TType *type)
{
    if (IsGeometryShaderInput(mShaderType, type->getQualifier()))
    {
        if (type->isArray() && type->getOutermostArraySize() == 0u)
        {
            // Set size for the unsized geometry shader inputs if they are declared after a valid
            // input primitive declaration.
            if (mGeometryShaderInputPrimitiveType != EptUndefined)
            {
                ASSERT(symbolTable.getGlInVariableWithArraySize() != nullptr);
                type->sizeOutermostUnsizedArray(
                    symbolTable.getGlInVariableWithArraySize()->getType().getOutermostArraySize());
            }
            else
            {
                // [GLSL ES 3.2 SPEC Chapter 4.4.1.2]
                // An input can be declared without an array size if there is a previous layout
                // which specifies the size.
                warning(location,
                        "Missing a valid input primitive declaration before declaring an unsized "
                        "array input",
                        "Deferred");
                mDeferredArrayTypesToSize.push_back(type);
            }
        }
        else if (type->isArray())
        {
            setGeometryShaderInputArraySize(type->getOutermostArraySize(), location);
        }
        else
        {
            error(location, "Geometry shader input variable must be declared as an array", token);
        }
    }
}
void TParseContext::checkTessellationShaderUnsizedArraysAndSetSize(const TSourceLoc &location,
                                                                   const ImmutableString &token,
                                                                   TType *type)
{
    TQualifier qualifier = type->getQualifier();
    if (!IsTessellationControlShaderOutput(mShaderType, qualifier) &&
        !IsTessellationControlShaderInput(mShaderType, qualifier) &&
        !IsTessellationEvaluationShaderInput(mShaderType, qualifier))
    {
        return;
    }
    // Such variables must be declared as arrays or inside output blocks declared as arrays.
    if (!type->isArray())
    {
        error(location, "Tessellation interface variables must be declared as an array", token);
        return;
    }
    // If a size is specified, it must match the maximum patch size.
    unsigned int outermostSize = type->getOutermostArraySize();
    if (outermostSize == 0u)
    {
        switch (qualifier)
        {
            case EvqTessControlIn:
            case EvqTessEvaluationIn:
            case EvqSmoothIn:
            case EvqFlatIn:
            case EvqNoPerspectiveIn:
            case EvqCentroidIn:
            case EvqSampleIn:
            case EvqNoPerspectiveCentroidIn:
            case EvqNoPerspectiveSampleIn:
                // Declaring an array size is optional. If no size is specified, it will be taken
                // from the implementation-dependent maximum patch size (gl_MaxPatchVertices).
                ASSERT(mMaxPatchVertices > 0);
                type->sizeOutermostUnsizedArray(mMaxPatchVertices);
                break;
            case EvqTessControlOut:
            case EvqTessEvaluationOut:
            case EvqSmoothOut:
            case EvqFlatOut:
            case EvqNoPerspectiveOut:
            case EvqCentroidOut:
            case EvqSampleOut:
            case EvqNoPerspectiveCentroidOut:
            case EvqNoPerspectiveSampleOut:
                // Declaring an array size is optional. If no size is specified, it will be taken
                // from output patch size declared in the shader.  If the patch size is not yet
                // declared, this is deferred until such time as it does.
                if (mTessControlShaderOutputVertices == 0)
                {
                    mDeferredArrayTypesToSize.push_back(type);
                }
                else
                {
                    type->sizeOutermostUnsizedArray(mTessControlShaderOutputVertices);
                }
                break;
            default:
                UNREACHABLE();
                break;
        }
        return;
    }
    if (IsTessellationControlShaderInput(mShaderType, qualifier) ||
        IsTessellationEvaluationShaderInput(mShaderType, qualifier))
    {
        if (outermostSize != static_cast<unsigned int>(mMaxPatchVertices))
        {
            error(location,
                  "If a size is specified for a tessellation control or evaluation user-defined "
                  "input variable, it must match the maximum patch size (gl_MaxPatchVertices).",
                  token);
        }
    }
    else if (IsTessellationControlShaderOutput(mShaderType, qualifier))
    {
        if (outermostSize != static_cast<unsigned int>(mTessControlShaderOutputVertices) &&
            mTessControlShaderOutputVertices != 0)
        {
            error(location,
                  "If a size is specified for a tessellation control user-defined per-vertex "
                  "output variable, it must match the the number of vertices in the output "
                  "patch.",
                  token);
        }
    }
}
TIntermDeclaration *TParseContext::parseSingleDeclaration(
    TPublicType &publicType,
    const TSourceLoc &identifierOrTypeLocation,
    const ImmutableString &identifier)
{
    TType *type = new TType(publicType);
    if (mCompileOptions.flattenPragmaSTDGLInvariantAll &&
        mDirectiveHandler.pragma().stdgl.invariantAll)
    {
        TQualifier qualifier = type->getQualifier();
        // The directive handler has already taken care of rejecting invalid uses of this pragma
        // (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all
        // affected variable declarations:
        //
        // 1. Built-in special variables which are inputs to the fragment shader. (These are handled
        // elsewhere, in TranslatorGLSL.)
        //
        // 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It
        // is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but
        // the way this is currently implemented we have to enable this compiler option before
        // parsing the shader and determining the shading language version it uses. If this were
        // implemented as a post-pass, the workaround could be more targeted.
        if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut)
        {
            type->setInvariant(true);
        }
    }
    if (identifier == "gl_FragDepth")
    {
        if (type->getQualifier() == EvqFragmentOut)
        {
            type->setQualifier(EvqFragDepth);
        }
        else
        {
            error(identifierOrTypeLocation,
                  "gl_FragDepth can only be redeclared as fragment output", identifier);
        }
    }
    checkGeometryShaderInputAndSetArraySize(identifierOrTypeLocation, identifier, type);
    checkTessellationShaderUnsizedArraysAndSetSize(identifierOrTypeLocation, identifier, type);
    declarationQualifierErrorCheck(type->getQualifier(), publicType.layoutQualifier,
                                   identifierOrTypeLocation);
    bool emptyDeclaration                  = (identifier == "");
    mDeferredNonEmptyDeclarationErrorCheck = emptyDeclaration;
    TIntermSymbol *symbol = nullptr;
    if (emptyDeclaration)
    {
        emptyDeclarationErrorCheck(*type, identifierOrTypeLocation);
        // In most cases we don't need to create a symbol node for an empty declaration.
        // But if the empty declaration is declaring a struct type, the symbol node will store that.
        if (type->getBasicType() == EbtStruct)
        {
            TVariable *emptyVariable =
                new TVariable(&symbolTable, kEmptyImmutableString, type, SymbolType::Empty);
            symbol = new TIntermSymbol(emptyVariable);
        }
        else if (IsAtomicCounter(publicType.getBasicType()))
        {
            setAtomicCounterBindingDefaultOffset(publicType, identifierOrTypeLocation);
        }
    }
    else
    {
        nonEmptyDeclarationErrorCheck(publicType, identifierOrTypeLocation);
        checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, type);
        checkDeclarationIsValidArraySize(identifierOrTypeLocation, identifier, type);
        if (IsAtomicCounter(type->getBasicType()))
        {
            checkAtomicCounterOffsetIsValid(false, identifierOrTypeLocation, type);
        }
        TVariable *variable = nullptr;
        if (declareVariable(identifierOrTypeLocation, identifier, type, &variable))
        {
            symbol = new TIntermSymbol(variable);
        }
    }
    adjustRedeclaredBuiltInType(identifierOrTypeLocation, identifier, type);
    TIntermDeclaration *declaration = new TIntermDeclaration();
    declaration->setLine(identifierOrTypeLocation);
    if (symbol)
    {
        symbol->setLine(identifierOrTypeLocation);
        declaration->appendDeclarator(symbol);
    }
    return declaration;
}
TIntermDeclaration *TParseContext::parseSingleArrayDeclaration(
    TPublicType &elementType,
    const TSourceLoc &identifierLocation,
    const ImmutableString &identifier,
    const TSourceLoc &indexLocation,
    const TVector<unsigned int> &arraySizes)
{
    mDeferredNonEmptyDeclarationErrorCheck = false;
    declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier,
                                   identifierLocation);
    nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
    checkIsValidTypeAndQualifierForArray(indexLocation, elementType);
    TType *arrayType = new TType(elementType);
    arrayType->makeArrays(arraySizes);
    checkArrayOfArraysInOut(indexLocation, elementType, *arrayType);
    checkGeometryShaderInputAndSetArraySize(indexLocation, identifier, arrayType);
    checkTessellationShaderUnsizedArraysAndSetSize(indexLocation, identifier, arrayType);
    checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, arrayType);
    checkDeclarationIsValidArraySize(identifierLocation, identifier, arrayType);
    if (IsAtomicCounter(arrayType->getBasicType()))
    {
        checkAtomicCounterOffsetIsValid(false, identifierLocation, arrayType);
    }
    adjustRedeclaredBuiltInType(identifierLocation, identifier, arrayType);
    TIntermDeclaration *declaration = new TIntermDeclaration();
    declaration->setLine(identifierLocation);
    TVariable *variable = nullptr;
    if (declareVariable(identifierLocation, identifier, arrayType, &variable))
    {
        TIntermSymbol *symbol = new TIntermSymbol(variable);
        symbol->setLine(identifierLocation);
        declaration->appendDeclarator(symbol);
    }
    return declaration;
}
TIntermDeclaration *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType,
                                                              const TSourceLoc &identifierLocation,
                                                              const ImmutableString &identifier,
                                                              const TSourceLoc &initLocation,
                                                              TIntermTyped *initializer)
{
    mDeferredNonEmptyDeclarationErrorCheck = false;
    declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier,
                                   identifierLocation);
    nonEmptyDeclarationErrorCheck(publicType, identifierLocation);
    TIntermDeclaration *declaration = new TIntermDeclaration();
    declaration->setLine(identifierLocation);
    TIntermBinary *initNode = nullptr;
    TType *type             = new TType(publicType);
    if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode))
    {
        if (initNode)
        {
            declaration->appendDeclarator(initNode);
        }
        else if (publicType.isStructSpecifier())
        {
            // The initialization got constant folded.  If it's a struct, declare the struct anyway.
            TVariable *emptyVariable =
                new TVariable(&symbolTable, kEmptyImmutableString, type, SymbolType::Empty);
            TIntermSymbol *symbol = new TIntermSymbol(emptyVariable);
            symbol->setLine(publicType.getLine());
            declaration->appendDeclarator(symbol);
        }
    }
    return declaration;
}
TIntermDeclaration *TParseContext::parseSingleArrayInitDeclaration(
    TPublicType &elementType,
    const TSourceLoc &identifierLocation,
    const ImmutableString &identifier,
    const TSourceLoc &indexLocation,
    const TVector<unsigned int> &arraySizes,
    const TSourceLoc &initLocation,
    TIntermTyped *initializer)
{
    mDeferredNonEmptyDeclarationErrorCheck = false;
    declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier,
                                   identifierLocation);
    nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
    checkIsValidTypeAndQualifierForArray(indexLocation, elementType);
    TType *arrayType = new TType(elementType);
    arrayType->makeArrays(arraySizes);
    TIntermDeclaration *declaration = new TIntermDeclaration();
    declaration->setLine(identifierLocation);
    // initNode will correspond to the whole of "type b[n] = initializer".
    TIntermBinary *initNode = nullptr;
    if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
    {
        if (initNode)
        {
            declaration->appendDeclarator(initNode);
        }
    }
    return declaration;
}
TIntermGlobalQualifierDeclaration *TParseContext::parseGlobalQualifierDeclaration(
    const TTypeQualifierBuilder &typeQualifierBuilder,
    const TSourceLoc &identifierLoc,
    const ImmutableString &identifier,
    const TSymbol *symbol)
{
    TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
    if (!typeQualifier.invariant && !typeQualifier.precise)
    {
        error(identifierLoc, "Expected invariant or precise", identifier);
        return nullptr;
    }
    if (typeQualifier.invariant && !checkIsAtGlobalLevel(identifierLoc, "invariant varying"))
    {
        return nullptr;
    }
    if (!symbol)
    {
        error(identifierLoc, "undeclared identifier declared as invariant or precise", identifier);
        return nullptr;
    }
    if (!IsQualifierUnspecified(typeQualifier.qualifier))
    {
        error(identifierLoc, "invariant or precise declaration specifies qualifier",
              getQualifierString(typeQualifier.qualifier));
    }
    if (typeQualifier.precision != EbpUndefined)
    {
        error(identifierLoc, "invariant or precise declaration specifies precision",
              getPrecisionString(typeQualifier.precision));
    }
    if (!typeQualifier.layoutQualifier.isEmpty())
    {
        error(identifierLoc, "invariant or precise declaration specifies layout", "'layout'");
    }
    const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol);
    if (!variable)
    {
        return nullptr;
    }
    const TType &type = variable->getType();
    checkInvariantVariableQualifier(typeQualifier.invariant, type.getQualifier(),
                                    typeQualifier.line);
    checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
    if (typeQualifier.invariant)
    {
        symbolTable.addInvariantVarying(*variable);
    }
    TIntermSymbol *intermSymbol = new TIntermSymbol(variable);
    intermSymbol->setLine(identifierLoc);
    return new TIntermGlobalQualifierDeclaration(intermSymbol, typeQualifier.precise,
                                                 identifierLoc);
}
void TParseContext::parseDeclarator(TPublicType &publicType,
                                    const TSourceLoc &identifierLocation,
                                    const ImmutableString &identifier,
                                    TIntermDeclaration *declarationOut)
{
    // If the declaration starting this declarator list was empty (example: int,), some checks were
    // not performed.
    if (mDeferredNonEmptyDeclarationErrorCheck)
    {
        nonEmptyDeclarationErrorCheck(publicType, identifierLocation);
        mDeferredNonEmptyDeclarationErrorCheck = false;
    }
    checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
    TType *type = new TType(publicType);
    checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier, type);
    checkTessellationShaderUnsizedArraysAndSetSize(identifierLocation, identifier, type);
    checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, type);
    checkDeclarationIsValidArraySize(identifierLocation, identifier, type);
    if (IsAtomicCounter(type->getBasicType()))
    {
        checkAtomicCounterOffsetIsValid(true, identifierLocation, type);
    }
    adjustRedeclaredBuiltInType(identifierLocation, identifier, type);
    TVariable *variable = nullptr;
    if (declareVariable(identifierLocation, identifier, type, &variable))
    {
        TIntermSymbol *symbol = new TIntermSymbol(variable);
        symbol->setLine(identifierLocation);
        declarationOut->appendDeclarator(symbol);
    }
}
void TParseContext::parseArrayDeclarator(TPublicType &elementType,
                                         const TSourceLoc &identifierLocation,
                                         const ImmutableString &identifier,
                                         const TSourceLoc &arrayLocation,
                                         const TVector<unsigned int> &arraySizes,
                                         TIntermDeclaration *declarationOut)
{
    // If the declaration starting this declarator list was empty (example: int,), some checks were
    // not performed.
    if (mDeferredNonEmptyDeclarationErrorCheck)
    {
        nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
        mDeferredNonEmptyDeclarationErrorCheck = false;
    }
    checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType);
    if (checkIsValidTypeAndQualifierForArray(arrayLocation, elementType))
    {
        TType *arrayType = new TType(elementType);
        arrayType->makeArrays(arraySizes);
        checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier, arrayType);
        checkTessellationShaderUnsizedArraysAndSetSize(identifierLocation, identifier, arrayType);
        checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, arrayType);
        checkDeclarationIsValidArraySize(identifierLocation, identifier, arrayType);
        if (IsAtomicCounter(arrayType->getBasicType()))
        {
            checkAtomicCounterOffsetDoesNotOverlap(true, identifierLocation, arrayType);
            checkAtomicCounterOffsetAlignment(identifierLocation, *arrayType);
        }
        adjustRedeclaredBuiltInType(identifierLocation, identifier, arrayType);
        TVariable *variable = nullptr;
        if (declareVariable(identifierLocation, identifier, arrayType, &variable))
        {
            TIntermSymbol *symbol = new TIntermSymbol(variable);
            symbol->setLine(identifierLocation);
            declarationOut->appendDeclarator(symbol);
        }
    }
}
void TParseContext::parseInitDeclarator(const TPublicType &publicType,
                                        const TSourceLoc &identifierLocation,
                                        const ImmutableString &identifier,
                                        const TSourceLoc &initLocation,
                                        TIntermTyped *initializer,
                                        TIntermDeclaration *declarationOut)
{
    // If the declaration starting this declarator list was empty (example: int,), some checks were
    // not performed.
    if (mDeferredNonEmptyDeclarationErrorCheck)
    {
        nonEmptyDeclarationErrorCheck(publicType, identifierLocation);
        mDeferredNonEmptyDeclarationErrorCheck = false;
    }
    checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
    TIntermBinary *initNode = nullptr;
    TType *type             = new TType(publicType);
    if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode))
    {
        //
        // build the intermediate representation
        //
        if (initNode)
        {
            declarationOut->appendDeclarator(initNode);
        }
    }
}
void TParseContext::parseArrayInitDeclarator(const TPublicType &elementType,
                                             const TSourceLoc &identifierLocation,
                                             const ImmutableString &identifier,
                                             const TSourceLoc &indexLocation,
                                             const TVector<unsigned int> &arraySizes,
                                             const TSourceLoc &initLocation,
                                             TIntermTyped *initializer,
                                             TIntermDeclaration *declarationOut)
{
    // If the declaration starting this declarator list was empty (example: int,), some checks were
    // not performed.
    if (mDeferredNonEmptyDeclarationErrorCheck)
    {
        nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
        mDeferredNonEmptyDeclarationErrorCheck = false;
    }
    checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType);
    checkIsValidTypeAndQualifierForArray(indexLocation, elementType);
    TType *arrayType = new TType(elementType);
    arrayType->makeArrays(arraySizes);
    // initNode will correspond to the whole of "b[n] = initializer".
    TIntermBinary *initNode = nullptr;
    if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
    {
        if (initNode)
        {
            declarationOut->appendDeclarator(initNode);
        }
    }
}
TIntermNode *TParseContext::addEmptyStatement(const TSourceLoc &location)
{
    // It's simpler to parse an empty statement as a constant expression rather than having a
    // different type of node just for empty statements, that will be pruned from the AST anyway.
