• Show log

    Commit

  • Hash : 2f4a7518
    Author : Brian Sheedy
    Date : 2019-08-16T14:09:13

    Refactor perf tests to fix metric/story swapping
    
    Refactors the perf tests to fix the issue of metric and story being
    swapped, which causes issues when trying to convert to histograms.
    
    Specifically, does the following:
    1. Rolls the version of src/tests/perf_tests/third_party/perf/ to
       Chromium 476dae823269c8d05b544271af97ad1adb0db8ee
    2. Switch to using PerfResultReporter instead of PrintResult directly.
    3. Split RenderTestParams::suffix into backend and story; backend is
       used as part of the metric, while story is used as the story.
    4. Remove the "average" metric that was being automatically reported
       by ANGLEPerfTest, as reported results are automatically averaged.
    5. Update the reported metric to more clearly distinguish between
       test, backend, and metric. It is now name_backend.metric. e.g.
       DrawCallPerf_vulkan.wall_time.
    
    Bug: chromium:923564,chromium:924618
    Change-Id: I00cc191407052f23df57dbfa53b6fb088fc26960
    Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/1762360
    Commit-Queue: Jamie Madill <jmadill@chromium.org>
    Reviewed-by: Jamie Madill <jmadill@chromium.org>
    Reviewed-by: Jonah Ryan-Davis <jonahr@google.com>
    

  • Properties

  • Git HTTP https://git.kmx.io/kc3-lang/angle.git
    Git SSH git@git.kmx.io:kc3-lang/angle.git
    Public access ? public
    Description

    A conformant OpenGL ES implementation for Windows, Mac, Linux, iOS and Android.

    Homepage

    Github

    Users
    kc3_lang_org thodg_w www_kmx_io thodg_l thodg thodg_m
    Tags

  • README.md

  • ANGLE Performance Tests

    angle_perftests is a standalone testing suite that contains targeted tests for OpenGL, Vulkan and ANGLE internal classes. The tests currently run on the Chromium ANGLE infrastructure and report results to the Chromium perf dashboard.

    You can also build your own dashboards. For example, a comparison of ANGLE’s back-end draw call performance on Windows NVIDIA can be found at this link. Note that this link is not kept current.

    Running the Tests

    You can follow the usual instructions to check out and build ANGLE. Build the angle_perftests target. Note that all test scores are higher-is-better. You should also ensure is_debug=false in your build. Running with dcheck_always_on or debug validation enabled is not recommended.

    Variance can be a problem when benchmarking. We have a test harness to run a single test in an infinite loop and print some statistics to help mitigate variance. See scripts/perf_test_runner.py. To use the script first compile angle_perftests into a folder with the word Release in it. Then provide the name of the test as the argument to the script. The script will automatically pick up the most current angle_perftests and run in an infinite loop.

    Choosing the Test to Run

    You can choose individual tests to run with --gtest_filter=*TestName*. To select a particular ANGLE back-end, add the name of the back-end to the test filter. For example: DrawCallPerfBenchmark.Run/gl or DrawCallPerfBenchmark.Run/d3d11. Many tests have sub-tests that run slightly different code paths. You might need to experiment to find the right sub-test and its name.

    Null/No-op Configurations

    ANGLE implements a no-op driver for OpenGL, D3D11 and Vulkan. To run on these configurations use the gl_null, d3d11_null or vulkan_null test configurations. These null drivers will not do any GPU work. They will skip the driver entirely. These null configs are useful for diagnosing performance overhead in ANGLE code.

    Test Breakdown

    • DrawCallPerfBenchmark: Runs a tight loop around DrawArarys calls.
      • validation_only: Skips all rendering.
      • render_to_texture: Render to a user Framebuffer instead of the default FBO.
      • vbo_change: Applies a Vertex Array change between each draw.
      • tex_change: Applies a Texture change between each draw.
    • UniformsBenchmark: Tests performance of updating various uniforms counts followed by a DrawArrays call.
      • vec4: Tests vec4 Uniforms.
      • matrix: Tests using Matrix uniforms instead of vec4.
      • multiprogram: Tests switching Programs between updates and draws.
      • repeating: Skip the update of uniforms before each draw call.
    • DrawElementsPerfBenchmark: Similar to DrawCallPerfBenchmark but for indexed DrawElements calls.
    • BindingsBenchmark: Tests Buffer binding performance. Does no draw call operations.
      • 100_objects_allocated_every_iteration: Tests repeated glBindBuffer with new buffers allocated each iteration.
      • 100_objects_allocated_at_initialization: Tests repeated glBindBuffer the same objects each iteration.
    • TexSubImageBenchmark: Tests glTexSubImage update performance.
    • BufferSubDataBenchmark: Tests glBufferSubData update performance.
    • TextureSamplingBenchmark: Tests Texture sampling performance.
    • TextureBenchmark: Tests Texture state change performance.
    • LinkProgramBenchmark: Tests performance of glLinkProgram.
    • glmark2: Runs the glmark2 benchmark.

    Many other tests can be found that have documentation in their classes.