Hash :
e1a763d1
Author :
Date :
2019-01-25T15:43:33
Vulkan: Implement basic barrier perf test There's a lot more that can go into this perf test, but it requires further work on the Vulkan back end. Bug: angleproject:2999 Change-Id: Iea62bfd09639af108674dcf0a9e7c9d36ccddcef Reviewed-on: https://chromium-review.googlesource.com/c/1437734 Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org> Reviewed-by: Yuly Novikov <ynovikov@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#!/usr/bin/python2
#
# Copyright 2015 The ANGLE Project Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
#
# perf_test_runner.py:
# Helper script for running and analyzing perftest results. Runs the
# tests in an infinite batch, printing out the mean and coefficient of
# variation of the population continuously.
#
import glob
import subprocess
import sys
import os
import re
base_path = os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..'))
# Look for a [Rr]elease build.
perftests_paths = glob.glob('out/*elease*')
metric = 'wall_time'
max_experiments = 10
binary_name = 'angle_perftests'
if sys.platform == 'win32':
binary_name += '.exe'
scores = []
# Danke to http://stackoverflow.com/a/27758326
def mean(data):
"""Return the sample arithmetic mean of data."""
n = len(data)
if n < 1:
raise ValueError('mean requires at least one data point')
return float(sum(data))/float(n) # in Python 2 use sum(data)/float(n)
def sum_of_square_deviations(data, c):
"""Return sum of square deviations of sequence data."""
ss = sum((float(x)-c)**2 for x in data)
return ss
def coefficient_of_variation(data):
"""Calculates the population coefficient of variation."""
n = len(data)
if n < 2:
raise ValueError('variance requires at least two data points')
c = mean(data)
ss = sum_of_square_deviations(data, c)
pvar = ss/n # the population variance
stddev = (pvar**0.5) # population standard deviation
return stddev / c
def truncated_list(data, n):
"""Compute a truncated list, n is truncation size"""
if len(data) < n * 2:
raise ValueError('list not large enough to truncate')
return sorted(data)[n:-n]
def truncated_mean(data, n):
"""Compute a truncated mean, n is truncation size"""
return mean(truncated_list(data, n))
def truncated_cov(data, n):
"""Compute a truncated coefficient of variation, n is truncation size"""
return coefficient_of_variation(truncated_list(data, n))
# Find most recent binary
newest_binary = None
newest_mtime = None
for path in perftests_paths:
binary_path = os.path.join(base_path, path, binary_name)
if os.path.exists(binary_path):
binary_mtime = os.path.getmtime(binary_path)
if (newest_binary is None) or (binary_mtime > newest_mtime):
newest_binary = binary_path
newest_mtime = binary_mtime
perftests_path = newest_binary
if perftests_path == None or not os.path.exists(perftests_path):
print('Cannot find Release %s!' % binary_name)
sys.exit(1)
if sys.platform == 'win32':
test_name = 'DrawCallPerfBenchmark.Run/d3d11_null'
else:
test_name = 'DrawCallPerfBenchmark.Run/gl'
if len(sys.argv) >= 2:
test_name = sys.argv[1]
print('Using test executable: ' + perftests_path)
print('Test name: ' + test_name)
def get_results(metric, extra_args=[]):
process = subprocess.Popen([perftests_path, '--gtest_filter=' + test_name] + extra_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, err = process.communicate()
m = re.search(r'Running (\d+) tests', output)
if m and int(m.group(1)) > 1:
print("Found more than one test result in output:")
print(output)
sys.exit(3)
pattern = metric + r'= ([0-9.]+)'
m = re.findall(pattern, output)
if m is None:
print("Did not find the metric '%s' in the test output:" % metric)
print(output)
sys.exit(1)
return [float(value) for value in m]
# Calibrate the number of steps
steps = get_results("steps", ["--calibration"])[0]
print("running with %d steps." % steps)
# Loop 'max_experiments' times, running the tests.
for experiment in range(max_experiments):
experiment_scores = get_results(metric, ["--steps", str(steps)])
for score in experiment_scores:
sys.stdout.write("%s: %.2f" % (metric, score))
scores.append(score)
if (len(scores) > 1):
sys.stdout.write(", mean: %.2f" % mean(scores))
sys.stdout.write(", variation: %.2f%%" % (coefficient_of_variation(scores) * 100.0))
if (len(scores) > 7):
truncation_n = len(scores) >> 3
sys.stdout.write(", truncated mean: %.2f" % truncated_mean(scores, truncation_n))
sys.stdout.write(", variation: %.2f%%" % (truncated_cov(scores, truncation_n) * 100.0))
print("")