    TIntermNode *node = CreateZeroNode(TType(EbtInt, EbpMedium));
    node->setLine(location);
    return node;
}
void TParseContext::setAtomicCounterBindingDefaultOffset(const TPublicType &publicType,
                                                         const TSourceLoc &location)
{
    const TLayoutQualifier &layoutQualifier = publicType.layoutQualifier;
    checkAtomicCounterBindingIsValid(location, layoutQualifier.binding);
    if (layoutQualifier.binding == -1 || layoutQualifier.offset == -1)
    {
        error(location, "Requires both binding and offset", "layout");
        return;
    }
    mAtomicCounterBindingStates[layoutQualifier.binding].setDefaultOffset(layoutQualifier.offset);
}
void TParseContext::parseDefaultPrecisionQualifier(const TPrecision precision,
                                                   const TPublicType &type,
                                                   const TSourceLoc &loc)
{
    if ((precision == EbpHigh) && (getShaderType() == GL_FRAGMENT_SHADER) &&
        !getFragmentPrecisionHigh())
    {
        error(loc, "precision is not supported in fragment shader", "highp");
    }
    if (!CanSetDefaultPrecisionOnType(type))
    {
        error(loc, "illegal type argument for default precision qualifier",
              getBasicString(type.getBasicType()));
        return;
    }
    symbolTable.setDefaultPrecision(type.getBasicType(), precision);
}
bool TParseContext::checkPrimitiveTypeMatchesTypeQualifier(const TTypeQualifier &typeQualifier)
{
    switch (typeQualifier.layoutQualifier.primitiveType)
    {
        case EptLines:
        case EptLinesAdjacency:
        case EptTriangles:
        case EptTrianglesAdjacency:
            return typeQualifier.qualifier == EvqGeometryIn;
        case EptLineStrip:
        case EptTriangleStrip:
            return typeQualifier.qualifier == EvqGeometryOut;
        case EptPoints:
            return true;
        default:
            UNREACHABLE();
            return false;
    }
}
void TParseContext::setGeometryShaderInputArraySize(unsigned int inputArraySize,
                                                    const TSourceLoc &line)
{
    if (!symbolTable.setGlInArraySize(inputArraySize))
    {
        error(line,
              "Array size or input primitive declaration doesn't match the size of earlier sized "
              "array inputs.",
              "layout");
    }
    mGeometryInputArraySize = inputArraySize;
}
bool TParseContext::parseGeometryShaderInputLayoutQualifier(const TTypeQualifier &typeQualifier)
{
    ASSERT(typeQualifier.qualifier == EvqGeometryIn);
    const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier;
    if (layoutQualifier.maxVertices != -1)
    {
        error(typeQualifier.line,
              "max_vertices can only be declared in 'out' layout in a geometry shader", "layout");
        return false;
    }
    // Set mGeometryInputPrimitiveType if exists
    if (layoutQualifier.primitiveType != EptUndefined)
    {
        if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier))
        {
            error(typeQualifier.line, "invalid primitive type for 'in' layout", "layout");
            return false;
        }
        if (mGeometryShaderInputPrimitiveType == EptUndefined)
        {
            mGeometryShaderInputPrimitiveType = layoutQualifier.primitiveType;
            setGeometryShaderInputArraySize(
                GetGeometryShaderInputArraySize(mGeometryShaderInputPrimitiveType),
                typeQualifier.line);
        }
        else if (mGeometryShaderInputPrimitiveType != layoutQualifier.primitiveType)
        {
            error(typeQualifier.line, "primitive doesn't match earlier input primitive declaration",
                  "layout");
            return false;
        }
        // Size any implicitly sized arrays that have already been declared.
        for (TType *type : mDeferredArrayTypesToSize)
        {
            type->sizeOutermostUnsizedArray(
                symbolTable.getGlInVariableWithArraySize()->getType().getOutermostArraySize());
        }
        mDeferredArrayTypesToSize.clear();
    }
    // Set mGeometryInvocations if exists
    if (layoutQualifier.invocations > 0)
    {
        if (mGeometryShaderInvocations == 0)
        {
            mGeometryShaderInvocations = layoutQualifier.invocations;
        }
        else if (mGeometryShaderInvocations != layoutQualifier.invocations)
        {
            error(typeQualifier.line, "invocations contradicts to the earlier declaration",
                  "layout");
            return false;
        }
    }
    return true;
}
bool TParseContext::parseGeometryShaderOutputLayoutQualifier(const TTypeQualifier &typeQualifier)
{
    ASSERT(typeQualifier.qualifier == EvqGeometryOut);
    const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier;
    if (layoutQualifier.invocations > 0)
    {
        error(typeQualifier.line,
              "invocations can only be declared in 'in' layout in a geometry shader", "layout");
        return false;
    }
    // Set mGeometryOutputPrimitiveType if exists
    if (layoutQualifier.primitiveType != EptUndefined)
    {
        if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier))
        {
            error(typeQualifier.line, "invalid primitive type for 'out' layout", "layout");
            return false;
        }
        if (mGeometryShaderOutputPrimitiveType == EptUndefined)
        {
            mGeometryShaderOutputPrimitiveType = layoutQualifier.primitiveType;
        }
        else if (mGeometryShaderOutputPrimitiveType != layoutQualifier.primitiveType)
        {
            error(typeQualifier.line,
                  "primitive doesn't match earlier output primitive declaration", "layout");
            return false;
        }
    }
    // Set mGeometryMaxVertices if exists
    if (layoutQualifier.maxVertices > -1)
    {
        if (mGeometryShaderMaxVertices == -1)
        {
            mGeometryShaderMaxVertices = layoutQualifier.maxVertices;
        }
        else if (mGeometryShaderMaxVertices != layoutQualifier.maxVertices)
        {
            error(typeQualifier.line, "max_vertices contradicts to the earlier declaration",
                  "layout");
            return false;
        }
    }
    return true;
}
bool TParseContext::parseTessControlShaderOutputLayoutQualifier(const TTypeQualifier &typeQualifier)
{
    ASSERT(typeQualifier.qualifier == EvqTessControlOut);
    const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier;
    if (layoutQualifier.vertices == 0)
    {
        error(typeQualifier.line, "No vertices specified", "layout");
        return false;
    }
    // Set mTessControlShaderOutputVertices if exists
    if (mTessControlShaderOutputVertices == 0)
    {
        mTessControlShaderOutputVertices = layoutQualifier.vertices;
        // Size any implicitly sized arrays that have already been declared.
        for (TType *type : mDeferredArrayTypesToSize)
        {
            type->sizeOutermostUnsizedArray(mTessControlShaderOutputVertices);
        }
        mDeferredArrayTypesToSize.clear();
    }
    else
    {
        error(typeQualifier.line, "Duplicated vertices specified", "layout");
    }
    return true;
}
bool TParseContext::parseTessEvaluationShaderInputLayoutQualifier(
    const TTypeQualifier &typeQualifier)
{
    ASSERT(typeQualifier.qualifier == EvqTessEvaluationIn);
    const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier;
    // Set mTessEvaluationShaderInputPrimitiveType if exists
    if (layoutQualifier.tesPrimitiveType != EtetUndefined)
    {
        if (mTessEvaluationShaderInputPrimitiveType == EtetUndefined)
        {
            mTessEvaluationShaderInputPrimitiveType = layoutQualifier.tesPrimitiveType;
        }
        else
        {
            error(typeQualifier.line, "Duplicated primitive type declaration", "layout");
        }
    }
    // Set mTessEvaluationShaderVertexSpacingType if exists
    if (layoutQualifier.tesVertexSpacingType != EtetUndefined)
    {
        if (mTessEvaluationShaderInputVertexSpacingType == EtetUndefined)
        {
            mTessEvaluationShaderInputVertexSpacingType = layoutQualifier.tesVertexSpacingType;
        }
        else
        {
            error(typeQualifier.line, "Duplicated vertex spacing declaration", "layout");
        }
    }
    // Set mTessEvaluationShaderInputOrderingType if exists
    if (layoutQualifier.tesOrderingType != EtetUndefined)
    {
        if (mTessEvaluationShaderInputOrderingType == EtetUndefined)
        {
            mTessEvaluationShaderInputOrderingType = layoutQualifier.tesOrderingType;
        }
        else
        {
            error(typeQualifier.line, "Duplicated ordering declaration", "layout");
        }
    }
    // Set mTessEvaluationShaderInputPointType if exists
    if (layoutQualifier.tesPointType != EtetUndefined)
    {
        if (mTessEvaluationShaderInputPointType == EtetUndefined)
        {
            mTessEvaluationShaderInputPointType = layoutQualifier.tesPointType;
        }
        else
        {
            error(typeQualifier.line, "Duplicated point type declaration", "layout");
        }
    }
    return true;
}
void TParseContext::parseGlobalLayoutQualifier(const TTypeQualifierBuilder &typeQualifierBuilder)
{
    TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
    const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
    checkInvariantVariableQualifier(typeQualifier.invariant, typeQualifier.qualifier,
                                    typeQualifier.line);
    // It should never be the case, but some strange parser errors can send us here.
    if (layoutQualifier.isEmpty())
    {
        error(typeQualifier.line, "Error during layout qualifier parsing.", "?");
        return;
    }
    if (!layoutQualifier.isCombinationValid())
    {
        error(typeQualifier.line, "invalid layout qualifier combination", "layout");
        return;
    }
    checkIndexIsNotSpecified(typeQualifier.line, layoutQualifier.index);
    checkBindingIsNotSpecified(typeQualifier.line, layoutQualifier.binding);
    checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
    checkInternalFormatIsNotSpecified(typeQualifier.line, layoutQualifier.imageInternalFormat);
    checkDepthIsNotSpecified(typeQualifier.line, layoutQualifier.depth);
    checkYuvIsNotSpecified(typeQualifier.line, layoutQualifier.yuv);
    checkOffsetIsNotSpecified(typeQualifier.line, layoutQualifier.offset);
    checkStd430IsForShaderStorageBlock(typeQualifier.line, layoutQualifier.blockStorage,
                                       typeQualifier.qualifier);
    checkAdvancedBlendEquationsNotSpecified(
        typeQualifier.line, layoutQualifier.advancedBlendEquations, typeQualifier.qualifier);
    if (typeQualifier.qualifier != EvqFragmentIn)
    {
        checkEarlyFragmentTestsIsNotSpecified(typeQualifier.line,
                                              layoutQualifier.earlyFragmentTests);
    }
    if (typeQualifier.qualifier == EvqComputeIn)
    {
        if (mComputeShaderLocalSizeDeclared &&
            !layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize))
        {
            error(typeQualifier.line, "Work group size does not match the previous declaration",
                  "layout");
            return;
        }
        if (mShaderVersion < 310)
        {
            error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout");
            return;
        }
        if (!layoutQualifier.localSize.isAnyValueSet())
        {
            error(typeQualifier.line, "No local work group size specified", "layout");
            return;
        }
        const TVariable *maxComputeWorkGroupSize = static_cast<const TVariable *>(
            symbolTable.findBuiltIn(ImmutableString("gl_MaxComputeWorkGroupSize"), mShaderVersion));
        const TConstantUnion *maxComputeWorkGroupSizeData =
            maxComputeWorkGroupSize->getConstPointer();
        for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i)
        {
            if (layoutQualifier.localSize[i] != -1)
            {
                mComputeShaderLocalSize[i]             = layoutQualifier.localSize[i];
                const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst();
                if (mComputeShaderLocalSize[i] < 1 ||
                    mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue)
                {
                    std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
                    reasonStream << "invalid value: Value must be at least 1 and no greater than "
                                 << maxComputeWorkGroupSizeValue;
                    const std::string &reason = reasonStream.str();
                    error(typeQualifier.line, reason.c_str(), getWorkGroupSizeString(i));
                    return;
                }
            }
        }
        mComputeShaderLocalSizeDeclared = true;
    }
    else if (typeQualifier.qualifier == EvqGeometryIn)
    {
        if (mShaderVersion < 310)
        {
            error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout");
            return;
        }
        if (!parseGeometryShaderInputLayoutQualifier(typeQualifier))
        {
            return;
        }
    }
    else if (typeQualifier.qualifier == EvqGeometryOut)
    {
        if (mShaderVersion < 310)
        {
            error(typeQualifier.line, "out type qualifier supported in GLSL ES 3.10 only",
                  "layout");
            return;
        }
        if (!parseGeometryShaderOutputLayoutQualifier(typeQualifier))
        {
            return;
        }
    }
    else if (anyMultiviewExtensionAvailable() && typeQualifier.qualifier == EvqVertexIn)
    {
        // This error is only specified in WebGL, but tightens unspecified behavior in the native
        // specification.
        if (mNumViews != -1 && layoutQualifier.numViews != mNumViews)
        {
            error(typeQualifier.line, "Number of views does not match the previous declaration",
                  "layout");
            return;
        }
        if (layoutQualifier.numViews == -1)
        {
            error(typeQualifier.line, "No num_views specified", "layout");
            return;
        }
        if (layoutQualifier.numViews > mMaxNumViews)
        {
            error(typeQualifier.line, "num_views greater than the value of GL_MAX_VIEWS_OVR",
                  "layout");
            return;
        }
        mNumViews = layoutQualifier.numViews;
    }
    else if (typeQualifier.qualifier == EvqFragmentIn)
    {
        if (mShaderVersion < 310)
        {
            error(typeQualifier.line,
                  "in type qualifier without variable declaration supported in GLSL ES 3.10 and "
                  "after",
                  "layout");
            return;
        }
        if (!layoutQualifier.earlyFragmentTests)
        {
            error(typeQualifier.line,
                  "only early_fragment_tests is allowed as layout qualifier when not declaring a "
                  "variable",
                  "layout");
            return;
        }
        mEarlyFragmentTestsSpecified = true;
    }
    else if (typeQualifier.qualifier == EvqFragmentOut)
    {
        if (mShaderVersion < 320 && !isExtensionEnabled(TExtension::KHR_blend_equation_advanced))
        {
            error(typeQualifier.line,
                  "out type qualifier without variable declaration is supported in GLSL ES 3.20,"
                  " or if GL_KHR_blend_equation_advanced is enabled",
                  "layout");
            return;
        }
        if (!layoutQualifier.advancedBlendEquations.any())
        {
            error(typeQualifier.line,
                  "only blend equations are allowed as layout qualifier when not declaring a "
                  "variable",
                  "layout");
            return;
        }
        errorIfPLSDeclared(typeQualifier.line, PLSIllegalOperations::EnableAdvancedBlendEquation);
        mAdvancedBlendEquations |= layoutQualifier.advancedBlendEquations;
    }
    else if (typeQualifier.qualifier == EvqTessControlOut)
    {
        if (mShaderVersion < 310)
        {
            error(typeQualifier.line, "out type qualifier supported in GLSL ES 3.10 and after",
                  "layout");
            return;
        }
        if (!parseTessControlShaderOutputLayoutQualifier(typeQualifier))
        {
            return;
        }
    }
    else if (typeQualifier.qualifier == EvqTessEvaluationIn)
    {
        if (mShaderVersion < 310)
        {
            error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 and after",
                  "layout");
            return;
        }
        if (!parseTessEvaluationShaderInputLayoutQualifier(typeQualifier))
        {
            return;
        }
    }
    else
    {
        if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, layoutQualifier))
        {
            return;
        }
        if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer)
        {
            error(typeQualifier.line, "invalid qualifier: global layout can only be set for blocks",
                  getQualifierString(typeQualifier.qualifier));
            return;
        }
        if (mShaderVersion < 300)
        {
            error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and after",
                  "layout");
            return;
        }
        checkLocationIsNotSpecified(typeQualifier.line, layoutQualifier);
        if (layoutQualifier.matrixPacking != EmpUnspecified)
        {
            if (typeQualifier.qualifier == EvqUniform)
            {
                mDefaultUniformMatrixPacking = layoutQualifier.matrixPacking;
            }
            else if (typeQualifier.qualifier == EvqBuffer)
            {
                mDefaultBufferMatrixPacking = layoutQualifier.matrixPacking;
            }
        }
        if (layoutQualifier.blockStorage != EbsUnspecified)
        {
            if (typeQualifier.qualifier == EvqUniform)
            {
                mDefaultUniformBlockStorage = layoutQualifier.blockStorage;
            }
            else if (typeQualifier.qualifier == EvqBuffer)
            {
                mDefaultBufferBlockStorage = layoutQualifier.blockStorage;
            }
        }
    }
}
TIntermFunctionPrototype *TParseContext::createPrototypeNodeFromFunction(
    const TFunction &function,
    const TSourceLoc &location,
    bool insertParametersToSymbolTable)
{
    checkIsNotReserved(location, function.name());
    TIntermFunctionPrototype *prototype = new TIntermFunctionPrototype(&function);
    prototype->setLine(location);
    for (size_t i = 0; i < function.getParamCount(); i++)
    {
        const TVariable *param = function.getParam(i);
        // If the parameter has no name, it's not an error, just don't add it to symbol table (could
        // be used for unused args).
        if (param->symbolType() != SymbolType::Empty)
        {
            if (insertParametersToSymbolTable)
            {
                if (!symbolTable.declare(const_cast<TVariable *>(param)))
                {
                    error(location, "redefinition", param->name());
                }
            }
            // Unsized type of a named parameter should have already been checked and sanitized.
            ASSERT(!param->getType().isUnsizedArray());
        }
    }
    return prototype;
}
TIntermFunctionPrototype *TParseContext::addFunctionPrototypeDeclaration(
    const TFunction &parsedFunction,
    const TSourceLoc &location)
{
    // Note: function found from the symbol table could be the same as parsedFunction if this is the
    // first declaration. Either way the instance in the symbol table is used to track whether the
    // function is declared multiple times.
    bool hadPrototypeDeclaration = false;
    const TFunction *function    = symbolTable.markFunctionHasPrototypeDeclaration(
        parsedFunction.getMangledName(), &hadPrototypeDeclaration);
    if (hadPrototypeDeclaration && mShaderVersion == 100)
    {
        // ESSL 1.00.17 section 4.2.7.
