Hash :
1ab8b75a
Author :
Date :
2020-08-28T14:45:15
Enable -Wreturn-std-move-in-c++11. Only one fix needed. Bug: skia:7647 Change-Id: I048d54ed67fbb09f4dce6c918db26ea63e7127a8 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/2376719 Reviewed-by: Geoff Lang <geofflang@chromium.org> Commit-Queue: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// WorkerThread:
// Task running thread for ANGLE, similar to a TaskRunner in Chromium.
// Might be implemented differently depending on platform.
//
#include "libANGLE/WorkerThread.h"
#include "libANGLE/trace.h"
#if (ANGLE_DELEGATE_WORKERS == ANGLE_ENABLED) || (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
# include <condition_variable>
# include <future>
# include <mutex>
# include <queue>
# include <thread>
#endif // (ANGLE_DELEGATE_WORKERS == ANGLE_ENABLED) || (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
namespace angle
{
WaitableEvent::WaitableEvent() = default;
WaitableEvent::~WaitableEvent() = default;
void WaitableEventDone::wait() {}
bool WaitableEventDone::isReady()
{
return true;
}
WorkerThreadPool::WorkerThreadPool() = default;
WorkerThreadPool::~WorkerThreadPool() = default;
class SingleThreadedWaitableEvent final : public WaitableEvent
{
public:
SingleThreadedWaitableEvent() = default;
~SingleThreadedWaitableEvent() override = default;
void wait() override;
bool isReady() override;
};
void SingleThreadedWaitableEvent::wait() {}
bool SingleThreadedWaitableEvent::isReady()
{
return true;
}
class SingleThreadedWorkerPool final : public WorkerThreadPool
{
public:
std::shared_ptr<WaitableEvent> postWorkerTask(std::shared_ptr<Closure> task) override;
void setMaxThreads(size_t maxThreads) override;
bool isAsync() override;
};
// SingleThreadedWorkerPool implementation.
std::shared_ptr<WaitableEvent> SingleThreadedWorkerPool::postWorkerTask(
std::shared_ptr<Closure> task)
{
(*task)();
return std::make_shared<SingleThreadedWaitableEvent>();
}
void SingleThreadedWorkerPool::setMaxThreads(size_t maxThreads) {}
bool SingleThreadedWorkerPool::isAsync()
{
return false;
}
#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
class AsyncWaitableEvent final : public WaitableEvent
{
public:
AsyncWaitableEvent() : mIsPending(true) {}
~AsyncWaitableEvent() override = default;
void wait() override;
bool isReady() override;
private:
friend class AsyncWorkerPool;
void setFuture(std::future<void> &&future);
// To block wait() when the task is still in queue to be run.
// Also to protect the concurrent accesses from both main thread and
// background threads to the member fields.
std::mutex mMutex;
bool mIsPending;
std::condition_variable mCondition;
std::future<void> mFuture;
};
void AsyncWaitableEvent::setFuture(std::future<void> &&future)
{
mFuture = std::move(future);
}
void AsyncWaitableEvent::wait()
{
ANGLE_TRACE_EVENT0("gpu.angle", "AsyncWaitableEvent::wait");
{
std::unique_lock<std::mutex> lock(mMutex);
mCondition.wait(lock, [this] { return !mIsPending; });
}
ASSERT(mFuture.valid());
mFuture.wait();
}
bool AsyncWaitableEvent::isReady()
{
std::lock_guard<std::mutex> lock(mMutex);
if (mIsPending)
{
return false;
}
ASSERT(mFuture.valid());
return mFuture.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
}
class AsyncWorkerPool final : public WorkerThreadPool
{
public:
AsyncWorkerPool(size_t maxThreads) : mMaxThreads(maxThreads), mRunningThreads(0) {}
~AsyncWorkerPool() override = default;
std::shared_ptr<WaitableEvent> postWorkerTask(std::shared_ptr<Closure> task) override;
void setMaxThreads(size_t maxThreads) override;
bool isAsync() override;
private:
void checkToRunPendingTasks();
// To protect the concurrent accesses from both main thread and background
// threads to the member fields.
std::mutex mMutex;
size_t mMaxThreads;
size_t mRunningThreads;
std::queue<std::pair<std::shared_ptr<AsyncWaitableEvent>, std::shared_ptr<Closure>>> mTaskQueue;
};
// AsyncWorkerPool implementation.
