Hash :
b980c563
Author :
Date :
2018-11-27T11:34:27
Reformat all cpp and h files. This applies git cl format --full to all ANGLE sources. Bug: angleproject:2986 Change-Id: Ib504e618c1589332a37e97696cdc3515d739308f Reviewed-on: https://chromium-review.googlesource.com/c/1351367 Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// mathutil_unittest:
// Unit tests for the utils defined in mathutil.h
//
#include "mathutil.h"
#include <gtest/gtest.h>
using namespace gl;
namespace
{
// Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions.
// For floats f1 and f2, unpackSnorm2x16(packSnorm2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackSnorm2x16)
{
const float input[8][2] = {
{0.0f, 0.0f}, {1.0f, 1.0f}, {-1.0f, 1.0f}, {-1.0f, -1.0f},
{0.875f, 0.75f}, {0.00392f, -0.99215f}, {-0.000675f, 0.004954f}, {-0.6937f, -0.02146f}};
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackSnorm2x16(packSnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance);
EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance);
}
}
// Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions with infinity values,
// result should be clamped to [-1, 1].
TEST(MathUtilTest, packAndUnpackSnorm2x16Infinity)
{
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity()),
&outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance);
unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()),
&outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance);
unpackSnorm2x16(packSnorm2x16(-std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()),
&outputVal1, &outputVal2);
EXPECT_NEAR(-1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance);
}
// Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions.
// For floats f1 and f2, unpackUnorm2x16(packUnorm2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackUnorm2x16)
{
const float input[8][2] = {
{0.0f, 0.0f}, {1.0f, 1.0f}, {-1.0f, 1.0f}, {-1.0f, -1.0f},
{0.875f, 0.75f}, {0.00392f, -0.99215f}, {-0.000675f, 0.004954f}, {-0.6937f, -0.02146f}};
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackUnorm2x16(packUnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
float expected = input[i][0] < 0.0f ? 0.0f : input[i][0];
EXPECT_NEAR(expected, outputVal1, floatFaultTolerance);
expected = input[i][1] < 0.0f ? 0.0f : input[i][1];
EXPECT_NEAR(expected, outputVal2, floatFaultTolerance);
}
}
// Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions with infinity values,
// result should be clamped to [0, 1].
TEST(MathUtilTest, packAndUnpackUnorm2x16Infinity)
{
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity()),
&outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance);
unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()),
&outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance);
unpackUnorm2x16(packUnorm2x16(-std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()),
&outputVal1, &outputVal2);
EXPECT_NEAR(0.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance);
}
// Test the correctness of packHalf2x16 and unpackHalf2x16 functions.
// For floats f1 and f2, unpackHalf2x16(packHalf2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackHalf2x16)
{
const float input[8][2] = {
{0.0f, 0.0f}, {1.0f, 1.0f}, {-1.0f, 1.0f}, {-1.0f, -1.0f},
{0.875f, 0.75f}, {0.00392f, -0.99215f}, {-0.000675f, 0.004954f}, {-0.6937f, -0.02146f},
};
const float floatFaultTolerance = 0.0005f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackHalf2x16(packHalf2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance);
EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance);
}
}
// Test the correctness of packUnorm4x8 and unpackUnorm4x8 functions.
// For floats f1 to f4, unpackUnorm4x8(packUnorm4x8(f1, f2, f3, f4)) should be same as f1 to f4.
TEST(MathUtilTest, packAndUnpackUnorm4x8)
{
const float input[5][4] = {{0.0f, 0.0f, 0.0f, 0.0f},
{1.0f, 1.0f, 1.0f, 1.0f},
{-1.0f, 1.0f, -1.0f, 1.0f},
{-1.0f, -1.0f, -1.0f, -1.0f},
{64.0f / 255.0f, 128.0f / 255.0f, 32.0f / 255.0f, 16.0f / 255.0f}};
const float floatFaultTolerance = 0.005f;
float outputVals[4];
for (size_t i = 0; i < 5; i++)
{
UnpackUnorm4x8(PackUnorm4x8(input[i][0], input[i][1], input[i][2], input[i][3]),
outputVals);
for (size_t j = 0; j < 4; j++)
{
float expected = input[i][j] < 0.0f ? 0.0f : input[i][j];
EXPECT_NEAR(expected, outputVals[j], floatFaultTolerance);
}
}
}
// Test the correctness of packSnorm4x8 and unpackSnorm4x8 functions.