        // Doesn't apply to ESSL 3.00.4: see section 4.2.3.
        error(location, "duplicate function prototype declarations are not allowed", "function");
    }
    TIntermFunctionPrototype *prototype =
        createPrototypeNodeFromFunction(*function, location, false);
    symbolTable.pop();
    if (!symbolTable.atGlobalLevel())
    {
        // ESSL 3.00.4 section 4.2.4.
        error(location, "local function prototype declarations are not allowed", "function");
    }
    return prototype;
}
TIntermFunctionDefinition *TParseContext::addFunctionDefinition(
    TIntermFunctionPrototype *functionPrototype,
    TIntermBlock *functionBody,
    const TSourceLoc &location)
{
    // Undo push at end of parseFunctionDefinitionHeader() below for ESSL1.00 case
    if (mFunctionBodyNewScope)
    {
        mFunctionBodyNewScope = false;
        symbolTable.pop();
    }
    // Check that non-void functions have at least one return statement.
    if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue)
    {
        error(location,
              "function does not return a value:", functionPrototype->getFunction()->name());
    }
    if (functionBody == nullptr)
    {
        functionBody = new TIntermBlock();
        functionBody->setLine(location);
    }
    TIntermFunctionDefinition *functionNode =
        new TIntermFunctionDefinition(functionPrototype, functionBody);
    functionNode->setLine(location);
    symbolTable.pop();
    return functionNode;
}
void TParseContext::parseFunctionDefinitionHeader(const TSourceLoc &location,
                                                  const TFunction *function,
                                                  TIntermFunctionPrototype **prototypeOut)
{
    ASSERT(function);
    bool wasDefined = false;
    function        = symbolTable.setFunctionParameterNamesFromDefinition(function, &wasDefined);
    if (wasDefined)
    {
        error(location, "function already has a body", function->name());
    }
    // Remember the return type for later checking for return statements.
    mCurrentFunctionType  = &(function->getReturnType());
    mFunctionReturnsValue = false;
    *prototypeOut = createPrototypeNodeFromFunction(*function, location, true);
    setLoopNestingLevel(0);
    // ESSL 1.00 spec allows for variable in function body to redefine parameter
    if (IsSpecWithFunctionBodyNewScope(mShaderSpec, mShaderVersion))
    {
        mFunctionBodyNewScope = true;
        symbolTable.push();
    }
}
TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function)
{
    //
    // We don't know at this point whether this is a function definition or a prototype.
    // The definition production code will check for redefinitions.
    // In the case of ESSL 1.00 the prototype production code will also check for redeclarations.
    //
    for (size_t i = 0u; i < function->getParamCount(); ++i)
    {
        const TVariable *param = function->getParam(i);
        const TType ¶mType = param->getType();
        checkPrecisionSpecified(location, paramType.getPrecision(), paramType.getBasicType());
    }
    if (getShaderVersion() >= 300)
    {
        if (symbolTable.isUnmangledBuiltInName(function->name(), getShaderVersion(),
                                               extensionBehavior()))
        {
            // With ESSL 3.00 and above, names of built-in functions cannot be redeclared as
            // functions. Therefore overloading or redefining builtin functions is an error.
            error(location, "Name of a built-in function cannot be redeclared as function",
                  function->name());
        }
    }
    else
    {
        // ESSL 1.00.17 section 4.2.6: built-ins can be overloaded but not redefined. We assume that
        // this applies to redeclarations as well.
        const TSymbol *builtIn =
            symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion());
        if (builtIn)
        {
            error(location, "built-in functions cannot be redefined", function->name());
        }
    }
    // Return types and parameter qualifiers must match in all redeclarations, so those are checked
    // here.
    const TFunction *prevDec =
        static_cast<const TFunction *>(symbolTable.findGlobal(function->getMangledName()));
    if (prevDec)
    {
        if (prevDec->getReturnType() != function->getReturnType())
        {
            error(location, "function must have the same return type in all of its declarations",
                  function->getReturnType().getBasicString());
        }
        for (size_t i = 0; i < prevDec->getParamCount(); ++i)
        {
            if (prevDec->getParam(i)->getType().getQualifier() !=
                function->getParam(i)->getType().getQualifier())
            {
                error(location,
                      "function must have the same parameter qualifiers in all of its declarations",
                      function->getParam(i)->getType().getQualifierString());
            }
        }
    }
    // Check for previously declared variables using the same name.
    const TSymbol *prevSym   = symbolTable.find(function->name(), getShaderVersion());
    bool insertUnmangledName = true;
    if (prevSym)
    {
        if (!prevSym->isFunction())
        {
            error(location, "redefinition of a function", function->name());
        }
        insertUnmangledName = false;
    }
    // Parsing is at the inner scope level of the function's arguments and body statement at this
    // point, but declareUserDefinedFunction takes care of declaring the function at the global
    // scope.
    symbolTable.declareUserDefinedFunction(function, insertUnmangledName);
    // Raise error message if main function takes any parameters or return anything other than void
    if (function->isMain())
    {
        if (function->getParamCount() > 0)
        {
            error(location, "function cannot take any parameter(s)", "main");
        }
        if (function->getReturnType().getBasicType() != EbtVoid)
        {
            error(location, "main function cannot return a value",
                  function->getReturnType().getBasicString());
        }
    }
    mDeclaringMain = function->isMain();
    //
    // If this is a redeclaration, it could also be a definition, in which case, we want to use the
    // variable names from this one, and not the one that's
    // being redeclared.  So, pass back up this declaration, not the one in the symbol table.
    //
    return function;
}
TFunction *TParseContext::parseFunctionHeader(const TPublicType &type,
                                              const ImmutableString &name,
                                              const TSourceLoc &location)
{
    if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary)
    {
        error(location, "no qualifiers allowed for function return",
              getQualifierString(type.qualifier));
    }
    if (!type.layoutQualifier.isEmpty())
    {
        error(location, "no qualifiers allowed for function return", "layout");
    }
    // make sure an opaque type is not involved as well...
    std::string reason(getBasicString(type.getBasicType()));
    reason += "s can't be function return values";
    checkIsNotOpaqueType(location, type.typeSpecifierNonArray, reason.c_str());
    if (mShaderVersion < 300)
    {
        // Array return values are forbidden, but there's also no valid syntax for declaring array
        // return values in ESSL 1.00.
        ASSERT(!type.isArray() || mDiagnostics->numErrors() > 0);
        if (type.isStructureContainingArrays())
        {
            // ESSL 1.00.17 section 6.1 Function Definitions
            TInfoSinkBase typeString;
            typeString << TType(type);
            error(location, "structures containing arrays can't be function return values",
                  typeString.c_str());
        }
    }
    // Add the function as a prototype after parsing it (we do not support recursion)
    return new TFunction(&symbolTable, name, SymbolType::UserDefined, new TType(type), false);
}
TFunctionLookup *TParseContext::addNonConstructorFunc(const ImmutableString &name,
                                                      const TSymbol *symbol)
{
    return TFunctionLookup::CreateFunctionCall(name, symbol);
}
TFunctionLookup *TParseContext::addConstructorFunc(const TPublicType &publicType)
{
    if (mShaderVersion < 300 && publicType.isArray())
    {
        error(publicType.getLine(), "array constructor supported in GLSL ES 3.00 and above only",
              "[]");
    }
    if (publicType.isStructSpecifier())
    {
        error(publicType.getLine(), "constructor can't be a structure definition",
              getBasicString(publicType.getBasicType()));
    }
    TType *type = new TType(publicType);
    if (!type->canBeConstructed())
    {
        error(publicType.getLine(), "cannot construct this type",
              getBasicString(publicType.getBasicType()));
        type->setBasicType(EbtFloat);
    }
    return TFunctionLookup::CreateConstructor(type);
}
void TParseContext::checkIsNotUnsizedArray(const TSourceLoc &line,
                                           const char *errorMessage,
                                           const ImmutableString &token,
                                           TType *arrayType)
{
    if (arrayType->isUnsizedArray())
    {
        error(line, errorMessage, token);
        arrayType->sizeUnsizedArrays(angle::Span<const unsigned int>());
    }
}
TParameter TParseContext::parseParameterDeclarator(const TPublicType &type,
                                                   const ImmutableString &name,
                                                   const TSourceLoc &nameLoc)
{
    if (!name.empty())
    {
        if (type.getBasicType() == EbtVoid)
        {
            error(nameLoc, "illegal use of type 'void'", name);
        }
    }
    if (type.isStructSpecifier())
    {
        // ESSL 3.00.6 section 12.10.
        error(nameLoc, "Function parameter type cannot be a structure definition", name);
    }
    checkIsNotReserved(nameLoc, name);
    TParameter param{name.data(), type};
    if (param.type.isUnsizedArray())
    {
        error(nameLoc, "function parameter array must specify a size", name);
        param.type.sizeUnsizedArrays();
    }
    return param;
}
TParameter TParseContext::parseParameterArrayDeclarator(const TPublicType &elementType,
                                                        const ImmutableString &name,
                                                        const TSourceLoc &nameLoc,
                                                        TVector<unsigned int> *arraySizes,
                                                        const TSourceLoc &arrayLoc)
{
    checkArrayElementIsNotArray(arrayLoc, elementType);
    TPublicType arrayType{elementType};
    arrayType.makeArrays(arraySizes);
    return parseParameterDeclarator(arrayType, name, nameLoc);
}
bool TParseContext::checkUnsizedArrayConstructorArgumentDimensionality(
    const TIntermSequence &arguments,
    TType type,
    const TSourceLoc &line)
{
    if (arguments.empty())
    {
        error(line, "implicitly sized array constructor must have at least one argument", "[]");
        return false;
    }
    for (TIntermNode *arg : arguments)
    {
        const TIntermTyped *element = arg->getAsTyped();
        ASSERT(element);
        if (element->getType().isUnsizedArray())
        {
            error(line, "constructing from an unsized array", "constructor");
            return false;
        }
        size_t dimensionalityFromElement = element->getType().getNumArraySizes() + 1u;
        if (dimensionalityFromElement > type.getNumArraySizes())
        {
            error(line, "constructing from a non-dereferenced array", "constructor");
            return false;
        }
        else if (dimensionalityFromElement < type.getNumArraySizes())
        {
            if (dimensionalityFromElement == 1u)
            {
                error(line, "implicitly sized array of arrays constructor argument is not an array",
                      "constructor");
            }
            else
            {
                error(line,
                      "implicitly sized array of arrays constructor argument dimensionality is too "
                      "low",
                      "constructor");
            }
            return false;
        }
    }
    return true;
}
// This function is used to test for the correctness of the parameters passed to various constructor
// functions and also convert them to the right datatype if it is allowed and required.
//
// Returns a node to add to the tree regardless of if an error was generated or not.
//
TIntermTyped *TParseContext::addConstructor(TFunctionLookup *fnCall, const TSourceLoc &line)
{
    TType type                 = fnCall->constructorType();
    TIntermSequence &arguments = fnCall->arguments();
    if (type.isUnsizedArray())
    {
        if (!checkUnsizedArrayConstructorArgumentDimensionality(arguments, type, line))
        {
            type.sizeUnsizedArrays(angle::Span<const unsigned int>());
            return CreateZeroNode(type);
        }
        TIntermTyped *firstElement = arguments.at(0)->getAsTyped();
        ASSERT(firstElement);
        if (type.getOutermostArraySize() == 0u)
        {
            type.sizeOutermostUnsizedArray(static_cast<unsigned int>(arguments.size()));
        }
        for (size_t i = 0; i < firstElement->getType().getNumArraySizes(); ++i)
        {
            if (type.getArraySizes()[i] == 0u)
            {
                type.setArraySize(i, firstElement->getType().getArraySizes()[i]);
            }
        }
        ASSERT(!type.isUnsizedArray());
    }
    if (!checkConstructorArguments(line, arguments, type))
    {
        return CreateZeroNode(type);
    }
    TIntermAggregate *constructorNode = TIntermAggregate::CreateConstructor(type, &arguments);
    constructorNode->setLine(line);
    return constructorNode->fold(mDiagnostics);
}
//
// Interface/uniform blocks
TIntermDeclaration *TParseContext::addInterfaceBlock(
    const TTypeQualifierBuilder &typeQualifierBuilder,
    const TSourceLoc &nameLine,
    const ImmutableString &blockName,
    TFieldList *fieldList,
    const ImmutableString &instanceName,
    const TSourceLoc &instanceLine,
    const TVector<unsigned int> *arraySizes,
    const TSourceLoc &arraySizesLine)
{
    checkDoesNotHaveTooManyFields(blockName, fieldList, nameLine);
    // Ensure there are no duplicate field names
    checkDoesNotHaveDuplicateFieldNames(fieldList, nameLine);
    const bool isGLPerVertex = blockName == "gl_PerVertex";
    // gl_PerVertex is allowed to be redefined and therefore not reserved
    if (!isGLPerVertex)
    {
        checkIsNotReserved(nameLine, blockName);
    }
    TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
    const bool isUniformOrBuffer =
        typeQualifier.qualifier == EvqUniform || typeQualifier.qualifier == EvqBuffer;
    const bool isShaderIoBlock = IsShaderIoBlock(typeQualifier.qualifier);
    if (mShaderVersion < 310 && typeQualifier.qualifier != EvqUniform)
    {
        error(typeQualifier.line,
              "invalid qualifier: interface blocks must be uniform in version lower than GLSL ES "
              "3.10",
              getQualifierString(typeQualifier.qualifier));
    }
    else if (typeQualifier.qualifier == EvqPatchOut)
    {
        if ((!isExtensionEnabled(TExtension::EXT_tessellation_shader) &&
             !isExtensionEnabled(TExtension::OES_tessellation_shader) && mShaderVersion < 320) ||
            mShaderType != GL_TESS_CONTROL_SHADER)
        {
            error(typeQualifier.line,
                  "invalid qualifier: 'patch out' requires a tessellation control shader",
                  getQualifierString(typeQualifier.qualifier));
        }
    }
    else if (typeQualifier.qualifier == EvqPatchIn)
    {
        if ((!isExtensionEnabled(TExtension::EXT_tessellation_shader) &&
             !isExtensionEnabled(TExtension::OES_tessellation_shader) && mShaderVersion < 320) ||
            mShaderType != GL_TESS_EVALUATION_SHADER)
        {
            error(typeQualifier.line,
                  "invalid qualifier: 'patch in' requires a tessellation evaluation shader",
                  getQualifierString(typeQualifier.qualifier));
        }
    }
    else if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer)
    {
        if (isShaderIoBlock)
        {
            if (!isExtensionEnabled(TExtension::OES_shader_io_blocks) &&
                !isExtensionEnabled(TExtension::EXT_shader_io_blocks) &&
                !isExtensionEnabled(TExtension::OES_geometry_shader) &&
                !isExtensionEnabled(TExtension::EXT_geometry_shader) && mShaderVersion < 320)
            {
                error(typeQualifier.line,
                      "invalid qualifier: shader IO blocks need shader io block extension",
                      getQualifierString(typeQualifier.qualifier));
            }
            // Both inputs and outputs of tessellation control shaders must be arrays.
            // For tessellation evaluation shaders, only inputs must necessarily be arrays.
            const bool isTCS = mShaderType == GL_TESS_CONTROL_SHADER;
            const bool isTESIn =
                mShaderType == GL_TESS_EVALUATION_SHADER && IsShaderIn(typeQualifier.qualifier);
            if (arraySizes == nullptr && (isTCS || isTESIn))
            {
                error(typeQualifier.line, "type must be an array", blockName);
            }
        }
        else
        {
            error(typeQualifier.line,
                  "invalid qualifier: interface blocks must be uniform or buffer",
                  getQualifierString(typeQualifier.qualifier));
        }
    }
    if (typeQualifier.invariant)
    {
        error(typeQualifier.line, "invalid qualifier on interface block", "invariant");
    }
    if (typeQualifier.qualifier != EvqBuffer)
    {
        checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
    }
    // Verify array sizes
    if (arraySizes)
    {
        if (isUniformOrBuffer)
        {
            if (arraySizes->size() == 0)
            {
                error(arraySizesLine, "unsized arrays are not allowed with interface blocks", "");
            }
            if (arraySizes->size() > 1)
            {
                error(arraySizesLine, "array of arrays are not allowed with interface blocks", "");
            }
        }
        else if (isShaderIoBlock)
        {
            size_t arrayDimensions = arraySizes->size();
            // Geometry shader inputs have a level arrayness that must be ignored.
            if (mShaderType == GL_GEOMETRY_SHADER_EXT && IsVaryingIn(typeQualifier.qualifier))
            {
                ASSERT(arrayDimensions > 0);
                --arrayDimensions;
                // Validate that the array size of input matches the geometry layout
                // declaration, if not automatic (specified as []).
                const unsigned int geometryDim = arraySizes->back();
                if (geometryDim > 0 && geometryDim != mGeometryInputArraySize)
                {
                    error(arraySizesLine,
                          "geometry shader input block array size inconsistent "
                          "with primitive",
                          "");
                }
            }
            if (arrayDimensions > 1)
            {
                error(arraySizesLine, "array of arrays are not allowed with I/O blocks", "");
            }
        }
    }
    else if (isShaderIoBlock && mShaderType == GL_GEOMETRY_SHADER_EXT &&
             IsVaryingIn(typeQualifier.qualifier))
    {
        error(arraySizesLine, "geometry shader input blocks must be an array", "");
    }
    checkIndexIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.index);
    if (mShaderVersion < 310)
    {
        checkBindingIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.binding);
    }
    else
    {
        unsigned int arraySize =
            arraySizes == nullptr || arraySizes->empty() ? 0 : (*arraySizes)[0];
        checkBlockBindingIsValid(typeQualifier.line, typeQualifier.qualifier,
                                 typeQualifier.layoutQualifier.binding, arraySize);
    }
    checkDepthIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.depth);
    checkYuvIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.yuv);
    checkEarlyFragmentTestsIsNotSpecified(typeQualifier.line,
                                          typeQualifier.layoutQualifier.earlyFragmentTests);
    checkNoncoherentIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.noncoherent);
    TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
    if (!IsShaderIoBlock(typeQualifier.qualifier) && typeQualifier.qualifier != EvqPatchIn &&
        typeQualifier.qualifier != EvqPatchOut)
    {
        checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier);
    }
    checkStd430IsForShaderStorageBlock(typeQualifier.line, blockLayoutQualifier.blockStorage,
                                       typeQualifier.qualifier);
    if (blockLayoutQualifier.matrixPacking == EmpUnspecified)
    {
        if (typeQualifier.qualifier == EvqUniform)
        {
            blockLayoutQualifier.matrixPacking = mDefaultUniformMatrixPacking;
        }
        else if (typeQualifier.qualifier == EvqBuffer)
        {
            blockLayoutQualifier.matrixPacking = mDefaultBufferMatrixPacking;
        }
    }
    if (blockLayoutQualifier.blockStorage == EbsUnspecified)
    {
        if (typeQualifier.qualifier == EvqUniform)
        {
            blockLayoutQualifier.blockStorage = mDefaultUniformBlockStorage;
        }
        else if (typeQualifier.qualifier == EvqBuffer)
        {
            blockLayoutQualifier.blockStorage = mDefaultBufferBlockStorage;
        }
    }
    checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier);
    checkInternalFormatIsNotSpecified(nameLine, blockLayoutQualifier.imageInternalFormat);
    // check for sampler types and apply layout qualifiers
    for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
    {
        TField *field    = (*fieldList)[memberIndex];
        TType *fieldType = field->type();
        if (ContainsOpaque<IsOpaqueFunc>(*fieldType))
        {
            error(field->line(), "Opaque types are not allowed in interface blocks", blockName);
        }
        const TQualifier qualifier = fieldType->getQualifier();
        switch (qualifier)
        {
            case EvqGlobal:
                break;
            case EvqUniform:
                if (typeQualifier.qualifier == EvqBuffer)
                {
                    error(field->line(), "invalid qualifier on shader storage block member",
                          getQualifierString(qualifier));
                }
                break;
            case EvqBuffer:
                if (typeQualifier.qualifier == EvqUniform)
                {
                    error(field->line(), "invalid qualifier on uniform block member",
                          getQualifierString(qualifier));
                }
                break;
            // a member variable in io block may have different interpolation.
