Hash :
197beb4d
Author :
Date :
2024-02-13T15:47:32
Metal: Crash if for loop body is optimized away Loops might have their bodies optimized away. For case like `for(;;) if(false);` the constant pruning happens at parse phase. The else branch (e.e. no else branch, nullptr) would be selected as the body. Some code treated the body as optional, some code treated it as required. Define it as required, and remove all conditional code related to the loop body. Bug: angleproject:8532 Change-Id: Ic35f1bf78e63ceb2cee7b96ba99e788efc282e6f Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/5291554 Auto-Submit: Kimmo Kinnunen <kkinnunen@apple.com> Commit-Queue: Kimmo Kinnunen <kkinnunen@apple.com> Reviewed-by: Kenneth Russell <kbr@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
//
// Copyright 2002 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/ValidateLimitations.h"
#include "angle_gl.h"
#include "compiler/translator/Diagnostics.h"
#include "compiler/translator/ParseContext.h"
#include "compiler/translator/tree_util/IntermTraverse.h"
namespace sh
{
namespace
{
int GetLoopSymbolId(TIntermLoop *loop)
{
// Here we assume all the operations are valid, because the loop node is
// already validated before this call.
TIntermSequence *declSeq = loop->getInit()->getAsDeclarationNode()->getSequence();
TIntermBinary *declInit = (*declSeq)[0]->getAsBinaryNode();
TIntermSymbol *symbol = declInit->getLeft()->getAsSymbolNode();
return symbol->uniqueId().get();
}
// Traverses a node to check if it represents a constant index expression.
// Definition:
// constant-index-expressions are a superset of constant-expressions.
// Constant-index-expressions can include loop indices as defined in
// GLSL ES 1.0 spec, Appendix A, section 4.
// The following are constant-index-expressions:
// - Constant expressions
// - Loop indices as defined in section 4
// - Expressions composed of both of the above
class ValidateConstIndexExpr : public TIntermTraverser
{
public:
ValidateConstIndexExpr(const std::vector<int> &loopSymbols)
: TIntermTraverser(true, false, false), mValid(true), mLoopSymbolIds(loopSymbols)
{}
// Returns true if the parsed node represents a constant index expression.
bool isValid() const { return mValid; }
void visitSymbol(TIntermSymbol *symbol) override
{
// Only constants and loop indices are allowed in a
// constant index expression.
if (mValid)
{
bool isLoopSymbol = std::find(mLoopSymbolIds.begin(), mLoopSymbolIds.end(),
symbol->uniqueId().get()) != mLoopSymbolIds.end();
mValid = (symbol->getQualifier() == EvqConst) || isLoopSymbol;
}
}
private:
bool mValid;
const std::vector<int> mLoopSymbolIds;
};
// Traverses intermediate tree to ensure that the shader does not exceed the
// minimum functionality mandated in GLSL 1.0 spec, Appendix A.
class ValidateLimitationsTraverser : public TLValueTrackingTraverser
{
public:
ValidateLimitationsTraverser(sh::GLenum shaderType,
TSymbolTable *symbolTable,
TDiagnostics *diagnostics);
void visitSymbol(TIntermSymbol *node) override;
bool visitBinary(Visit, TIntermBinary *) override;
bool visitLoop(Visit, TIntermLoop *) override;
private:
void error(TSourceLoc loc, const char *reason, const char *token);
void error(TSourceLoc loc, const char *reason, const ImmutableString &token);
bool isLoopIndex(TIntermSymbol *symbol);
bool validateLoopType(TIntermLoop *node);
bool validateForLoopHeader(TIntermLoop *node);
// If valid, return the index symbol id; Otherwise, return -1.
int validateForLoopInit(TIntermLoop *node);
bool validateForLoopCond(TIntermLoop *node, int indexSymbolId);
bool validateForLoopExpr(TIntermLoop *node, int indexSymbolId);
// Returns true if indexing does not exceed the minimum functionality
// mandated in GLSL 1.0 spec, Appendix A, Section 5.
bool isConstExpr(TIntermNode *node);
bool isConstIndexExpr(TIntermNode *node);
bool validateIndexing(TIntermBinary *node);
sh::GLenum mShaderType;
TDiagnostics *mDiagnostics;
std::vector<int> mLoopSymbolIds;
};
ValidateLimitationsTraverser::ValidateLimitationsTraverser(sh::GLenum shaderType,
TSymbolTable *symbolTable,
TDiagnostics *diagnostics)
: TLValueTrackingTraverser(true, false, false, symbolTable),
mShaderType(shaderType),
mDiagnostics(diagnostics)
{
ASSERT(diagnostics);
}
void ValidateLimitationsTraverser::visitSymbol(TIntermSymbol *node)
{
if (isLoopIndex(node) && isLValueRequiredHere())
{
error(node->getLine(),
"Loop index cannot be statically assigned to within the body of the loop",
node->getName());
}
}
bool ValidateLimitationsTraverser::visitBinary(Visit, TIntermBinary *node)
{
// Check indexing.