std::shared_ptr<WaitableEvent> AsyncWorkerPool::postWorkerTask(std::shared_ptr<Closure> task)
{
ASSERT(mMaxThreads > 0);
auto waitable = std::make_shared<AsyncWaitableEvent>();
{
std::lock_guard<std::mutex> lock(mMutex);
mTaskQueue.push(std::make_pair(waitable, task));
}
checkToRunPendingTasks();
return std::move(waitable);
}
void AsyncWorkerPool::setMaxThreads(size_t maxThreads)
{
{
std::lock_guard<std::mutex> lock(mMutex);
mMaxThreads = (maxThreads == 0xFFFFFFFF ? std::thread::hardware_concurrency() : maxThreads);
}
checkToRunPendingTasks();
}
bool AsyncWorkerPool::isAsync()
{
return true;
}
void AsyncWorkerPool::checkToRunPendingTasks()
{
std::lock_guard<std::mutex> lock(mMutex);
while (mRunningThreads < mMaxThreads && !mTaskQueue.empty())
{
auto task = mTaskQueue.front();
mTaskQueue.pop();
auto waitable = task.first;
auto closure = task.second;
auto future = std::async(std::launch::async, [closure, this] {
{
ANGLE_TRACE_EVENT0("gpu.angle", "AsyncWorkerPool::RunTask");
(*closure)();
}
{
std::lock_guard<std::mutex> lock(mMutex);
ASSERT(mRunningThreads != 0);
--mRunningThreads;
}
checkToRunPendingTasks();
});
++mRunningThreads;
{
std::lock_guard<std::mutex> waitableLock(waitable->mMutex);
waitable->mIsPending = false;
waitable->setFuture(std::move(future));
}
waitable->mCondition.notify_all();
}
}
#endif // (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
#if (ANGLE_DELEGATE_WORKERS == ANGLE_ENABLED)
class DelegateWaitableEvent final : public WaitableEvent
{
public:
DelegateWaitableEvent() = default;
~DelegateWaitableEvent() override = default;
void wait() override;
bool isReady() override;
void markAsReady();
private:
// To protect the concurrent accesses from both main thread and background
// threads to the member fields.
std::mutex mMutex;
bool mIsReady = false;
std::condition_variable mCondition;
};
void DelegateWaitableEvent::markAsReady()
{
std::lock_guard<std::mutex> lock(mMutex);
mIsReady = true;
mCondition.notify_all();
}
void DelegateWaitableEvent::wait()
{
std::unique_lock<std::mutex> lock(mMutex);
mCondition.wait(lock, [this] { return mIsReady; });
}
bool DelegateWaitableEvent::isReady()
{
std::lock_guard<std::mutex> lock(mMutex);
return mIsReady;
}
class DelegateWorkerPool final : public WorkerThreadPool
{
public:
DelegateWorkerPool() = default;
~DelegateWorkerPool() override = default;
std::shared_ptr<WaitableEvent> postWorkerTask(std::shared_ptr<Closure> task) override;
void setMaxThreads(size_t maxThreads) override;
bool isAsync() override;
};
// A function wrapper to execute the closure and to notify the waitable
// event after the execution.
class DelegateWorkerTask
{
public:
DelegateWorkerTask(std::shared_ptr<Closure> task,
std::shared_ptr<DelegateWaitableEvent> waitable)
: mTask(task), mWaitable(waitable)
{}
DelegateWorkerTask() = delete;
DelegateWorkerTask(DelegateWorkerTask &) = delete;
static void RunTask(void *userData)
{
DelegateWorkerTask *workerTask = static_cast<DelegateWorkerTask *>(userData);
(*workerTask->mTask)();
workerTask->mWaitable->markAsReady();
// Delete the task after its execution.
delete workerTask;
}
private:
~DelegateWorkerTask() = default;
std::shared_ptr<Closure> mTask;
std::shared_ptr<DelegateWaitableEvent> mWaitable;
};
std::shared_ptr<WaitableEvent> DelegateWorkerPool::postWorkerTask(std::shared_ptr<Closure> task)
{
auto waitable = std::make_shared<DelegateWaitableEvent>();
// The task will be deleted by DelegateWorkerTask::RunTask(...) after its execution.
DelegateWorkerTask *workerTask = new DelegateWorkerTask(task, waitable);
auto *platform = ANGLEPlatformCurrent();
platform->postWorkerTask(platform, DelegateWorkerTask::RunTask, workerTask);
return std::move(waitable);
}
void DelegateWorkerPool::setMaxThreads(size_t maxThreads) {}
bool DelegateWorkerPool::isAsync()
{
return true;
}
#endif
// static
std::shared_ptr<WorkerThreadPool> WorkerThreadPool::Create(bool multithreaded)
{
std::shared_ptr<WorkerThreadPool> pool(nullptr);
#if (ANGLE_DELEGATE_WORKERS == ANGLE_ENABLED)
const bool hasPostWorkerTaskImpl = ANGLEPlatformCurrent()->postWorkerTask;
if (hasPostWorkerTaskImpl && multithreaded)
{
pool = std::shared_ptr<WorkerThreadPool>(new DelegateWorkerPool());
}
#endif
#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
if (!pool && multithreaded)
{
pool = std::shared_ptr<WorkerThreadPool>(
new AsyncWorkerPool(std::thread::hardware_concurrency()));
}
#endif
if (!pool)
{
return std::shared_ptr<WorkerThreadPool>(new SingleThreadedWorkerPool());
}
return pool;
}
// static
std::shared_ptr<WaitableEvent> WorkerThreadPool::PostWorkerTask(
std::shared_ptr<WorkerThreadPool> pool,
std::shared_ptr<Closure> task)
{
std::shared_ptr<WaitableEvent> event = pool->postWorkerTask(task);
if (event.get())
{
event->setWorkerThreadPool(pool);
}
return event;
}
} // namespace angle