            case EvqSmoothIn:
            case EvqSmoothOut:
            case EvqFlatIn:
            case EvqFlatOut:
            case EvqNoPerspectiveIn:
            case EvqNoPerspectiveOut:
            case EvqCentroidIn:
            case EvqCentroidOut:
            case EvqSampleIn:
            case EvqSampleOut:
            case EvqNoPerspectiveCentroidIn:
            case EvqNoPerspectiveCentroidOut:
            case EvqNoPerspectiveSampleIn:
            case EvqNoPerspectiveSampleOut:
                break;
            // a member variable can have an incomplete qualifier because shader io block has either
            // in or out.
            case EvqSmooth:
            case EvqFlat:
            case EvqNoPerspective:
            case EvqCentroid:
            case EvqSample:
            case EvqNoPerspectiveCentroid:
            case EvqNoPerspectiveSample:
            case EvqGeometryIn:
            case EvqGeometryOut:
                if (!IsShaderIoBlock(typeQualifier.qualifier) &&
                    typeQualifier.qualifier != EvqPatchIn &&
                    typeQualifier.qualifier != EvqPatchOut &&
                    typeQualifier.qualifier != EvqGeometryIn &&
                    typeQualifier.qualifier != EvqGeometryOut)
                {
                    error(field->line(), "invalid qualifier on interface block member",
                          getQualifierString(qualifier));
                }
                break;
            default:
                error(field->line(), "invalid qualifier on interface block member",
                      getQualifierString(qualifier));
                break;
        }
        // On interface block members, invariant is only applicable to output I/O blocks.
        const bool isOutputShaderIoBlock = isShaderIoBlock && IsShaderOut(typeQualifier.qualifier);
        if (fieldType->isInvariant() && !isOutputShaderIoBlock)
        {
            error(field->line(), "invalid qualifier on interface block member", "invariant");
        }
        // check layout qualifiers
        TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
        checkIndexIsNotSpecified(field->line(), fieldLayoutQualifier.index);
        checkBindingIsNotSpecified(field->line(), fieldLayoutQualifier.binding);
        if (fieldLayoutQualifier.blockStorage != EbsUnspecified)
        {
            error(field->line(), "invalid layout qualifier: cannot be used here",
                  getBlockStorageString(fieldLayoutQualifier.blockStorage));
        }
        if (fieldLayoutQualifier.matrixPacking == EmpUnspecified)
        {
            fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
        }
        else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct)
        {
            warning(field->line(),
                    "extraneous layout qualifier: only has an effect on matrix types",
                    getMatrixPackingString(fieldLayoutQualifier.matrixPacking));
        }
        fieldType->setLayoutQualifier(fieldLayoutQualifier);
        if (mShaderVersion < 310 || memberIndex != fieldList->size() - 1u ||
            typeQualifier.qualifier != EvqBuffer)
        {
            // ESSL 3.10 spec section 4.1.9 allows for runtime-sized arrays.
            checkIsNotUnsizedArray(field->line(),
                                   "array members of interface blocks must specify a size",
                                   field->name(), field->type());
        }
        if (typeQualifier.qualifier == EvqBuffer)
        {
            // set memory qualifiers
            // GLSL ES 3.10 session 4.9 [Memory Access Qualifiers]. When a block declaration is
            // qualified with a memory qualifier, it is as if all of its members were declared with
            // the same memory qualifier.
            const TMemoryQualifier &blockMemoryQualifier = typeQualifier.memoryQualifier;
            TMemoryQualifier fieldMemoryQualifier        = fieldType->getMemoryQualifier();
            fieldMemoryQualifier.readonly |= blockMemoryQualifier.readonly;
            fieldMemoryQualifier.writeonly |= blockMemoryQualifier.writeonly;
            fieldMemoryQualifier.coherent |= blockMemoryQualifier.coherent;
            fieldMemoryQualifier.restrictQualifier |= blockMemoryQualifier.restrictQualifier;
            fieldMemoryQualifier.volatileQualifier |= blockMemoryQualifier.volatileQualifier;
            // TODO(jiajia.qin@intel.com): Decide whether if readonly and writeonly buffer variable
            // is legal. See bug https://github.com/KhronosGroup/OpenGL-API/issues/7
            fieldType->setMemoryQualifier(fieldMemoryQualifier);
        }
    }
    SymbolType instanceSymbolType = SymbolType::UserDefined;
    if (isGLPerVertex)
    {
        instanceSymbolType = SymbolType::BuiltIn;
    }
    TInterfaceBlock *interfaceBlock = new TInterfaceBlock(&symbolTable, blockName, fieldList,
                                                          blockLayoutQualifier, instanceSymbolType);
    if (!symbolTable.declare(interfaceBlock) && isUniformOrBuffer)
    {
        error(nameLine, "redefinition of an interface block name", blockName);
    }
    TType *interfaceBlockType =
        new TType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier);
    if (arraySizes)
    {
        interfaceBlockType->makeArrays(*arraySizes);
        checkGeometryShaderInputAndSetArraySize(instanceLine, instanceName, interfaceBlockType);
        checkTessellationShaderUnsizedArraysAndSetSize(instanceLine, instanceName,
                                                       interfaceBlockType);
        checkDeclarationIsValidArraySize(instanceLine, instanceName, interfaceBlockType);
    }
    // The instance variable gets created to refer to the interface block type from the AST
    // regardless of if there's an instance name. It's created as an empty symbol if there is no
    // instance name.
    TVariable *instanceVariable =
        new TVariable(&symbolTable, instanceName, interfaceBlockType,
                      instanceName.empty() ? SymbolType::Empty : SymbolType::UserDefined);
    if (instanceVariable->symbolType() == SymbolType::Empty)
    {
        // define symbols for the members of the interface block
        for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
        {
            TField *field    = (*fieldList)[memberIndex];
            TType *fieldType = new TType(*field->type());
            // set parent pointer of the field variable
            fieldType->setInterfaceBlockField(interfaceBlock, memberIndex);
            fieldType->setQualifier(typeQualifier.qualifier);
            SymbolType symbolType = SymbolType::UserDefined;
            if (field->name() == "gl_Position" || field->name() == "gl_PointSize" ||
                field->name() == "gl_ClipDistance" || field->name() == "gl_CullDistance")
            {
                // These builtins can be redefined only when used within a redefined gl_PerVertex
                // block
                if (interfaceBlock->name() != "gl_PerVertex")
                {
                    error(field->line(), "redefinition in an invalid interface block",
                          field->name());
                }
                symbolType = SymbolType::BuiltIn;
            }
            TVariable *fieldVariable =
                new TVariable(&symbolTable, field->name(), fieldType, symbolType);
            if (!symbolTable.declare(fieldVariable))
            {
                error(field->line(), "redefinition of an interface block member name",
                      field->name());
            }
        }
    }
    else
    {
        checkIsNotReserved(instanceLine, instanceName);
        // add a symbol for this interface block
        if (!symbolTable.declare(instanceVariable))
        {
            error(instanceLine, "redefinition of an interface block instance name", instanceName);
        }
    }
    TIntermSymbol *blockSymbol = new TIntermSymbol(instanceVariable);
    blockSymbol->setLine(typeQualifier.line);
    TIntermDeclaration *declaration = new TIntermDeclaration();
    declaration->appendDeclarator(blockSymbol);
    declaration->setLine(nameLine);
    exitStructDeclaration();
    return declaration;
}
void TParseContext::enterStructDeclaration(const TSourceLoc &line,
                                           const ImmutableString &identifier)
{
    ++mStructNestingLevel;
    // Embedded structure definitions are not supported per GLSL ES spec.
    // ESSL 1.00.17 section 10.9. ESSL 3.00.6 section 12.11.
    if (mStructNestingLevel > 1)
    {
        error(line, "Embedded struct definitions are not allowed", "struct");
    }
}
void TParseContext::exitStructDeclaration()
{
    --mStructNestingLevel;
}
void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field)
{
    if (!sh::IsWebGLBasedSpec(mShaderSpec))
    {
        return;
    }
    if (field.type()->getBasicType() != EbtStruct)
    {
        return;
    }
    // We're already inside a structure definition at this point, so add
    // one to the field's struct nesting.
    if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting)
    {
        std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
        if (field.type()->getStruct()->symbolType() == SymbolType::Empty)
        {
            // This may happen in case there are nested struct definitions. While they are also
            // invalid GLSL, they don't cause a syntax error.
            reasonStream << "Struct nesting";
        }
        else
        {
            reasonStream << "Reference of struct type " << field.type()->getStruct()->name();
        }
        reasonStream << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting;
        std::string reason = reasonStream.str();
        error(line, reason.c_str(), field.name());
        return;
    }
}
//
// Parse an array index expression
//
TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression,
                                                const TSourceLoc &location,
                                                TIntermTyped *indexExpression)
{
    if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
    {
        if (baseExpression->getAsSymbolNode())
        {
            error(location, " left of '[' is not of type array, matrix, or vector ",
                  baseExpression->getAsSymbolNode()->getName());
        }
        else
        {
            error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
        }
        return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst));
    }
    if (baseExpression->getQualifier() == EvqPerVertexIn)
    {
        if (mGeometryShaderInputPrimitiveType == EptUndefined &&
            mShaderType == GL_GEOMETRY_SHADER_EXT)
        {
            error(location, "missing input primitive declaration before indexing gl_in.", "[");
            return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst));
        }
    }
    TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion();
    // ES3.2 or ES3.1's EXT_gpu_shader5 allow dynamically uniform expressions to be used as indices
    // of opaque types (samplers and atomic counters) as well as UBOs, but not SSBOs and images.
    bool allowUniformIndices = mShaderVersion >= 320 ||
                               isExtensionEnabled(TExtension::EXT_gpu_shader5) ||
                               isExtensionEnabled(TExtension::OES_gpu_shader5);
    // ANGLE should be able to fold any constant expressions resulting in an integer - but to be
    // safe we don't treat "EvqConst" that's evaluated according to the spec as being sufficient
    // for constness. Some interpretations of the spec have allowed constant expressions with side
    // effects - like array length() method on a non-constant array.
    if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr)
    {
        if (baseExpression->isInterfaceBlock())
        {
            switch (baseExpression->getQualifier())
            {
                case EvqPerVertexIn:
                    break;
                case EvqUniform:
                    if (!allowUniformIndices)
                    {
                        error(location,
                              "array indexes for uniform block arrays must be constant integral "
                              "expressions",
                              "[");
                    }
                    break;
                case EvqBuffer:
                    error(location,
                          "array indexes for shader storage block arrays must be constant integral "
                          "expressions",
                          "[");
                    break;
                default:
                    // It's ok for shader I/O blocks to be dynamically indexed
                    if (!IsShaderIoBlock(baseExpression->getQualifier()) &&
                        baseExpression->getQualifier() != EvqPatchIn &&
                        baseExpression->getQualifier() != EvqPatchOut)
                    {
                        // We can reach here only in error cases.
                        ASSERT(mDiagnostics->numErrors() > 0);
                    }
                    break;
            }
        }
        else if (baseExpression->getQualifier() == EvqFragmentOut ||
                 baseExpression->getQualifier() == EvqFragmentInOut)
        {
            error(location,
                  "array indexes for fragment outputs must be constant integral expressions", "[");
        }
        else if (baseExpression->getQualifier() == EvqLastFragData)
        {
            error(location,
                  "array indexes for gl_LastFragData must be constant integral expressions", "[");
        }
        else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData)
        {
            error(location, "array index for gl_FragData must be constant zero", "[");
        }
        else if (mShaderSpec == SH_WEBGL2_SPEC &&
                 baseExpression->getQualifier() == EvqSecondaryFragDataEXT)
        {
            error(location, "array index for gl_SecondaryFragDataEXT must be constant zero", "[");
        }
        else if (baseExpression->isArray())
        {
            TBasicType elementType = baseExpression->getType().getBasicType();
            // Note: In Section 12.30 of the ESSL 3.00 spec on p143-144:
            //
            //   Indexing of arrays of samplers by constant-index-expressions is
            //   supported in GLSL ES 1.00. A constant-index-expression is an
            //   expression formed from constant-expressions and certain loop indices,
            //   defined for a subset of loop constructs. Should this functionality be
            //   included in GLSL ES 3.00?
            //
            //   RESOLUTION: No. Arrays of samplers may only be indexed by constant-
            //   integral-expressions.
            if (IsSampler(elementType) && !allowUniformIndices && mShaderVersion > 100)
            {
                error(location, "array index for samplers must be constant integral expressions",
                      "[");
            }
            else if (IsImage(elementType))
            {
                error(location,
                      "array indexes for image arrays must be constant integral expressions", "[");
            }
        }
    }
    if (indexConstantUnion)
    {
        // If an out-of-range index is not qualified as constant, the behavior in the spec is
        // undefined. This applies even if ANGLE has been able to constant fold it (ANGLE may
        // constant fold expressions that are not constant expressions). The most compatible way to
        // handle this case is to report a warning instead of an error and force the index to be in
        // the correct range.
        bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst;
        int index                   = 0;
        if (indexConstantUnion->getBasicType() == EbtInt)
        {
            index = indexConstantUnion->getIConst(0);
        }
        else if (indexConstantUnion->getBasicType() == EbtUInt)
        {
            index = static_cast<int>(indexConstantUnion->getUConst(0));
        }
        int safeIndex = -1;
        if (index < 0)
        {
            outOfRangeError(outOfRangeIndexIsError, location, "index expression is negative", "[]");
            safeIndex = 0;
        }
        if (!baseExpression->getType().isUnsizedArray())
        {
            if (baseExpression->isArray())
            {
                if (baseExpression->getQualifier() == EvqFragData && index > 0)
                {
                    if (!isExtensionEnabled(TExtension::EXT_draw_buffers))
                    {
                        outOfRangeError(outOfRangeIndexIsError, location,
                                        "array index for gl_FragData must be zero when "
                                        "GL_EXT_draw_buffers is disabled",
                                        "[]");
                        safeIndex = 0;
                    }
                }
            }
            // Only do generic out-of-range check if similar error hasn't already been reported.
            if (safeIndex < 0)
            {
                if (baseExpression->isArray())
                {
                    safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index,
                                                   baseExpression->getOutermostArraySize(),
                                                   "array index out of range");
                }
                else if (baseExpression->isMatrix())
                {
                    safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index,
                                                   baseExpression->getType().getCols(),
                                                   "matrix field selection out of range");
                }
                else
                {
                    ASSERT(baseExpression->isVector());
                    safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index,
                                                   baseExpression->getType().getNominalSize(),
                                                   "vector field selection out of range");
                }
            }
            ASSERT(safeIndex >= 0);
            // Data of constant unions can't be changed, because it may be shared with other
            // constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new
            // sanitized object.
            if (safeIndex != index || indexConstantUnion->getBasicType() != EbtInt)
            {
                TConstantUnion *safeConstantUnion = new TConstantUnion();
                safeConstantUnion->setIConst(safeIndex);
                indexExpression =
                    new TIntermConstantUnion(safeConstantUnion, TType(indexExpression->getType()));
            }
            TIntermBinary *node =
                new TIntermBinary(EOpIndexDirect, baseExpression, indexExpression);
            node->setLine(location);
            return expressionOrFoldedResult(node);
        }
    }
    markStaticReadIfSymbol(indexExpression);
    TIntermBinary *node = new TIntermBinary(EOpIndexIndirect, baseExpression, indexExpression);
    node->setLine(location);
    // Indirect indexing can never be constant folded.
    return node;
}
int TParseContext::checkIndexLessThan(bool outOfRangeIndexIsError,
                                      const TSourceLoc &location,
                                      int index,
                                      unsigned int arraySize,
                                      const char *reason)
{
    // A negative index should already have been checked.