switch (node->getOp())
{
case EOpIndexDirect:
case EOpIndexIndirect:
validateIndexing(node);
break;
default:
break;
}
return true;
}
bool ValidateLimitationsTraverser::visitLoop(Visit, TIntermLoop *node)
{
if (!validateLoopType(node))
return false;
if (!validateForLoopHeader(node))
return false;
mLoopSymbolIds.push_back(GetLoopSymbolId(node));
node->getBody()->traverse(this);
mLoopSymbolIds.pop_back();
// The loop is fully processed - no need to visit children.
return false;
}
void ValidateLimitationsTraverser::error(TSourceLoc loc, const char *reason, const char *token)
{
mDiagnostics->error(loc, reason, token);
}
void ValidateLimitationsTraverser::error(TSourceLoc loc,
const char *reason,
const ImmutableString &token)
{
error(loc, reason, token.data());
}
bool ValidateLimitationsTraverser::isLoopIndex(TIntermSymbol *symbol)
{
return std::find(mLoopSymbolIds.begin(), mLoopSymbolIds.end(), symbol->uniqueId().get()) !=
mLoopSymbolIds.end();
}
bool ValidateLimitationsTraverser::validateLoopType(TIntermLoop *node)
{
TLoopType type = node->getType();
if (type == ELoopFor)
return true;
// Reject while and do-while loops.
error(node->getLine(), "This type of loop is not allowed", type == ELoopWhile ? "while" : "do");
return false;
}
bool ValidateLimitationsTraverser::validateForLoopHeader(TIntermLoop *node)
{
ASSERT(node->getType() == ELoopFor);
//
// The for statement has the form:
// for ( init-declaration ; condition ; expression ) statement
//
int indexSymbolId = validateForLoopInit(node);
if (indexSymbolId < 0)
return false;
if (!validateForLoopCond(node, indexSymbolId))
return false;
if (!validateForLoopExpr(node, indexSymbolId))
return false;
return true;
}
int ValidateLimitationsTraverser::validateForLoopInit(TIntermLoop *node)
{
TIntermNode *init = node->getInit();
if (init == nullptr)
{
error(node->getLine(), "Missing init declaration", "for");
return -1;
}
//
// init-declaration has the form:
// type-specifier identifier = constant-expression
//
TIntermDeclaration *decl = init->getAsDeclarationNode();
if (decl == nullptr)
{
error(init->getLine(), "Invalid init declaration", "for");
return -1;
}
// To keep things simple do not allow declaration list.
TIntermSequence *declSeq = decl->getSequence();
if (declSeq->size() != 1)
{
error(decl->getLine(), "Invalid init declaration", "for");
return -1;
}
TIntermBinary *declInit = (*declSeq)[0]->getAsBinaryNode();
if ((declInit == nullptr) || (declInit->getOp() != EOpInitialize))
{
error(decl->getLine(), "Invalid init declaration", "for");
return -1;
}
TIntermSymbol *symbol = declInit->getLeft()->getAsSymbolNode();
if (symbol == nullptr)
{
error(declInit->getLine(), "Invalid init declaration", "for");
return -1;
}
// The loop index has type int or float.
TBasicType type = symbol->getBasicType();
if ((type != EbtInt) && (type != EbtUInt) && (type != EbtFloat))
{
error(symbol->getLine(), "Invalid type for loop index", getBasicString(type));
return -1;
}
// The loop index is initialized with constant expression.
if (!isConstExpr(declInit->getRight()))
{
error(declInit->getLine(), "Loop index cannot be initialized with non-constant expression",
symbol->getName());
return -1;
}
return symbol->uniqueId().get();
}
bool ValidateLimitationsTraverser::validateForLoopCond(TIntermLoop *node, int indexSymbolId)
{
TIntermNode *cond = node->getCondition();
if (cond == nullptr)
{
error(node->getLine(), "Missing condition", "for");
return false;
}
//
// condition has the form:
// loop_index relational_operator constant_expression
//
TIntermBinary *binOp = cond->getAsBinaryNode();
if (binOp == nullptr)
{
error(node->getLine(), "Invalid condition", "for");
return false;
}
// Loop index should be to the left of relational operator.