// For floats f1 to f4, unpackSnorm4x8(packSnorm4x8(f1, f2, f3, f4)) should be same as f1 to f4.
TEST(MathUtilTest, packAndUnpackSnorm4x8)
{
const float input[5][4] = {{0.0f, 0.0f, 0.0f, 0.0f},
{1.0f, 1.0f, 1.0f, 1.0f},
{-1.0f, 1.0f, -1.0f, 1.0f},
{-1.0f, -1.0f, -1.0f, -1.0f},
{64.0f / 127.0f, -8.0f / 127.0f, 32.0f / 127.0f, 16.0f / 127.0f}};
const float floatFaultTolerance = 0.01f;
float outputVals[4];
for (size_t i = 0; i < 5; i++)
{
UnpackSnorm4x8(PackSnorm4x8(input[i][0], input[i][1], input[i][2], input[i][3]),
outputVals);
for (size_t j = 0; j < 4; j++)
{
float expected = input[i][j];
EXPECT_NEAR(expected, outputVals[j], floatFaultTolerance);
}
}
}
// Test the correctness of gl::isNaN function.
TEST(MathUtilTest, isNaN)
{
EXPECT_TRUE(isNaN(bitCast<float>(0xffu << 23 | 1u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 1u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu)));
EXPECT_FALSE(isNaN(0.0f));
EXPECT_FALSE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23)));
EXPECT_FALSE(isNaN(bitCast<float>(0xffu << 23)));
}
// Test the correctness of gl::isInf function.
TEST(MathUtilTest, isInf)
{
EXPECT_TRUE(isInf(bitCast<float>(0xffu << 23)));
EXPECT_TRUE(isInf(bitCast<float>(1u << 31 | 0xffu << 23)));
EXPECT_FALSE(isInf(0.0f));
EXPECT_FALSE(isInf(bitCast<float>(0xffu << 23 | 1u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 1u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu)));
EXPECT_FALSE(isInf(bitCast<float>(0xfeu << 23 | 0x7fffffu)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xfeu << 23 | 0x7fffffu)));
}
TEST(MathUtilTest, CountLeadingZeros)
{
for (unsigned int i = 0; i < 32u; ++i)
{
uint32_t iLeadingZeros = 1u << (31u - i);
EXPECT_EQ(i, CountLeadingZeros(iLeadingZeros));
}
EXPECT_EQ(32u, CountLeadingZeros(0));
}
// Some basic tests. Tests that rounding up zero produces zero.
TEST(MathUtilTest, BasicRoundUp)
{
EXPECT_EQ(0u, rx::roundUp(0u, 4u));
EXPECT_EQ(4u, rx::roundUp(1u, 4u));
EXPECT_EQ(4u, rx::roundUp(4u, 4u));
}
// Test that rounding up zero produces zero for checked ints.
TEST(MathUtilTest, CheckedRoundUpZero)
{
auto checkedValue = rx::CheckedRoundUp(0u, 4u);
ASSERT_TRUE(checkedValue.IsValid());
ASSERT_EQ(0u, checkedValue.ValueOrDie());
}
// Test out-of-bounds with CheckedRoundUp
TEST(MathUtilTest, CheckedRoundUpInvalid)
{
// The answer to this query is out of bounds.
auto limit = std::numeric_limits<unsigned int>::max();
auto checkedValue = rx::CheckedRoundUp(limit, limit - 1);
ASSERT_FALSE(checkedValue.IsValid());
// Our implementation can't handle this query, despite the parameters being in range.
auto checkedLimit = rx::CheckedRoundUp(limit - 1, limit);
ASSERT_FALSE(checkedLimit.IsValid());
}
// Test BitfieldReverse which reverses the order of the bits in an integer.