    ASSERT(index >= 0);
    if (static_cast<unsigned int>(index) >= arraySize)
    {
        std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
        reasonStream << reason << " '" << index << "'";
        std::string token = reasonStream.str();
        outOfRangeError(outOfRangeIndexIsError, location, reason, "[]");
        return arraySize - 1;
    }
    return index;
}
TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression,
                                                         const TSourceLoc &dotLocation,
                                                         const ImmutableString &fieldString,
                                                         const TSourceLoc &fieldLocation)
{
    if (baseExpression->isArray())
    {
        error(fieldLocation, "cannot apply dot operator to an array", ".");
        return baseExpression;
    }
    if (baseExpression->isVector())
    {
        TVector<int> fieldOffsets;
        if (!parseVectorFields(fieldLocation, fieldString, baseExpression->getNominalSize(),
                               &fieldOffsets))
        {
            fieldOffsets.resize(1);
            fieldOffsets[0] = 0;
        }
        TIntermSwizzle *node = new TIntermSwizzle(baseExpression, fieldOffsets);
        node->setLine(dotLocation);
        return node->fold(mDiagnostics);
    }
    else if (baseExpression->getBasicType() == EbtStruct)
    {
        const TFieldList &fields = baseExpression->getType().getStruct()->fields();
        if (fields.empty())
        {
            error(dotLocation, "structure has no fields", "Internal Error");
            return baseExpression;
        }
        else
        {
            bool fieldFound = false;
            unsigned int i;
            for (i = 0; i < fields.size(); ++i)
            {
                if (fields[i]->name() == fieldString)
                {
                    fieldFound = true;
                    break;
                }
            }
            if (fieldFound)
            {
                TIntermTyped *index = CreateIndexNode(i);
                index->setLine(fieldLocation);
                TIntermBinary *node =
                    new TIntermBinary(EOpIndexDirectStruct, baseExpression, index);
                node->setLine(dotLocation);
                return expressionOrFoldedResult(node);
            }
            else
            {
                error(dotLocation, " no such field in structure", fieldString);
                return baseExpression;
            }
        }
    }
    else if (baseExpression->isInterfaceBlock())
    {
        const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields();
        if (fields.empty())
        {
            error(dotLocation, "interface block has no fields", "Internal Error");
            return baseExpression;
        }
        else
        {
            bool fieldFound = false;
            unsigned int i;
            for (i = 0; i < fields.size(); ++i)
            {
                if (fields[i]->name() == fieldString)
                {
                    fieldFound = true;
                    break;
                }
            }
            if (fieldFound)
            {
                TIntermTyped *index = CreateIndexNode(i);
                index->setLine(fieldLocation);
                TIntermBinary *node =
                    new TIntermBinary(EOpIndexDirectInterfaceBlock, baseExpression, index);
                node->setLine(dotLocation);
                // Indexing interface blocks can never be constant folded.
                return node;
            }
            else
            {
                error(dotLocation, " no such field in interface block", fieldString);
                return baseExpression;
            }
        }
    }
    else
    {
        if (mShaderVersion < 300)
        {
            error(dotLocation, " field selection requires structure or vector on left hand side",
                  fieldString);
        }
        else
        {
            error(dotLocation,
                  " field selection requires structure, vector, or interface block on left hand "
                  "side",
                  fieldString);
        }
        return baseExpression;
    }
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const ImmutableString &qualifierType,
                                                     const TSourceLoc &qualifierTypeLine)
{
    TLayoutQualifier qualifier = TLayoutQualifier::Create();
    if (qualifierType == "shared")
    {
        if (sh::IsWebGLBasedSpec(mShaderSpec))
        {
            error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "shared");
        }
        qualifier.blockStorage = EbsShared;
    }
    else if (qualifierType == "packed")
    {
        if (sh::IsWebGLBasedSpec(mShaderSpec))
        {
            error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "packed");
        }
        qualifier.blockStorage = EbsPacked;
    }
    else if (qualifierType == "std430")
    {
        checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        qualifier.blockStorage = EbsStd430;
    }
    else if (qualifierType == "std140")
    {
        qualifier.blockStorage = EbsStd140;
    }
    else if (qualifierType == "row_major")
    {
        qualifier.matrixPacking = EmpRowMajor;
    }
    else if (qualifierType == "column_major")
    {
        qualifier.matrixPacking = EmpColumnMajor;
    }
    else if (qualifierType == "location")
    {
        error(qualifierTypeLine, "invalid layout qualifier: location requires an argument",
              qualifierType);
    }
    else if (qualifierType == "yuv" && mShaderType == GL_FRAGMENT_SHADER)
    {
        if (checkCanUseExtension(qualifierTypeLine, TExtension::EXT_YUV_target))
        {
            qualifier.yuv = true;
        }
    }
    else if (qualifierType == "early_fragment_tests")
    {
        checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        qualifier.earlyFragmentTests = true;
    }
    else if (qualifierType == "rgba32f")
    {
        checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        qualifier.imageInternalFormat = EiifRGBA32F;
    }
    else if (qualifierType == "rgba16f")
    {
        checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        qualifier.imageInternalFormat = EiifRGBA16F;
    }
    else if (qualifierType == "r32f")
    {
        if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
        {
            checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        }
        qualifier.imageInternalFormat = EiifR32F;
    }
    else if (qualifierType == "rgba8")
    {
        if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
        {
            checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        }
        qualifier.imageInternalFormat = EiifRGBA8;
    }
    else if (qualifierType == "rgba8_snorm")
    {
        checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        qualifier.imageInternalFormat = EiifRGBA8_SNORM;
    }
    else if (qualifierType == "rgba32i")
    {
        checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        qualifier.imageInternalFormat = EiifRGBA32I;
    }
    else if (qualifierType == "rgba16i")
    {
        checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        qualifier.imageInternalFormat = EiifRGBA16I;
    }
    else if (qualifierType == "rgba8i")
    {
        if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
        {
            checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        }
        qualifier.imageInternalFormat = EiifRGBA8I;
    }
    else if (qualifierType == "r32i")
    {
        checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        qualifier.imageInternalFormat = EiifR32I;
    }
    else if (qualifierType == "rgba32ui")
    {
        checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        qualifier.imageInternalFormat = EiifRGBA32UI;
    }
    else if (qualifierType == "rgba16ui")
    {
        checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        qualifier.imageInternalFormat = EiifRGBA16UI;
    }
    else if (qualifierType == "rgba8ui")
    {
        if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
        {
            checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        }
        qualifier.imageInternalFormat = EiifRGBA8UI;
    }
    else if (qualifierType == "r32ui")
    {
        if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
        {
            checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        }
        qualifier.imageInternalFormat = EiifR32UI;
    }
    else if (mShaderType == GL_GEOMETRY_SHADER_EXT &&
             (mShaderVersion >= 320 ||
              (checkCanUseOneOfExtensions(
                   qualifierTypeLine,
                   std::array<TExtension, 2u>{
                       {TExtension::EXT_geometry_shader, TExtension::OES_geometry_shader}}) &&
               checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310))))
    {
        if (qualifierType == "points")
        {
            qualifier.primitiveType = EptPoints;
        }
        else if (qualifierType == "lines")
        {
            qualifier.primitiveType = EptLines;
        }
        else if (qualifierType == "lines_adjacency")
        {
            qualifier.primitiveType = EptLinesAdjacency;
        }
        else if (qualifierType == "triangles")
        {
            qualifier.primitiveType = EptTriangles;
        }
        else if (qualifierType == "triangles_adjacency")
        {
            qualifier.primitiveType = EptTrianglesAdjacency;
        }
        else if (qualifierType == "line_strip")
        {
            qualifier.primitiveType = EptLineStrip;
        }
        else if (qualifierType == "triangle_strip")
        {
            qualifier.primitiveType = EptTriangleStrip;
        }
        else
        {
            error(qualifierTypeLine, "invalid layout qualifier", qualifierType);
        }
    }
    else if (mShaderType == GL_TESS_EVALUATION_SHADER_EXT &&
             (mShaderVersion >= 320 ||
              (checkCanUseOneOfExtensions(
                   qualifierTypeLine,
                   std::array<TExtension, 2u>{{TExtension::EXT_tessellation_shader,
                                               TExtension::OES_tessellation_shader}}) &&
               checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310))))
    {
        if (qualifierType == "triangles")
        {
            qualifier.tesPrimitiveType = EtetTriangles;
        }
        else if (qualifierType == "quads")
        {
            qualifier.tesPrimitiveType = EtetQuads;
        }
        else if (qualifierType == "isolines")
        {
            qualifier.tesPrimitiveType = EtetIsolines;
        }
        else if (qualifierType == "equal_spacing")
        {
            qualifier.tesVertexSpacingType = EtetEqualSpacing;
        }
        else if (qualifierType == "fractional_even_spacing")
        {
            qualifier.tesVertexSpacingType = EtetFractionalEvenSpacing;
        }
        else if (qualifierType == "fractional_odd_spacing")
        {
            qualifier.tesVertexSpacingType = EtetFractionalOddSpacing;
        }
        else if (qualifierType == "cw")
        {
            qualifier.tesOrderingType = EtetCw;
        }
        else if (qualifierType == "ccw")
        {
            qualifier.tesOrderingType = EtetCcw;
        }
        else if (qualifierType == "point_mode")
        {
            qualifier.tesPointType = EtetPointMode;
        }
        else
        {
            error(qualifierTypeLine, "invalid layout qualifier", qualifierType);
        }
    }
    else if (mShaderType == GL_FRAGMENT_SHADER)
    {
        if (qualifierType == "noncoherent")
        {
            if (checkCanUseOneOfExtensions(
                    qualifierTypeLine,
                    std::array<TExtension, 2u>{
                        {TExtension::EXT_shader_framebuffer_fetch,
                         TExtension::EXT_shader_framebuffer_fetch_non_coherent}}))
            {
                checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 100);
                qualifier.noncoherent = true;
            }
        }
        else if (qualifierType == "blend_support_multiply")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::Multiply, &qualifier);
        }
        else if (qualifierType == "blend_support_screen")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::Screen, &qualifier);
        }
        else if (qualifierType == "blend_support_overlay")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::Overlay, &qualifier);
        }
        else if (qualifierType == "blend_support_darken")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::Darken, &qualifier);
        }
        else if (qualifierType == "blend_support_lighten")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::Lighten, &qualifier);
        }
        else if (qualifierType == "blend_support_colordodge")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::Colordodge, &qualifier);
        }
        else if (qualifierType == "blend_support_colorburn")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::Colorburn, &qualifier);
        }
        else if (qualifierType == "blend_support_hardlight")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::Hardlight, &qualifier);
        }
        else if (qualifierType == "blend_support_softlight")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::Softlight, &qualifier);
        }
        else if (qualifierType == "blend_support_difference")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::Difference, &qualifier);
        }
        else if (qualifierType == "blend_support_exclusion")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::Exclusion, &qualifier);
        }
        else if (qualifierType == "blend_support_hsl_hue")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::HslHue, &qualifier);
        }
        else if (qualifierType == "blend_support_hsl_saturation")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::HslSaturation, &qualifier);
        }
        else if (qualifierType == "blend_support_hsl_color")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::HslColor, &qualifier);
        }
        else if (qualifierType == "blend_support_hsl_luminosity")
        {
            AddAdvancedBlendEquation(gl::BlendEquationType::HslLuminosity, &qualifier);
        }
        else if (qualifierType == "blend_support_all_equations")
        {
            qualifier.advancedBlendEquations.setAll();
        }
        else if (qualifierType == "depth_any")
        {
            qualifier.depth = EdAny;
        }
        else if (qualifierType == "depth_greater")
        {
            qualifier.depth = EdGreater;
        }
        else if (qualifierType == "depth_less")
        {
            qualifier.depth = EdLess;
        }
        else if (qualifierType == "depth_unchanged" && !sh::IsWebGLBasedSpec(mShaderSpec))
        {
            qualifier.depth = EdUnchanged;
        }
        else
        {
            error(qualifierTypeLine, "invalid layout qualifier", qualifierType);
        }
        if (qualifier.advancedBlendEquations.any() && mShaderVersion < 320)
        {
            if (!checkCanUseExtension(qualifierTypeLine, TExtension::KHR_blend_equation_advanced))
            {
                qualifier.advancedBlendEquations.reset();
            }
        }
    }
    else
    {
        error(qualifierTypeLine, "invalid layout qualifier", qualifierType);
    }
    return qualifier;
}
void TParseContext::parseLocalSize(const ImmutableString &qualifierType,
                                   const TSourceLoc &qualifierTypeLine,
                                   int intValue,
                                   const TSourceLoc &intValueLine,
                                   const std::string &intValueString,
                                   size_t index,
                                   sh::WorkGroupSize *localSize)
{
    checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
    if (intValue < 1)
    {
        std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
        reasonStream << "out of range: " << getWorkGroupSizeString(index) << " must be positive";
        std::string reason = reasonStream.str();
        error(intValueLine, reason.c_str(), intValueString.c_str());
    }
    (*localSize)[index] = intValue;
}
void TParseContext::parseNumViews(int intValue,
                                  const TSourceLoc &intValueLine,
                                  const std::string &intValueString,
                                  int *numViews)
{
    // This error is only specified in WebGL, but tightens unspecified behavior in the native
    // specification.
    if (intValue < 1)
    {
        error(intValueLine, "out of range: num_views must be positive", intValueString.c_str());
    }
    *numViews = intValue;
}
void TParseContext::parseInvocations(int intValue,
                                     const TSourceLoc &intValueLine,
                                     const std::string &intValueString,
                                     int *numInvocations)
{
    // Although SPEC isn't clear whether invocations can be less than 1, we add this limit because
    // it doesn't make sense to accept invocations <= 0.
    if (intValue < 1 || intValue > mMaxGeometryShaderInvocations)
    {
        error(intValueLine,
              "out of range: invocations must be in the range of [1, "
              "MAX_GEOMETRY_SHADER_INVOCATIONS_OES]",
              intValueString.c_str());
    }
    else
    {
        *numInvocations = intValue;
    }
}
void TParseContext::parseMaxVertices(int intValue,
                                     const TSourceLoc &intValueLine,
                                     const std::string &intValueString,
                                     int *maxVertices)
{
    // Although SPEC isn't clear whether max_vertices can be less than 0, we add this limit because
    // it doesn't make sense to accept max_vertices < 0.
    if (intValue < 0 || intValue > mMaxGeometryShaderMaxVertices)
    {
        error(
            intValueLine,
            "out of range: max_vertices must be in the range of [0, gl_MaxGeometryOutputVertices]",
            intValueString.c_str());
    }
    else
    {
        *maxVertices = intValue;
    }
}
void TParseContext::parseVertices(int intValue,
                                  const TSourceLoc &intValueLine,
                                  const std::string &intValueString,
                                  int *vertices)
{
    if (intValue < 1 || intValue > mMaxPatchVertices)
    {
        error(intValueLine,
              "out of range : vertices must be in the range of [1, gl_MaxPatchVertices]",
              intValueString.c_str());
    }
    else
    {
        *vertices = intValue;
    }
}
void TParseContext::parseIndexLayoutQualifier(int intValue,
                                              const TSourceLoc &intValueLine,
                                              const std::string &intValueString,
                                              int *index)
{
    // EXT_blend_func_extended specifies that most validation should happen at link time, but since
    // we're validating output variable locations at compile time, it makes sense to validate that
    // index is 0 or 1 also at compile time. Also since we use "-1" as a placeholder for unspecified
    // index, we can't accept it here.