TIntermSymbol *symbol = binOp->getLeft()->getAsSymbolNode();
if (symbol == nullptr)
{
error(binOp->getLine(), "Invalid condition", "for");
return false;
}
if (symbol->uniqueId().get() != indexSymbolId)
{
error(symbol->getLine(), "Expected loop index", symbol->getName());
return false;
}
// Relational operator is one of: > >= < <= == or !=.
switch (binOp->getOp())
{
case EOpEqual:
case EOpNotEqual:
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
break;
default:
error(binOp->getLine(), "Invalid relational operator",
GetOperatorString(binOp->getOp()));
break;
}
// Loop index must be compared with a constant.
if (!isConstExpr(binOp->getRight()))
{
error(binOp->getLine(), "Loop index cannot be compared with non-constant expression",
symbol->getName());
return false;
}
return true;
}
bool ValidateLimitationsTraverser::validateForLoopExpr(TIntermLoop *node, int indexSymbolId)
{
TIntermNode *expr = node->getExpression();
if (expr == nullptr)
{
error(node->getLine(), "Missing expression", "for");
return false;
}
// for expression has one of the following forms:
// loop_index++
// loop_index--
// loop_index += constant_expression
// loop_index -= constant_expression
// ++loop_index
// --loop_index
// The last two forms are not specified in the spec, but I am assuming
// its an oversight.
TIntermUnary *unOp = expr->getAsUnaryNode();
TIntermBinary *binOp = unOp ? nullptr : expr->getAsBinaryNode();
TOperator op = EOpNull;
const TFunction *opFunc = nullptr;
TIntermSymbol *symbol = nullptr;
if (unOp != nullptr)
{
op = unOp->getOp();
opFunc = unOp->getFunction();
symbol = unOp->getOperand()->getAsSymbolNode();
}
else if (binOp != nullptr)
{
op = binOp->getOp();
symbol = binOp->getLeft()->getAsSymbolNode();
}
// The operand must be loop index.
if (symbol == nullptr)
{
error(expr->getLine(), "Invalid expression", "for");
return false;
}
if (symbol->uniqueId().get() != indexSymbolId)
{
error(symbol->getLine(), "Expected loop index", symbol->getName());
return false;
}
// The operator is one of: ++ -- += -=.
switch (op)
{
case EOpPostIncrement:
case EOpPostDecrement:
case EOpPreIncrement:
case EOpPreDecrement:
ASSERT((unOp != nullptr) && (binOp == nullptr));
break;
case EOpAddAssign:
case EOpSubAssign:
ASSERT((unOp == nullptr) && (binOp != nullptr));
break;
default:
if (BuiltInGroup::IsBuiltIn(op))
{
ASSERT(opFunc != nullptr);
error(expr->getLine(), "Invalid built-in call", opFunc->name().data());
}
else
{
error(expr->getLine(), "Invalid operator", GetOperatorString(op));
}
return false;
}
// Loop index must be incremented/decremented with a constant.
if (binOp != nullptr)
{
if (!isConstExpr(binOp->getRight()))
{
error(binOp->getLine(), "Loop index cannot be modified by non-constant expression",
symbol->getName());
return false;
}
}
return true;
}
bool ValidateLimitationsTraverser::isConstExpr(TIntermNode *node)
{
ASSERT(node != nullptr);
return node->getAsConstantUnion() != nullptr && node->getAsTyped()->getQualifier() == EvqConst;
}
bool ValidateLimitationsTraverser::isConstIndexExpr(TIntermNode *node)
{
ASSERT(node != nullptr);
ValidateConstIndexExpr validate(mLoopSymbolIds);
node->traverse(&validate);
return validate.isValid();
}
bool ValidateLimitationsTraverser::validateIndexing(TIntermBinary *node)
{
ASSERT((node->getOp() == EOpIndexDirect) || (node->getOp() == EOpIndexIndirect));
bool valid = true;
TIntermTyped *index = node->getRight();
// The index expession must be a constant-index-expression unless
// the operand is a uniform in a vertex shader.
TIntermTyped *operand = node->getLeft();
bool skip = (mShaderType == GL_VERTEX_SHADER) && (operand->getQualifier() == EvqUniform);
if (!skip && !isConstIndexExpr(index))
{
error(index->getLine(), "Index expression must be constant", "[]");
valid = false;
}
return valid;
}
} // namespace
bool ValidateLimitations(TIntermNode *root,
GLenum shaderType,
TSymbolTable *symbolTable,
TDiagnostics *diagnostics)
{
ValidateLimitationsTraverser validate(shaderType, symbolTable, diagnostics);
root->traverse(&validate);
return diagnostics->numErrors() == 0;
}
} // namespace sh