TEST(MathUtilTest, BitfieldReverse)
{
EXPECT_EQ(0u, gl::BitfieldReverse(0u));
EXPECT_EQ(0x80000000u, gl::BitfieldReverse(1u));
EXPECT_EQ(0x1u, gl::BitfieldReverse(0x80000000u));
uint32_t bits = (1u << 4u) | (1u << 7u);
uint32_t reversed = (1u << (31u - 4u)) | (1u << (31u - 7u));
EXPECT_EQ(reversed, gl::BitfieldReverse(bits));
}
// Test BitCount, which counts 1 bits in an integer.
TEST(MathUtilTest, BitCount)
{
EXPECT_EQ(0, gl::BitCount(0u));
EXPECT_EQ(32, gl::BitCount(0xFFFFFFFFu));
EXPECT_EQ(10, gl::BitCount(0x17103121u));
#if defined(ANGLE_IS_64_BIT_CPU)
EXPECT_EQ(0, gl::BitCount(0ull));
EXPECT_EQ(32, gl::BitCount(0xFFFFFFFFull));
EXPECT_EQ(10, gl::BitCount(0x17103121ull));
#endif // defined(ANGLE_IS_64_BIT_CPU)
}
// Test ScanForward, which scans for the least significant 1 bit from a non-zero integer.
TEST(MathUtilTest, ScanForward)
{
EXPECT_EQ(0ul, gl::ScanForward(1u));
EXPECT_EQ(16ul, gl::ScanForward(0x80010000u));
EXPECT_EQ(31ul, gl::ScanForward(0x80000000u));
#if defined(ANGLE_IS_64_BIT_CPU)
EXPECT_EQ(0ul, gl::ScanForward(1ull));
EXPECT_EQ(16ul, gl::ScanForward(0x80010000ull));
EXPECT_EQ(31ul, gl::ScanForward(0x80000000ull));
#endif // defined(ANGLE_IS_64_BIT_CPU)
}
// Test ScanReverse, which scans for the most significant 1 bit from a non-zero integer.
TEST(MathUtilTest, ScanReverse)
{
EXPECT_EQ(0ul, gl::ScanReverse(1ul));
EXPECT_EQ(16ul, gl::ScanReverse(0x00010030ul));
EXPECT_EQ(31ul, gl::ScanReverse(0x80000000ul));
}
// Test FindLSB, which finds the least significant 1 bit.
TEST(MathUtilTest, FindLSB)
{
EXPECT_EQ(-1, gl::FindLSB(0u));
EXPECT_EQ(0, gl::FindLSB(1u));
EXPECT_EQ(16, gl::FindLSB(0x80010000u));
EXPECT_EQ(31, gl::FindLSB(0x80000000u));
}
// Test FindMSB, which finds the most significant 1 bit.
TEST(MathUtilTest, FindMSB)
{
EXPECT_EQ(-1, gl::FindMSB(0u));
EXPECT_EQ(0, gl::FindMSB(1u));
EXPECT_EQ(16, gl::FindMSB(0x00010030u));
EXPECT_EQ(31, gl::FindMSB(0x80000000u));
}
// Test Ldexp, which combines mantissa and exponent into a floating-point number.
TEST(MathUtilTest, Ldexp)
{
EXPECT_EQ(2.5f, Ldexp(0.625f, 2));
EXPECT_EQ(-5.0f, Ldexp(-0.625f, 3));
EXPECT_EQ(std::numeric_limits<float>::infinity(), Ldexp(0.625f, 129));
EXPECT_EQ(0.0f, Ldexp(1.0f, -129));
}
// Test that Range::extend works as expected.
TEST(MathUtilTest, RangeExtend)
{
RangeI range(0, 0);
range.extend(5);
EXPECT_EQ(0, range.low());
EXPECT_EQ(6, range.high());
EXPECT_EQ(6, range.length());
range.extend(-1);
EXPECT_EQ(-1, range.low());
EXPECT_EQ(6, range.high());
EXPECT_EQ(7, range.length());
range.extend(10);
EXPECT_EQ(-1, range.low());
EXPECT_EQ(11, range.high());
EXPECT_EQ(12, range.length());
}
// Test that Range iteration works as expected.
TEST(MathUtilTest, RangeIteration)
{
RangeI range(0, 10);
int expected = 0;
for (int value : range)
{
EXPECT_EQ(expected, value);
expected++;
}
EXPECT_EQ(range.length(), expected);
}
} // anonymous namespace