    if (intValue < 0 || intValue > 1)
    {
        error(intValueLine, "out of range: index layout qualifier can only be 0 or 1",
              intValueString.c_str());
    }
    else
    {
        *index = intValue;
    }
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const ImmutableString &qualifierType,
                                                     const TSourceLoc &qualifierTypeLine,
                                                     int intValue,
                                                     const TSourceLoc &intValueLine)
{
    TLayoutQualifier qualifier = TLayoutQualifier::Create();
    std::string intValueString = Str(intValue);
    if (qualifierType == "location")
    {
        // must check that location is non-negative
        if (intValue < 0)
        {
            error(intValueLine, "out of range: location must be non-negative",
                  intValueString.c_str());
        }
        else
        {
            qualifier.location           = intValue;
            qualifier.locationsSpecified = 1;
        }
    }
    else if (qualifierType == "binding")
    {
        if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
        {
            checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        }
        if (intValue < 0)
        {
            error(intValueLine, "out of range: binding must be non-negative",
                  intValueString.c_str());
        }
        else
        {
            qualifier.binding = intValue;
        }
    }
    else if (qualifierType == "offset")
    {
        checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
        if (intValue < 0)
        {
            error(intValueLine, "out of range: offset must be non-negative",
                  intValueString.c_str());
        }
        else
        {
            qualifier.offset = intValue;
        }
    }
    else if (qualifierType == "local_size_x")
    {
        parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u,
                       &qualifier.localSize);
    }
    else if (qualifierType == "local_size_y")
    {
        parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u,
                       &qualifier.localSize);
    }
    else if (qualifierType == "local_size_z")
    {
        parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u,
                       &qualifier.localSize);
    }
    else if (qualifierType == "num_views" && mShaderType == GL_VERTEX_SHADER)
    {
        if (checkCanUseOneOfExtensions(
                qualifierTypeLine, std::array<TExtension, 2u>{
                                       {TExtension::OVR_multiview, TExtension::OVR_multiview2}}))
        {
            parseNumViews(intValue, intValueLine, intValueString, &qualifier.numViews);
        }
    }
    else if (qualifierType == "invocations" && mShaderType == GL_GEOMETRY_SHADER_EXT &&
             (mShaderVersion >= 320 ||
              checkCanUseOneOfExtensions(
                  qualifierTypeLine,
                  std::array<TExtension, 2u>{
                      {TExtension::EXT_geometry_shader, TExtension::OES_geometry_shader}})))
    {
        parseInvocations(intValue, intValueLine, intValueString, &qualifier.invocations);
    }
    else if (qualifierType == "max_vertices" && mShaderType == GL_GEOMETRY_SHADER_EXT &&
             (mShaderVersion >= 320 ||
              checkCanUseOneOfExtensions(
                  qualifierTypeLine,
                  std::array<TExtension, 2u>{
                      {TExtension::EXT_geometry_shader, TExtension::OES_geometry_shader}})))
    {
        parseMaxVertices(intValue, intValueLine, intValueString, &qualifier.maxVertices);
    }
    else if (qualifierType == "index" && mShaderType == GL_FRAGMENT_SHADER &&
             checkCanUseExtension(qualifierTypeLine, TExtension::EXT_blend_func_extended))
    {
        parseIndexLayoutQualifier(intValue, intValueLine, intValueString, &qualifier.index);
        if (intValue != 0)
        {
            errorIfPLSDeclared(qualifierTypeLine, PLSIllegalOperations::FragDataIndexNonzero);
        }
    }
    else if (qualifierType == "vertices" && mShaderType == GL_TESS_CONTROL_SHADER_EXT &&
             (mShaderVersion >= 320 ||
              checkCanUseOneOfExtensions(
                  qualifierTypeLine,
                  std::array<TExtension, 2u>{
                      {TExtension::EXT_tessellation_shader, TExtension::OES_tessellation_shader}})))
    {
        parseVertices(intValue, intValueLine, intValueString, &qualifier.vertices);
    }
    else
    {
        error(qualifierTypeLine, "invalid layout qualifier", qualifierType);
    }
    return qualifier;
}
TTypeQualifierBuilder *TParseContext::createTypeQualifierBuilder(const TSourceLoc &loc)
{
    return new TTypeQualifierBuilder(
        new TStorageQualifierWrapper(symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary, loc),
        mShaderVersion);
}
TStorageQualifierWrapper *TParseContext::parseGlobalStorageQualifier(TQualifier qualifier,
                                                                     const TSourceLoc &loc)
{
    checkIsAtGlobalLevel(loc, getQualifierString(qualifier));
    return new TStorageQualifierWrapper(qualifier, loc);
}
TStorageQualifierWrapper *TParseContext::parseVaryingQualifier(const TSourceLoc &loc)
{
    if (getShaderType() == GL_VERTEX_SHADER)
    {
        return parseGlobalStorageQualifier(EvqVaryingOut, loc);
    }
    return parseGlobalStorageQualifier(EvqVaryingIn, loc);
}
TStorageQualifierWrapper *TParseContext::parseInQualifier(const TSourceLoc &loc)
{
    if (declaringFunction())
    {
        return new TStorageQualifierWrapper(EvqParamIn, loc);
    }
    switch (getShaderType())
    {
        case GL_VERTEX_SHADER:
        {
            if (mShaderVersion < 300 && !anyMultiviewExtensionAvailable())
            {
                error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in");
            }
            return new TStorageQualifierWrapper(EvqVertexIn, loc);
        }
        case GL_FRAGMENT_SHADER:
        {
            if (mShaderVersion < 300)
            {
                error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in");
            }
            return new TStorageQualifierWrapper(EvqFragmentIn, loc);
        }
        case GL_COMPUTE_SHADER:
        {
            return new TStorageQualifierWrapper(EvqComputeIn, loc);
        }
        case GL_GEOMETRY_SHADER:
        {
            return new TStorageQualifierWrapper(EvqGeometryIn, loc);
        }
        case GL_TESS_CONTROL_SHADER:
        {
            return new TStorageQualifierWrapper(EvqTessControlIn, loc);
        }
        case GL_TESS_EVALUATION_SHADER:
        {
            return new TStorageQualifierWrapper(EvqTessEvaluationIn, loc);
        }
        default:
        {
            UNREACHABLE();
            return new TStorageQualifierWrapper(EvqLast, loc);
        }
    }
}
TStorageQualifierWrapper *TParseContext::parseOutQualifier(const TSourceLoc &loc)
{
    if (declaringFunction())
    {
        return new TStorageQualifierWrapper(EvqParamOut, loc);
    }
    switch (getShaderType())
    {
        case GL_VERTEX_SHADER:
        {
            if (mShaderVersion < 300)
            {
                error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out");
            }
            return new TStorageQualifierWrapper(EvqVertexOut, loc);
        }
        case GL_FRAGMENT_SHADER:
        {
            if (mShaderVersion < 300)
            {
                error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out");
            }
            return new TStorageQualifierWrapper(EvqFragmentOut, loc);
        }
        case GL_COMPUTE_SHADER:
        {
            error(loc, "storage qualifier isn't supported in compute shaders", "out");
            return new TStorageQualifierWrapper(EvqParamOut, loc);
        }
        case GL_GEOMETRY_SHADER_EXT:
        {
            return new TStorageQualifierWrapper(EvqGeometryOut, loc);
        }
        case GL_TESS_CONTROL_SHADER_EXT:
        {
            return new TStorageQualifierWrapper(EvqTessControlOut, loc);
        }
        case GL_TESS_EVALUATION_SHADER_EXT:
        {
            return new TStorageQualifierWrapper(EvqTessEvaluationOut, loc);
        }
        default:
        {
            UNREACHABLE();
            return new TStorageQualifierWrapper(EvqLast, loc);
        }
    }
}
TStorageQualifierWrapper *TParseContext::parseInOutQualifier(const TSourceLoc &loc)
{
    if (!declaringFunction())
    {
        if (mShaderVersion < 300)
        {
            error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "inout");
        }
        if (getShaderType() != GL_FRAGMENT_SHADER)
        {
            error(loc, "storage qualifier isn't supported in non-fragment shaders", "inout");
        }
        if (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) ||
            isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent))
        {
            return new TStorageQualifierWrapper(EvqFragmentInOut, loc);
        }
        error(loc,
              "invalid qualifier: can be used with either function parameters or the variables for "
              "fetching input attachment data",
              "inout");
    }
    return new TStorageQualifierWrapper(EvqParamInOut, loc);
}
TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier,
                                                     TLayoutQualifier rightQualifier,
                                                     const TSourceLoc &rightQualifierLocation)
{
    return sh::JoinLayoutQualifiers(leftQualifier, rightQualifier, rightQualifierLocation,
                                    mDiagnostics);
}
TDeclarator *TParseContext::parseStructDeclarator(const ImmutableString &identifier,
                                                  const TSourceLoc &loc)
{
    return new TDeclarator(identifier, loc);
}
TDeclarator *TParseContext::parseStructArrayDeclarator(const ImmutableString &identifier,
                                                       const TSourceLoc &loc,
                                                       const TVector<unsigned int> *arraySizes)
{
    return new TDeclarator(identifier, arraySizes, loc);
}
void TParseContext::checkDoesNotHaveDuplicateFieldNames(const TFieldList *fields,
                                                        const TSourceLoc &location)
{
    TUnorderedMap<ImmutableString, uint32_t, ImmutableString::FowlerNollVoHash<sizeof(size_t)>>
        fieldNames;
    for (TField *field : *fields)
    {
        // Note: operator[] adds this name to the map if it doesn't already exist, and initializes
        // its value to 0.
        uint32_t count = ++fieldNames[field->name()];
        if (count != 1)
        {
            error(location, "Duplicate field name in structure", field->name());
        }
    }
}
void TParseContext::checkDoesNotHaveTooManyFields(const ImmutableString &name,
                                                  const TFieldList *fields,
                                                  const TSourceLoc &location)
{
    // Check that there are not too many fields.  SPIR-V has a limit of 16383 fields, and it would
    // be reasonable to apply that limit to all outputs.  For example, it was observed that 32768
    // fields cause the Nvidia GL driver to fail compilation, so such a limit is not too specific to
    // SPIR-V.
    constexpr size_t kMaxFieldCount = 16383;
    if (fields->size() > kMaxFieldCount)
    {
        error(location, "Too many fields in the struct (limit is 16383)", name);
    }
}
TFieldList *TParseContext::addStructFieldList(TFieldList *fields, const TSourceLoc &location)
{
    return fields;
}
TFieldList *TParseContext::combineStructFieldLists(TFieldList *processedFields,
                                                   const TFieldList *newlyAddedFields,
                                                   const TSourceLoc &location)
{
    processedFields->insert(processedFields->end(), newlyAddedFields->begin(),
                            newlyAddedFields->end());
    return processedFields;
}
TFieldList *TParseContext::addStructDeclaratorListWithQualifiers(
    const TTypeQualifierBuilder &typeQualifierBuilder,
    TPublicType *typeSpecifier,
    const TDeclaratorList *declaratorList)
{
    TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
    typeSpecifier->qualifier       = typeQualifier.qualifier;
    typeSpecifier->layoutQualifier = typeQualifier.layoutQualifier;
    typeSpecifier->memoryQualifier = typeQualifier.memoryQualifier;
    typeSpecifier->invariant       = typeQualifier.invariant;
    typeSpecifier->precise         = typeQualifier.precise;
    if (typeQualifier.precision != EbpUndefined)
    {
        typeSpecifier->precision = typeQualifier.precision;
    }
    return addStructDeclaratorList(*typeSpecifier, declaratorList);
}
TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier,
                                                   const TDeclaratorList *declaratorList)
{
    checkPrecisionSpecified(typeSpecifier.getLine(), typeSpecifier.precision,
                            typeSpecifier.getBasicType());
    checkIsNonVoid(typeSpecifier.getLine(), (*declaratorList)[0]->name(),
                   typeSpecifier.getBasicType());
    checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), typeSpecifier.layoutQualifier);
    checkEarlyFragmentTestsIsNotSpecified(typeSpecifier.getLine(),
                                          typeSpecifier.layoutQualifier.earlyFragmentTests);
    checkNoncoherentIsNotSpecified(typeSpecifier.getLine(),
                                   typeSpecifier.layoutQualifier.noncoherent);
    TFieldList *fieldList = new TFieldList();
    for (const TDeclarator *declarator : *declaratorList)
    {
        TType *type = new TType(typeSpecifier);
        if (declarator->isArray())
        {
            // Don't allow arrays of arrays in ESSL < 3.10.
            checkArrayElementIsNotArray(typeSpecifier.getLine(), typeSpecifier);
            type->makeArrays(*declarator->arraySizes());
        }
        SymbolType symbolType = SymbolType::UserDefined;
        if (declarator->name() == "gl_Position" || declarator->name() == "gl_PointSize" ||
            declarator->name() == "gl_ClipDistance" || declarator->name() == "gl_CullDistance")
        {
            symbolType = SymbolType::BuiltIn;
        }
        else
        {
            checkIsNotReserved(typeSpecifier.getLine(), declarator->name());
        }
        TField *field = new TField(type, declarator->name(), declarator->line(), symbolType);
        checkIsBelowStructNestingLimit(typeSpecifier.getLine(), *field);
        fieldList->push_back(field);
    }
    return fieldList;
}
TTypeSpecifierNonArray TParseContext::addStructure(const TSourceLoc &structLine,
                                                   const TSourceLoc &nameLine,
                                                   const ImmutableString &structName,
                                                   TFieldList *fieldList)
{
    SymbolType structSymbolType = SymbolType::UserDefined;
    if (structName.empty())
    {
        structSymbolType = SymbolType::Empty;
    }
    // To simplify pulling samplers out of structs, reorder the struct fields to put the samplers at
    // the end.
    TFieldList *reorderedFields = new TFieldList;
    for (TField *field : *fieldList)
    {
        if (!IsSampler(field->type()->getBasicType()))
        {
            reorderedFields->push_back(field);
        }
    }
    for (TField *field : *fieldList)
    {
        if (IsSampler(field->type()->getBasicType()))
        {
            reorderedFields->push_back(field);
        }
    }
    TStructure *structure =
        new TStructure(&symbolTable, structName, reorderedFields, structSymbolType);
    // Store a bool in the struct if we're at global scope, to allow us to
    // skip the local struct scoping workaround in HLSL.
    structure->setAtGlobalScope(symbolTable.atGlobalLevel());
    if (structSymbolType != SymbolType::Empty)
    {
        checkIsNotReserved(nameLine, structName);
        if (!symbolTable.declare(structure))
        {
            error(nameLine, "redefinition of a struct", structName);
        }
    }
    checkDoesNotHaveTooManyFields(structName, fieldList, structLine);
    // Ensure there are no duplicate field names
    checkDoesNotHaveDuplicateFieldNames(fieldList, structLine);
    // Ensure we do not specify any storage qualifiers on the struct members
    for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
    {
        TField &field              = *(*fieldList)[typeListIndex];
        const TQualifier qualifier = field.type()->getQualifier();
        switch (qualifier)
        {
            case EvqGlobal:
            case EvqTemporary:
                break;
            default:
                error(field.line(), "invalid qualifier on struct member",
                      getQualifierString(qualifier));
                break;
        }
        if (field.type()->isInvariant())
        {
            error(field.line(), "invalid qualifier on struct member", "invariant");
        }
        const TLayoutQualifier layoutQualifier = field.type()->getLayoutQualifier();
        if (!layoutQualifier.isEmpty())
        {
            error(field.line(), "invalid layout qualifier on struct member", "layout");
        }
        const TMemoryQualifier memoryQualifier = field.type()->getMemoryQualifier();
        if (!memoryQualifier.isEmpty())
        {
            error(field.line(), "invalid memory qualifier on struct member",
                  memoryQualifier.getAnyQualifierString());
        }
        if (field.type()->isPrecise())
        {
            error(field.line(), "invalid precise qualifier on struct member", "precise");
        }
        // ESSL 3.10 section 4.1.8 -- atomic_uint or images are not allowed as structure member.
        // ANGLE_shader_pixel_local_storage also disallows PLS as struct members.
        if (IsImage(field.type()->getBasicType()) ||
            IsAtomicCounter(field.type()->getBasicType()) ||
            IsPixelLocal(field.type()->getBasicType()))
        {
            error(field.line(), "disallowed type in struct", field.type()->getBasicString());
        }
        checkIsNotUnsizedArray(field.line(), "array members of structs must specify a size",
                               field.name(), field.type());
        checkMemoryQualifierIsNotSpecified(field.type()->getMemoryQualifier(), field.line());
        checkIndexIsNotSpecified(field.line(), field.type()->getLayoutQualifier().index);
        checkBindingIsNotSpecified(field.line(), field.type()->getLayoutQualifier().binding);
        checkLocationIsNotSpecified(field.line(), field.type()->getLayoutQualifier());
    }
    TTypeSpecifierNonArray typeSpecifierNonArray;
    typeSpecifierNonArray.initializeStruct(structure, true, structLine);
    exitStructDeclaration();
    return typeSpecifierNonArray;
}
TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init,
                                        TIntermBlock *statementList,
                                        const TSourceLoc &loc)
{
    TBasicType switchType = init->getBasicType();
    if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() ||
        init->isVector())
    {
        error(init->getLine(), "init-expression in a switch statement must be a scalar integer",
              "switch");
        return nullptr;
    }
    ASSERT(statementList);
    if (!ValidateSwitchStatementList(switchType, mDiagnostics, statementList, loc))
    {
        ASSERT(mDiagnostics->numErrors() > 0);
        return nullptr;
    }
    markStaticReadIfSymbol(init);
    TIntermSwitch *node = new TIntermSwitch(init, statementList);
    node->setLine(loc);
    return node;
}
TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc)
{
    if (mSwitchNestingLevel == 0)
    {
        error(loc, "case labels need to be inside switch statements", "case");
        return nullptr;
    }
    if (condition == nullptr)
    {
        error(loc, "case label must have a condition", "case");
        return nullptr;
    }
    if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) ||
        condition->isMatrix() || condition->isArray() || condition->isVector())
    {
        error(condition->getLine(), "case label must be a scalar integer", "case");
    }
    TIntermConstantUnion *conditionConst = condition->getAsConstantUnion();
    // ANGLE should be able to fold any EvqConst expressions resulting in an integer - but to be
    // safe against corner cases we still check for conditionConst. Some interpretations of the
    // spec have allowed constant expressions with side effects - like array length() method on a
    // non-constant array.
    if (condition->getQualifier() != EvqConst || conditionConst == nullptr)
    {
        error(condition->getLine(), "case label must be constant", "case");
    }
    TIntermCase *node = new TIntermCase(condition);
    node->setLine(loc);
    return node;
}
TIntermCase *TParseContext::addDefault(const TSourceLoc &loc)
{
    if (mSwitchNestingLevel == 0)
    {
        error(loc, "default labels need to be inside switch statements", "default");
        return nullptr;
    }
    TIntermCase *node = new TIntermCase(nullptr);
    node->setLine(loc);
    return node;
}
TIntermTyped *TParseContext::createUnaryMath(TOperator op,
                                             TIntermTyped *child,
                                             const TSourceLoc &loc,
                                             const TFunction *func)
{
    ASSERT(child != nullptr);
    switch (op)
    {
        case EOpLogicalNot:
            if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() ||
                child->isVector())
            {
                unaryOpError(loc, GetOperatorString(op), child->getType());
                return nullptr;
            }
            break;
        case EOpBitwiseNot:
            if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) ||
                child->isMatrix() || child->isArray())
            {
                unaryOpError(loc, GetOperatorString(op), child->getType());
                return nullptr;
            }
            break;
        case EOpPostIncrement:
        case EOpPreIncrement:
        case EOpPostDecrement:
        case EOpPreDecrement:
        case EOpNegative:
        case EOpPositive:
            if (child->getBasicType() == EbtStruct || child->isInterfaceBlock() ||
                child->getBasicType() == EbtBool || child->isArray() ||
                child->getBasicType() == EbtVoid || IsOpaqueType(child->getBasicType()))
            {
                unaryOpError(loc, GetOperatorString(op), child->getType());
                return nullptr;
            }
            break;
        // Operators for math built-ins are already type checked against their prototype.
        default:
            break;
    }
    if (child->getMemoryQualifier().writeonly)
    {
        const char *opStr =
            BuiltInGroup::IsBuiltIn(op) ? func->name().data() : GetOperatorString(op);
        unaryOpError(loc, opStr, child->getType());
        return nullptr;
    }
    markStaticReadIfSymbol(child);
    TIntermUnary *node = new TIntermUnary(op, child, func);
    node->setLine(loc);
    return node->fold(mDiagnostics);
}
TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
{
    ASSERT(op != EOpNull);
    TIntermTyped *node = createUnaryMath(op, child, loc, nullptr);
    if (node == nullptr)
    {
        return child;
    }
    return node;
}
TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op,
                                                TIntermTyped *child,
                                                const TSourceLoc &loc)
{
    checkCanBeLValue(loc, GetOperatorString(op), child);
    return addUnaryMath(op, child, loc);
}
TIntermTyped *TParseContext::expressionOrFoldedResult(TIntermTyped *expression)
{
    // If we can, we should return the folded version of the expression for subsequent parsing. This
    // enables folding the containing expression during parsing as well, instead of the separate
    // FoldExpressions() step where folding nested expressions requires multiple full AST
    // traversals.
    // Even if folding fails the fold() functions return some node representing the expression,
    // typically the original node. So "folded" can be assumed to be non-null.
