Hash :
dc4b1acd
Author :
Date :
2023-11-30T15:42:32
Translator: Limit private variable size to 64KB This is indirectly fixing an issue where passing large arrays in SPIR-V such that an internal cast is needed (such as array inside interface block copied to local varaible) causes an overflow of the instruction length limit (in the absence of OpCopyLogical). By limiting the size of private variables to 32KB, this limitation is indirectly enforced. It was observed that all the test shaders added in this CL fail on the Nvidia OpenGL drivers, so such a limit seems to be reasonble. Bug: chromium:1505009 Change-Id: Ia36134b2bf8501a5b875814db3566be28b183e0f Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/5077408 Reviewed-by: Charlie Lao <cclao@google.com> Reviewed-by: Geoff Lang <geofflang@chromium.org> Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RecordConstantPrecision_test.cpp:
// Test for recording constant variable precision when it affects consuming expression.
//
#include "GLSLANG/ShaderLang.h"
#include "angle_gl.h"
#include "gtest/gtest.h"
#include "tests/test_utils/compiler_test.h"
using namespace sh;
class RecordConstantPrecisionTest : public MatchOutputCodeTest
{
public:
RecordConstantPrecisionTest() : MatchOutputCodeTest(GL_FRAGMENT_SHADER, SH_ESSL_OUTPUT) {}
};
// The constant's precision must be specified if its precision is higher than the other operands,
// since it increases the precision of the consuming expression.
TEST_F(RecordConstantPrecisionTest, HigherPrecisionConstantAsParameter)
{
const std::string &shaderString = R"(
uniform mediump float u;
void main()
{
const highp float a = 4096.5;
mediump float b = fract(a + u);
gl_FragColor = vec4(b);
})";
compile(shaderString);
ASSERT_TRUE(foundInCode("const highp float s"));
ASSERT_FALSE(foundInCode("fract(4096.5"));
ASSERT_FALSE(foundInCode("fract((4096.5"));
}
// The constant's precision does not need to be specified if its precision is equal to the other
// operands, as it does not increase the precision of the consuming expression. For simplicity
// however, the constant's precision is specified anyway.
TEST_F(RecordConstantPrecisionTest, EqualPrecisionConstantAsParameter)
{
const std::string &shaderString = R"(
uniform mediump float u;
void main()
{
const mediump float a = 4096.5;
mediump float b = fract(a + u);
gl_FragColor = vec4(b);
})";
compile(shaderString);
ASSERT_TRUE(foundInCode("const mediump float s"));
ASSERT_FALSE(foundInCode("fract((4096.5"));
}
// The constant's precision must be specified if its precision is higher than the other operands,
// since it increases the precision of the consuming expression. This applies also when the
// constant is part of a constant expression that can be folded.
TEST_F(RecordConstantPrecisionTest, FoldedBinaryConstantPrecisionIsHigher)
{
const std::string &shaderString = R"(
uniform mediump float u;
void main()
{
const highp float a = 4095.5;
mediump float b = fract((a + 1.0) + u);
gl_FragColor = vec4(b);
})";
compile(shaderString);
ASSERT_TRUE(foundInCode("const highp float s"));
ASSERT_FALSE(foundInCode("fract(4096.5"));
ASSERT_FALSE(foundInCode("fract((4096.5"));
}
// The constant's precision must be specified if its precision is higher than the other operands,
// since it increases the precision of the consuming expression. This applies also when the
// constant is part of a constant expression that can be folded.
TEST_F(RecordConstantPrecisionTest, FoldedUnaryConstantPrecisionIsHigher)
{
const std::string &shaderString = R"(
uniform mediump float u;
void main()
{
const highp float a = 0.5;
mediump float b = sin(fract(a) + u);
gl_FragColor = vec4(b);
})";
compile(shaderString);
ASSERT_TRUE(foundInCode("const highp float s"));
ASSERT_FALSE(foundInCode("sin(0.5"));
ASSERT_FALSE(foundInCode("sin((0.5"));
}
// The constant's precision must be specified if its precision is higher than the other operands,
// since it increases the precision of the consuming expression. This applies also when the
// constant is part of a constructor expression. Note that lowp constants never need their
// precision specified.
TEST_F(RecordConstantPrecisionTest, HigherPrecisionConstantInConstructor)
{
const std::string &shaderString = R"(
uniform mediump float u;
void main()
{
const highp float a = 4096.5;
const lowp float b = 1.0;
lowp vec4 result = vec4(b, a, b, u);
gl_FragColor = result;
})";
compile(shaderString);
ASSERT_TRUE(foundInCode("const highp float s"));
ASSERT_FALSE(foundInCode("const lowp float s"));
ASSERT_TRUE(foundInCode("vec4(1.0, s"));
}
// The constant's precision does not need to be specified if its used to initialize a variable.
TEST_F(RecordConstantPrecisionTest, HigherPrecisionConstantInAssignment)
{
const std::string &shaderString = R"(
uniform mediump float u;
void main()
{
const highp float a = 4096.5;
mediump float b = a;
mediump float c;
c = a;
gl_FragColor = vec4(b, b, c, c);
})";
compile(shaderString);
ASSERT_FALSE(foundInCode("const highp float s"));
ASSERT_TRUE(foundInCode("b = 4096.5"));
ASSERT_TRUE(foundInCode("c = 4096.5"));
}
// The constant's precision does not need to be specified if its used as an index.
TEST_F(RecordConstantPrecisionTest, HigherPrecisionConstantInIndex)
{
const std::string &shaderString = R"(
uniform mediump float u;
void main()
{
const highp int a = 330;
mediump float b[340];
gl_FragColor = vec4(b[a]);
})";
compile(shaderString);
ASSERT_FALSE(foundInCode("const highp int s"));
ASSERT_TRUE(foundInCode("b[330]"));
}