    TIntermTyped *folded = expression->fold(mDiagnostics);
    ASSERT(folded != nullptr);
    if (folded->getQualifier() == expression->getQualifier())
    {
        // We need this expression to have the correct qualifier when validating the consuming
        // expression. So we can only return the folded node from here in case it has the same
        // qualifier as the original expression. In this kind of a cases the qualifier of the folded
        // node is EvqConst, whereas the qualifier of the expression is EvqTemporary:
        //  1. (true ? 1.0 : non_constant)
        //  2. (non_constant, 1.0)
        return folded;
    }
    return expression;
}
bool TParseContext::binaryOpCommonCheck(TOperator op,
                                        TIntermTyped *left,
                                        TIntermTyped *right,
                                        const TSourceLoc &loc)
{
    if (left->getBasicType() == EbtVoid || right->getBasicType() == EbtVoid)
    {
        error(loc, "operation with void operands", GetOperatorString(op));
        return false;
    }
    // Check opaque types are not allowed to be operands in expressions other than array indexing
    // and structure member selection.
    if (IsOpaqueType(left->getBasicType()) || IsOpaqueType(right->getBasicType()))
    {
        switch (op)
        {
            case EOpIndexDirect:
            case EOpIndexIndirect:
                break;
            default:
                ASSERT(op != EOpIndexDirectStruct);
                error(loc, "Invalid operation for variables with an opaque type",
                      GetOperatorString(op));
                return false;
        }
    }
    if (right->getMemoryQualifier().writeonly)
    {
        error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op));
        return false;
    }
    if (left->getMemoryQualifier().writeonly)
    {
        switch (op)
        {
            case EOpAssign:
            case EOpInitialize:
            case EOpIndexDirect:
            case EOpIndexIndirect:
            case EOpIndexDirectStruct:
            case EOpIndexDirectInterfaceBlock:
                break;
            default:
                error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op));
                return false;
        }
    }
    if (left->getType().getStruct() || right->getType().getStruct())
    {
        switch (op)
        {
            case EOpIndexDirectStruct:
                ASSERT(left->getType().getStruct());
                break;
            case EOpEqual:
            case EOpNotEqual:
            case EOpAssign:
            case EOpInitialize:
                if (left->getType() != right->getType())
                {
                    return false;
                }
                break;
            default:
                error(loc, "Invalid operation for structs", GetOperatorString(op));
                return false;
        }
    }
    if (left->isInterfaceBlock() || right->isInterfaceBlock())
    {
        switch (op)
        {
            case EOpIndexDirectInterfaceBlock:
                ASSERT(left->getType().getInterfaceBlock());
                break;
            default:
                error(loc, "Invalid operation for interface blocks", GetOperatorString(op));
                return false;
        }
    }
    if (left->isArray() != right->isArray())
    {
        error(loc, "array / non-array mismatch", GetOperatorString(op));
        return false;
    }
    if (left->isArray())
    {
        ASSERT(right->isArray());
        if (mShaderVersion < 300)
        {
            error(loc, "Invalid operation for arrays", GetOperatorString(op));
            return false;
        }
        switch (op)
        {
            case EOpEqual:
            case EOpNotEqual:
            case EOpAssign:
            case EOpInitialize:
                break;
            default:
                error(loc, "Invalid operation for arrays", GetOperatorString(op));
                return false;
        }
        // At this point, size of implicitly sized arrays should be resolved.
        if (left->getType().getArraySizes() != right->getType().getArraySizes())
        {
            error(loc, "array size mismatch", GetOperatorString(op));
            return false;
        }
    }
    // Check ops which require integer / ivec parameters
    bool isBitShift = false;
    switch (op)
    {
        case EOpBitShiftLeft:
        case EOpBitShiftRight:
        case EOpBitShiftLeftAssign:
        case EOpBitShiftRightAssign:
            // Unsigned can be bit-shifted by signed and vice versa, but we need to
            // check that the basic type is an integer type.
            isBitShift = true;
            if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType()))
            {
                return false;
            }
            break;
        case EOpBitwiseAnd:
        case EOpBitwiseXor:
        case EOpBitwiseOr:
        case EOpBitwiseAndAssign:
        case EOpBitwiseXorAssign:
        case EOpBitwiseOrAssign:
            // It is enough to check the type of only one operand, since later it
            // is checked that the operand types match.
            if (!IsInteger(left->getBasicType()))
            {
                return false;
            }
            break;
        default:
            break;
    }
    // Implicit type casting is not allowed in ESSL.
    if (!isBitShift && left->getBasicType() != right->getBasicType())
    {
        return false;
    }
    // Check that:
    // 1. Type sizes match exactly on ops that require that.
    // 2. Restrictions for structs that contain arrays or samplers are respected.
    // 3. Arithmetic op type dimensionality restrictions for ops other than multiply are respected.
    switch (op)
    {
        case EOpAssign:
        case EOpInitialize:
        case EOpEqual:
        case EOpNotEqual:
            // ESSL 1.00 sections 5.7, 5.8, 5.9
            if (mShaderVersion < 300 && left->getType().isStructureContainingArrays())
            {
                error(loc, "undefined operation for structs containing arrays",
                      GetOperatorString(op));
                return false;
            }
            // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7,
            // we interpret the spec so that this extends to structs containing samplers,
            // similarly to ESSL 1.00 spec.
            if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) &&
                left->getType().isStructureContainingSamplers())
            {
                error(loc, "undefined operation for structs containing samplers",
                      GetOperatorString(op));
                return false;
            }
            if ((left->getNominalSize() != right->getNominalSize()) ||
                (left->getSecondarySize() != right->getSecondarySize()))
            {
                error(loc, "dimension mismatch", GetOperatorString(op));
                return false;
            }
            break;
        case EOpLessThan:
        case EOpGreaterThan:
        case EOpLessThanEqual:
        case EOpGreaterThanEqual:
            if (!left->isScalar() || !right->isScalar())
            {
                error(loc, "comparison operator only defined for scalars", GetOperatorString(op));
                return false;
            }
            break;
        case EOpAdd:
        case EOpSub:
        case EOpDiv:
        case EOpIMod:
        case EOpBitShiftLeft:
        case EOpBitShiftRight:
        case EOpBitwiseAnd:
        case EOpBitwiseXor:
        case EOpBitwiseOr:
        case EOpAddAssign:
        case EOpSubAssign:
        case EOpDivAssign:
        case EOpIModAssign:
        case EOpBitShiftLeftAssign:
        case EOpBitShiftRightAssign:
        case EOpBitwiseAndAssign:
        case EOpBitwiseXorAssign:
        case EOpBitwiseOrAssign:
            if ((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix()))
            {
                return false;
            }
            // Are the sizes compatible?
            if (left->getNominalSize() != right->getNominalSize() ||
                left->getSecondarySize() != right->getSecondarySize())
            {
                // If the nominal sizes of operands do not match:
                // One of them must be a scalar.
                if (!left->isScalar() && !right->isScalar())
                    return false;
                // In the case of compound assignment other than multiply-assign,
                // the right side needs to be a scalar. Otherwise a vector/matrix
                // would be assigned to a scalar. A scalar can't be shifted by a
                // vector either.
                if (!right->isScalar() &&
                    (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight))
                    return false;
            }
            break;
        default:
            break;
    }
    switch (op)
    {
        case EOpLogicalOr:
        case EOpLogicalXor:
        case EOpLogicalAnd:
            // Above operations are only supported on booleans
            ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
                   !right->getType().getStruct());
            if (left->getBasicType() != EbtBool || !left->isScalar() || !right->isScalar())
            {
                return false;
            }
            // Basic types matching should have been already checked.
            ASSERT(right->getBasicType() == EbtBool);
            break;
        case EOpAdd:
        case EOpAddAssign:
        case EOpSub:
        case EOpSubAssign:
        case EOpDiv:
        case EOpDivAssign:
        case EOpMul:
        case EOpMulAssign:
            // Above operations are not supported on booleans
            ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
                   !right->getType().getStruct());
            if (left->getBasicType() == EbtBool)
            {
                return false;
            }
            break;
        case EOpIMod:
        case EOpIModAssign:
            // Mod operator only supported on integers
            // Note that this is only for the % operator, not for mod()
            ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
                   !right->getType().getStruct());
            if (left->getBasicType() != EbtInt && left->getBasicType() != EbtUInt)
            {
                return false;
            }
            break;
        default:
            break;
    }
    return true;
}
bool TParseContext::isMultiplicationTypeCombinationValid(TOperator op,
                                                         const TType &left,
                                                         const TType &right)
{
    switch (op)
    {
        case EOpMul:
        case EOpMulAssign:
            return left.getNominalSize() == right.getNominalSize() &&
                   left.getSecondarySize() == right.getSecondarySize();
        case EOpVectorTimesScalar:
            return true;
        case EOpVectorTimesScalarAssign:
            ASSERT(!left.isMatrix() && !right.isMatrix());
            return left.isVector() && !right.isVector();
        case EOpVectorTimesMatrix:
            return left.getNominalSize() == right.getRows();
        case EOpVectorTimesMatrixAssign:
            ASSERT(!left.isMatrix() && right.isMatrix());
            return left.isVector() && left.getNominalSize() == right.getRows() &&
                   left.getNominalSize() == right.getCols();
        case EOpMatrixTimesVector:
            return left.getCols() == right.getNominalSize();
        case EOpMatrixTimesScalar:
            return true;
        case EOpMatrixTimesScalarAssign:
            ASSERT(left.isMatrix() && !right.isMatrix());
            return !right.isVector();
        case EOpMatrixTimesMatrix:
            return left.getCols() == right.getRows();
        case EOpMatrixTimesMatrixAssign:
            ASSERT(left.isMatrix() && right.isMatrix());
            // We need to check two things:
            // 1. The matrix multiplication step is valid.
            // 2. The result will have the same number of columns as the lvalue.
            return left.getCols() == right.getRows() && left.getCols() == right.getCols();
        default:
            UNREACHABLE();
            return false;
    }
}
TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op,
                                                   TIntermTyped *left,
                                                   TIntermTyped *right,
                                                   const TSourceLoc &loc)
{
    if (!binaryOpCommonCheck(op, left, right, loc))
    {
        return nullptr;
    }
    if (op == EOpMul)
    {
        op = TIntermBinary::GetMulOpBasedOnOperands(left->getType(), right->getType());
        if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
        {
            return nullptr;
        }
    }
    TIntermBinary *node = new TIntermBinary(op, left, right);
    ASSERT(op != EOpAssign);
    markStaticReadIfSymbol(left);
    markStaticReadIfSymbol(right);
    node->setLine(loc);
    return expressionOrFoldedResult(node);
}
TIntermTyped *TParseContext::addBinaryMath(TOperator op,
                                           TIntermTyped *left,
                                           TIntermTyped *right,
                                           const TSourceLoc &loc)
{
    TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
    if (node == nullptr)
    {
        binaryOpError(loc, GetOperatorString(op), left->getType(), right->getType());
        return left;
    }
    return node;
}
TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op,
                                                        TIntermTyped *left,
                                                        TIntermTyped *right,
                                                        const TSourceLoc &loc)
{
    TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
    if (node == nullptr)
    {
        binaryOpError(loc, GetOperatorString(op), left->getType(), right->getType());
        node = CreateBoolNode(false);
        node->setLine(loc);
    }
    return node;
}
TIntermTyped *TParseContext::addAssign(TOperator op,
                                       TIntermTyped *left,
                                       TIntermTyped *right,
                                       const TSourceLoc &loc)
{
    checkCanBeLValue(loc, "assign", left);
    TIntermBinary *node = nullptr;
    if (binaryOpCommonCheck(op, left, right, loc))
    {
        TIntermBinary *lValue = left->getAsBinaryNode();
        if ((lValue != nullptr) &&
            (lValue->getOp() == EOpIndexIndirect || lValue->getOp() == EOpIndexDirect) &&
            IsTessellationControlShaderOutput(mShaderType, lValue->getLeft()->getQualifier()))
        {
            checkTCSOutVarIndexIsValid(lValue, loc);
        }
        if (op == EOpMulAssign)
        {
            op = TIntermBinary::GetMulAssignOpBasedOnOperands(left->getType(), right->getType());
            if (isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
            {
                node = new TIntermBinary(op, left, right);
            }
        }
        else
        {
            node = new TIntermBinary(op, left, right);
        }
    }
    if (node == nullptr)
    {
        assignError(loc, "assign", left->getType(), right->getType());
        return left;
    }
    if (op != EOpAssign)
    {
        markStaticReadIfSymbol(left);
    }
    markStaticReadIfSymbol(right);
    node->setLine(loc);
    return node;
}
TIntermTyped *TParseContext::addComma(TIntermTyped *left,
                                      TIntermTyped *right,
                                      const TSourceLoc &loc)
{
    // WebGL2 section 5.26, the following results in an error:
    // "Sequence operator applied to void, arrays, or structs containing arrays"
    if (mShaderSpec == SH_WEBGL2_SPEC &&
        (left->isArray() || left->getBasicType() == EbtVoid ||
         left->getType().isStructureContainingArrays() || right->isArray() ||
         right->getBasicType() == EbtVoid || right->getType().isStructureContainingArrays()))
    {
        error(loc,
              "sequence operator is not allowed for void, arrays, or structs containing arrays",
              ",");
    }
    if (left->isInterfaceBlock() || right->isInterfaceBlock())
    {
        error(loc, "sequence operator is not allowed for interface blocks", ",");
    }
    TIntermBinary *commaNode = TIntermBinary::CreateComma(left, right, mShaderVersion);
    markStaticReadIfSymbol(left);
    markStaticReadIfSymbol(right);
    commaNode->setLine(loc);
    return expressionOrFoldedResult(commaNode);
}
TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc)
{
    switch (op)
    {
        case EOpContinue:
            if (mLoopNestingLevel <= 0)
            {
                error(loc, "continue statement only allowed in loops", "");
            }
            break;
        case EOpBreak:
            if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0)
            {
                error(loc, "break statement only allowed in loops and switch statements", "");
            }
            break;
        case EOpReturn:
            if (mCurrentFunctionType->getBasicType() != EbtVoid)
            {
                error(loc, "non-void function must return a value", "return");
            }
            if (mDeclaringMain)
            {
                errorIfPLSDeclared(loc, PLSIllegalOperations::ReturnFromMain);
            }
            break;
        case EOpKill:
            if (mShaderType != GL_FRAGMENT_SHADER)
            {
                error(loc, "discard supported in fragment shaders only", "discard");
            }
            else
            {
                errorIfPLSDeclared(loc, PLSIllegalOperations::Discard);
            }
            mHasDiscard = true;
            break;
        default:
            UNREACHABLE();
            break;
    }
    return addBranch(op, nullptr, loc);
}
TIntermBranch *TParseContext::addBranch(TOperator op,
                                        TIntermTyped *expression,
                                        const TSourceLoc &loc)
{
    if (expression != nullptr)
    {
        markStaticReadIfSymbol(expression);
        ASSERT(op == EOpReturn);
        mFunctionReturnsValue = true;
        if (mCurrentFunctionType->getBasicType() == EbtVoid)
        {
            error(loc, "void function cannot return a value", "return");
        }
        else if (*mCurrentFunctionType != expression->getType())
        {
            error(loc, "function return is not matching type:", "return");
        }
    }
    TIntermBranch *node = new TIntermBranch(op, expression);
    node->setLine(loc);
    return node;
}
void TParseContext::appendStatement(TIntermBlock *block, TIntermNode *statement)
{
    if (statement != nullptr)
    {
        markStaticReadIfSymbol(statement);
        block->appendStatement(statement);
    }
}
void TParseContext::checkTextureGather(TIntermAggregate *functionCall)
{
    const TOperator op    = functionCall->getOp();
    const TFunction *func = functionCall->getFunction();
    if (BuiltInGroup::IsTextureGather(op))
    {
        bool isTextureGatherOffsetOrOffsets =
            BuiltInGroup::IsTextureGatherOffset(op) || BuiltInGroup::IsTextureGatherOffsets(op);
        TIntermNode *componentNode = nullptr;
        TIntermSequence *arguments = functionCall->getSequence();
        ASSERT(arguments->size() >= 2u && arguments->size() <= 4u);
        const TIntermTyped *sampler = arguments->front()->getAsTyped();
        ASSERT(sampler != nullptr);
        switch (sampler->getBasicType())
        {
            case EbtSampler2D:
            case EbtISampler2D:
            case EbtUSampler2D:
            case EbtSampler2DArray:
            case EbtISampler2DArray:
            case EbtUSampler2DArray:
                if ((!isTextureGatherOffsetOrOffsets && arguments->size() == 3u) ||
                    (isTextureGatherOffsetOrOffsets && arguments->size() == 4u))
                {
                    componentNode = arguments->back();
                }
                break;
            case EbtSamplerCube:
            case EbtISamplerCube:
            case EbtUSamplerCube:
            case EbtSamplerCubeArray:
            case EbtISamplerCubeArray:
            case EbtUSamplerCubeArray:
                ASSERT(!isTextureGatherOffsetOrOffsets);
                if (arguments->size() == 3u)
                {
                    componentNode = arguments->back();
                }
                break;
            case EbtSampler2DShadow:
            case EbtSampler2DArrayShadow:
            case EbtSamplerCubeShadow:
            case EbtSamplerCubeArrayShadow:
                break;
            default:
                UNREACHABLE();
                break;
        }
        if (componentNode)
        {
            const TIntermConstantUnion *componentConstantUnion =
                componentNode->getAsConstantUnion();
            if (componentNode->getAsTyped()->getQualifier() != EvqConst || !componentConstantUnion)
            {
                error(functionCall->getLine(), "Texture component must be a constant expression",
                      func->name());
            }
            else
            {
                int component = componentConstantUnion->getIConst(0);
                if (component < 0 || component > 3)
                {
                    error(functionCall->getLine(), "Component must be in the range [0;3]",
                          func->name());
                }
            }
        }
    }
}
void TParseContext::checkTextureOffset(TIntermAggregate *functionCall)
{
    const TOperator op         = functionCall->getOp();
    const TFunction *func      = functionCall->getFunction();
    TIntermNode *offset        = nullptr;
    TIntermSequence *arguments = functionCall->getSequence();
    if (BuiltInGroup::IsTextureOffsetNoBias(op) || BuiltInGroup::IsTextureGatherOffsetNoComp(op) ||
        BuiltInGroup::IsTextureGatherOffsetRef(op) ||
        BuiltInGroup::IsTextureGatherOffsetsNoComp(op) ||
        BuiltInGroup::IsTextureGatherOffsetsRef(op))
    {
        offset = arguments->back();
    }
    else if (BuiltInGroup::IsTextureOffsetBias(op) || BuiltInGroup::IsTextureGatherOffsetComp(op) ||
             BuiltInGroup::IsTextureGatherOffsetsComp(op))
    {
        // A bias or comp parameter follows the offset parameter.
        ASSERT(arguments->size() >= 3);
        offset = (*arguments)[2];
    }
    // If not one of the above built-ins, there's nothing to do here.
    if (offset == nullptr)
    {
        return;
    }
    bool isTextureGatherOffset             = BuiltInGroup::IsTextureGatherOffset(op);
    bool isTextureGatherOffsets            = BuiltInGroup::IsTextureGatherOffsets(op);
    bool useTextureGatherOffsetConstraints = isTextureGatherOffset || isTextureGatherOffsets;
    int minOffsetValue =
        useTextureGatherOffsetConstraints ? mMinProgramTextureGatherOffset : mMinProgramTexelOffset;
    int maxOffsetValue =
        useTextureGatherOffsetConstraints ? mMaxProgramTextureGatherOffset : mMaxProgramTexelOffset;
    if (isTextureGatherOffsets)
    {
        // If textureGatherOffsets, the offsets parameter is an array, which is expected as an
        // aggregate constructor node or as a symbol node with a constant value.
        TIntermAggregate *offsetAggregate = offset->getAsAggregate();
        TIntermSymbol *offsetSymbol       = offset->getAsSymbolNode();
        const TConstantUnion *offsetValues = offsetAggregate ? offsetAggregate->getConstantValue()
                                             : offsetSymbol  ? offsetSymbol->getConstantValue()
                                                             : nullptr;
        if (offsetValues == nullptr)
        {
            error(functionCall->getLine(), "Texture offsets must be a constant expression",
                  func->name());
            return;
        }
        constexpr unsigned int kOffsetsCount = 4;
        const TType &offsetType =
            offsetAggregate != nullptr ? offsetAggregate->getType() : offsetSymbol->getType();
        if (offsetType.getNumArraySizes() != 1 || offsetType.getArraySizes()[0] != kOffsetsCount)
        {
            error(functionCall->getLine(), "Texture offsets must be an array of 4 elements",
                  func->name());
            return;
        }
        size_t size = offsetType.getObjectSize() / kOffsetsCount;
        for (unsigned int i = 0; i < kOffsetsCount; ++i)
        {
            checkSingleTextureOffset(offset->getLine(), &offsetValues[i * size], size,
                                     minOffsetValue, maxOffsetValue);
        }
    }
    else
    {
        // If textureOffset or textureGatherOffset, the offset is expected to be found as a constant
        // union.
        TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion();
        // ES3.2 or ES3.1's EXT_gpu_shader5 allow non-const offsets to be passed to
        // textureGatherOffset.
        bool textureGatherOffsetMustBeConst = mShaderVersion <= 310 &&
                                              !isExtensionEnabled(TExtension::EXT_gpu_shader5) &&
                                              !isExtensionEnabled(TExtension::OES_gpu_shader5);
        bool isOffsetConst =
            offset->getAsTyped()->getQualifier() == EvqConst && offsetConstantUnion != nullptr;
        bool offsetMustBeConst = !isTextureGatherOffset || textureGatherOffsetMustBeConst;
        if (!isOffsetConst && offsetMustBeConst)
        {
            error(functionCall->getLine(), "Texture offset must be a constant expression",
                  func->name());
            return;
        }
        // We cannot verify non-constant offsets to textureGatherOffset.
        if (offsetConstantUnion == nullptr)
        {
            ASSERT(!offsetMustBeConst);
            return;
        }
        size_t size                  = offsetConstantUnion->getType().getObjectSize();
        const TConstantUnion *values = offsetConstantUnion->getConstantValue();
        checkSingleTextureOffset(offset->getLine(), values, size, minOffsetValue, maxOffsetValue);
    }
}
void TParseContext::checkSingleTextureOffset(const TSourceLoc &line,
                                             const TConstantUnion *values,
                                             size_t size,
                                             int minOffsetValue,
                                             int maxOffsetValue)
{
    for (size_t i = 0u; i < size; ++i)
    {
        ASSERT(values[i].getType() == EbtInt);
        int offsetValue = values[i].getIConst();
        if (offsetValue > maxOffsetValue || offsetValue < minOffsetValue)
        {
            std::stringstream tokenStream = sh::InitializeStream<std::stringstream>();
            tokenStream << offsetValue;
            std::string token = tokenStream.str();
            error(line, "Texture offset value out of valid range", token.c_str());
        }
    }
}
void TParseContext::checkInterpolationFS(TIntermAggregate *functionCall)
{
    const TFunction *func = functionCall->getFunction();
    if (!BuiltInGroup::IsInterpolationFS(functionCall->getOp()))
    {
        return;
    }
    TIntermTyped *arg0 = nullptr;
    if (functionCall->getAsAggregate())
    {
        const TIntermSequence *argp = functionCall->getSequence();
        if (argp->size() > 0)
            arg0 = (*argp)[0]->getAsTyped();
    }
    else
    {
        assert(functionCall->getAsUnaryNode());
        arg0 = functionCall->getAsUnaryNode()->getOperand();
    }
    // Make sure the first argument is an interpolant, or an array element of an interpolant
    if (!IsVaryingIn(arg0->getType().getQualifier()))
    {
        // It might still be an array element.
        const TIntermTyped *base = FindLValueBase(arg0);
        if (base == nullptr || (!IsVaryingIn(base->getType().getQualifier())))
            error(arg0->getLine(),
                  "first argument must be an interpolant, or interpolant-array element",
                  func->name());
    }
}
void TParseContext::checkAtomicMemoryBuiltinFunctions(TIntermAggregate *functionCall)
{
    const TFunction *func = functionCall->getFunction();
    if (BuiltInGroup::IsAtomicMemory(functionCall->getOp()))
    {
        TIntermSequence *arguments = functionCall->getSequence();
        TIntermTyped *memNode      = (*arguments)[0]->getAsTyped();
        if (IsBufferOrSharedVariable(memNode))
        {
            return;
        }
        while (memNode->getAsBinaryNode() || memNode->getAsSwizzleNode())
        {
            // Child 0 is "left" if binary, and the expression being swizzled if swizzle.
            // Note: we don't need to check that the binary operation is one of EOp*Index*, as any
            // other operation will result in a temp value which cannot be passed to this
            // out/inout parameter anyway.
            memNode = memNode->getChildNode(0)->getAsTyped();
            if (IsBufferOrSharedVariable(memNode))
            {
                return;
            }
        }
        error(memNode->getLine(),
              "The value passed to the mem argument of an atomic memory function does not "
              "correspond to a buffer or shared variable.",
              func->name());
    }
}
// GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
void TParseContext::checkImageMemoryAccessForBuiltinFunctions(TIntermAggregate *functionCall)
{
    const TOperator op = functionCall->getOp();
    if (BuiltInGroup::IsImage(op))
    {
        TIntermSequence *arguments = functionCall->getSequence();
        TIntermTyped *imageNode    = (*arguments)[0]->getAsTyped();
        const TMemoryQualifier &memoryQualifier = imageNode->getMemoryQualifier();
        if (BuiltInGroup::IsImageStore(op))
        {
            if (memoryQualifier.readonly)
            {
                error(imageNode->getLine(),
                      "'imageStore' cannot be used with images qualified as 'readonly'",
                      GetImageArgumentToken(imageNode));
            }
        }
        else if (BuiltInGroup::IsImageLoad(op))
        {
            if (memoryQualifier.writeonly)
            {
                error(imageNode->getLine(),
                      "'imageLoad' cannot be used with images qualified as 'writeonly'",
                      GetImageArgumentToken(imageNode));
            }
        }
        else if (BuiltInGroup::IsImageAtomic(op))
        {
            if (memoryQualifier.readonly)
            {
                error(imageNode->getLine(),
                      "'imageAtomic' cannot be used with images qualified as 'readonly'",
                      GetImageArgumentToken(imageNode));
            }
            if (memoryQualifier.writeonly)
            {
                error(imageNode->getLine(),
                      "'imageAtomic' cannot be used with images qualified as 'writeonly'",
                      GetImageArgumentToken(imageNode));
            }
        }
    }
}
// GLSL ES 3.10 Revision 4, 13.51 Matching of Memory Qualifiers in Function Parameters
void TParseContext::checkImageMemoryAccessForUserDefinedFunctions(
    const TFunction *functionDefinition,
    const TIntermAggregate *functionCall)
{
    ASSERT(functionCall->getOp() == EOpCallFunctionInAST);
    const TIntermSequence &arguments = *functionCall->getSequence();
    ASSERT(functionDefinition->getParamCount() == arguments.size());
    for (size_t i = 0; i < arguments.size(); ++i)
    {
        TIntermTyped *typedArgument        = arguments[i]->getAsTyped();
        const TType &functionArgumentType  = typedArgument->getType();
        const TType &functionParameterType = functionDefinition->getParam(i)->getType();
        ASSERT(functionArgumentType.getBasicType() == functionParameterType.getBasicType());
        if (IsImage(functionArgumentType.getBasicType()))
        {
            const TMemoryQualifier &functionArgumentMemoryQualifier =
                functionArgumentType.getMemoryQualifier();
            const TMemoryQualifier &functionParameterMemoryQualifier =
                functionParameterType.getMemoryQualifier();
            if (functionArgumentMemoryQualifier.readonly &&
                !functionParameterMemoryQualifier.readonly)
            {
                error(functionCall->getLine(),
                      "Function call discards the 'readonly' qualifier from image",
                      GetImageArgumentToken(typedArgument));
            }
            if (functionArgumentMemoryQualifier.writeonly &&
                !functionParameterMemoryQualifier.writeonly)
            {
                error(functionCall->getLine(),
                      "Function call discards the 'writeonly' qualifier from image",
                      GetImageArgumentToken(typedArgument));
            }
            if (functionArgumentMemoryQualifier.coherent &&
                !functionParameterMemoryQualifier.coherent)
            {
                error(functionCall->getLine(),
                      "Function call discards the 'coherent' qualifier from image",
                      GetImageArgumentToken(typedArgument));
            }
            if (functionArgumentMemoryQualifier.volatileQualifier &&
                !functionParameterMemoryQualifier.volatileQualifier)
            {
                error(functionCall->getLine(),
                      "Function call discards the 'volatile' qualifier from image",
                      GetImageArgumentToken(typedArgument));
            }
        }
    }
}
TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunctionLookup *fnCall, const TSourceLoc &loc)
{
    if (fnCall->thisNode() != nullptr)
    {
        return addMethod(fnCall, loc);
    }
    if (fnCall->isConstructor())
    {
        return addConstructor(fnCall, loc);
    }
    return addNonConstructorFunctionCall(fnCall, loc);
}
TIntermTyped *TParseContext::addMethod(TFunctionLookup *fnCall, const TSourceLoc &loc)
{
    TIntermTyped *thisNode = fnCall->thisNode();
    // It's possible for the name pointer in the TFunction to be null in case it gets parsed as
    // a constructor. But such a TFunction can't reach here, since the lexer goes into FIELDS
    // mode after a dot, which makes type identifiers to be parsed as FIELD_SELECTION instead.
    // So accessing fnCall->name() below is safe.
    if (fnCall->name() != "length")
    {
        error(loc, "invalid method", fnCall->name());
    }
    else if (!fnCall->arguments().empty())
    {
        error(loc, "method takes no parameters", "length");
    }
    else if (!thisNode->isArray())
    {
        error(loc, "length can only be called on arrays", "length");
    }
    else if (thisNode->getQualifier() == EvqPerVertexIn &&
             mGeometryShaderInputPrimitiveType == EptUndefined)
    {
        ASSERT(mShaderType == GL_GEOMETRY_SHADER_EXT);
        error(loc, "missing input primitive declaration before calling length on gl_in", "length");
    }
    else
    {
        TIntermUnary *node = new TIntermUnary(EOpArrayLength, thisNode, nullptr);
        markStaticReadIfSymbol(thisNode);
        node->setLine(loc);
        return node->fold(mDiagnostics);
    }
    return CreateZeroNode(TType(EbtInt, EbpUndefined, EvqConst));
}
TIntermTyped *TParseContext::addNonConstructorFunctionCallImpl(TFunctionLookup *fnCall,
                                                               const TSourceLoc &loc)
{
    // First check whether the function has been hidden by a variable name or struct typename by
    // using the symbol looked up in the lexical phase. If the function is not hidden, look for one
    // with a matching argument list.
    if (fnCall->symbol() != nullptr && !fnCall->symbol()->isFunction())
    {
        error(loc, "function name expected", fnCall->name());
    }
    else
    {
        // There are no inner functions, so it's enough to look for user-defined functions in the
        // global scope.
        const TSymbol *symbol = symbolTable.findGlobal(fnCall->getMangledName());
        if (symbol != nullptr)
        {
            // A user-defined function - could be an overloaded built-in as well.
            ASSERT(symbol->symbolType() == SymbolType::UserDefined);
            const TFunction *fnCandidate = static_cast<const TFunction *>(symbol);
            TIntermAggregate *callNode =
                TIntermAggregate::CreateFunctionCall(*fnCandidate, &fnCall->arguments());
            callNode->setLine(loc);
            checkImageMemoryAccessForUserDefinedFunctions(fnCandidate, callNode);
            functionCallRValueLValueErrorCheck(fnCandidate, callNode);
            return callNode;
        }
        symbol = symbolTable.findBuiltIn(fnCall->getMangledName(), mShaderVersion);
        if (symbol != nullptr)
        {
            // A built-in function.
            ASSERT(symbol->symbolType() == SymbolType::BuiltIn);
            const TFunction *fnCandidate = static_cast<const TFunction *>(symbol);
            if (!fnCandidate->extensions().empty() &&
                fnCandidate->extensions()[0] != TExtension::UNDEFINED)
            {
                checkCanUseOneOfExtensions(loc, fnCandidate->extensions());
            }
            // All function calls are mapped to a built-in operation.
            TOperator op = fnCandidate->getBuiltInOp();
            if (BuiltInGroup::IsMath(op) && fnCandidate->getParamCount() == 1)
            {
                // Treat it like a built-in unary operator.
                TIntermNode *unaryParamNode = fnCall->arguments().front();
                return createUnaryMath(op, unaryParamNode->getAsTyped(), loc, fnCandidate);
            }
            TIntermAggregate *callNode =
                TIntermAggregate::CreateBuiltInFunctionCall(*fnCandidate, &fnCall->arguments());
            callNode->setLine(loc);
            if (UsesDerivatives(callNode))
            {
                mUsesDerivatives = true;
            }
            checkAtomicMemoryBuiltinFunctions(callNode);
            checkTextureOffset(callNode);
            checkTextureGather(callNode);
            checkInterpolationFS(callNode);
            checkImageMemoryAccessForBuiltinFunctions(callNode);
            // Some built-in functions have out parameters too.
            functionCallRValueLValueErrorCheck(fnCandidate, callNode);
            // See if we can constant fold a built-in. Note that this may be possible
            // even if it is not const-qualified.
            return callNode->fold(mDiagnostics);
        }
        else
        {
            error(loc, "no matching overloaded function found", fnCall->name());
        }
    }
    return nullptr;
}
TIntermTyped *TParseContext::addNonConstructorFunctionCall(TFunctionLookup *fnCall,
                                                           const TSourceLoc &loc)
{
    TIntermTyped *result = addNonConstructorFunctionCallImpl(fnCall, loc);
    if (result != nullptr)
    {
        return result;
    }
    // Error message was already written. Put on an unused node for error recovery.
    return CreateZeroNode(TType(EbtFloat, EbpMedium, EvqConst));
}
TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond,
                                                 TIntermTyped *trueExpression,
                                                 TIntermTyped *falseExpression,
                                                 const TSourceLoc &loc)
{
    if (!checkIsScalarBool(loc, cond))
    {
        return falseExpression;
    }
    if (trueExpression->getType() != falseExpression->getType())
    {
        TInfoSinkBase reasonStream;
        reasonStream << "mismatching ternary operator operand types '" << trueExpression->getType()
                     << " and '" << falseExpression->getType() << "'";
        error(loc, reasonStream.c_str(), "?:");
        return falseExpression;
    }
    if (IsOpaqueType(trueExpression->getBasicType()))
    {
        // ESSL 1.00 section 4.1.7
        // ESSL 3.00.6 section 4.1.7
        // Opaque/sampler types are not allowed in most types of expressions, including ternary.
        // Note that structs containing opaque types don't need to be checked as structs are
        // forbidden below.
        error(loc, "ternary operator is not allowed for opaque types", "?:");
        return falseExpression;
    }
    if (cond->getMemoryQualifier().writeonly || trueExpression->getMemoryQualifier().writeonly ||
        falseExpression->getMemoryQualifier().writeonly)
    {
        error(loc, "ternary operator is not allowed for variables with writeonly", "?:");
        return falseExpression;
    }
    // ESSL 1.00.17 sections 5.2 and 5.7:
    // Ternary operator is not among the operators allowed for structures/arrays.
    // ESSL 3.00 and ESSL 3.10 section 5.7:
    // Ternary operator supports structs, but array support is optional for arrays.
    // ESSL 3.20 section 5.7:
    // Ternary operator supports structs and arrays unconditionally.
    // In WebGL2 section 5.26, ternary is banned for both arrays and structs.
    if ((mShaderVersion < 300 || mShaderSpec == SH_WEBGL2_SPEC) && trueExpression->isArray())
    {
        error(loc, "ternary operator is not allowed for arrays in ESSL 1.0 and webgl", "?:");
        return falseExpression;
    }
    if ((mShaderVersion < 300 || mShaderSpec == SH_WEBGL2_SPEC) &&
        trueExpression->getBasicType() == EbtStruct)
    {
        error(loc, "ternary operator is not allowed for structures in ESSL 1.0 and webgl", "?:");
        return falseExpression;
    }
    if (trueExpression->getBasicType() == EbtInterfaceBlock)
    {
        error(loc, "ternary operator is not allowed for interface blocks", "?:");
        return falseExpression;
    }
    // WebGL2 section 5.26, the following results in an error:
    // "Ternary operator applied to void, arrays, or structs containing arrays"
    if (mShaderSpec == SH_WEBGL2_SPEC && trueExpression->getBasicType() == EbtVoid)
    {
        error(loc, "ternary operator is not allowed for void", "?:");
        return falseExpression;
    }
    TIntermTernary *node = new TIntermTernary(cond, trueExpression, falseExpression);
    markStaticReadIfSymbol(cond);
    markStaticReadIfSymbol(trueExpression);
    markStaticReadIfSymbol(falseExpression);
    node->setLine(loc);
    return expressionOrFoldedResult(node);
}
//
// Parse an array of strings using yyparse.
//
// Returns 0 for success.
//
int PaParseStrings(size_t count,
                   const char *const string[],
                   const int length[],
                   TParseContext *context)
{
    if ((count == 0) || (string == nullptr))
        return 1;
    if (glslang_initialize(context))
        return 1;
    int error = glslang_scan(count, string, length, context);
    if (!error)
        error = glslang_parse(context);
    glslang_finalize(context);
    return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
}
}  // namespace sh