Hash :
9b4e8626
Author :
Date :
2015-12-22T15:53:22
Redesign samplers in shaders on D3D11
Translation of samplers to HLSL on D3D11 is changed as follows:
Instead of passing around HLSL sampler and HLSL texture references in
shaders, all references to ESSL samplers are converted to constant
indices within the shader body. Each ESSL sampler is identified by an
unique index. In the code generated to implement ESSL texture functions,
these indices are used to index arrays of HLSL samplers and HLSL
textures to get the sampler and texture to use.
HLSL textures and samplers are grouped into arrays by their types. Each
unique combination of a HLSL texture type + HLSL sampler type gets its
own array. To convert a unique sampler index to an index to one of these
arrays, a constant offset is applied. In the most common case of a 2D
texture and a regular (non-comparison) sampler, the index offset is
always zero and is omitted.
The end goal of this refactoring is to make adding extra metadata for
samplers easier. The unique sampler index can be used in follow-up
changes to index an array of metadata passed in uniforms, which can
contain such things as the base level of the texture.
This does not solve the issues with samplers in structs.
The interface from the point of view of libANGLE is still exactly the
same, the only thing that changes is how samplers are handled inside the
shader.
On feature level 9_3, the D3D compiler has a bug where it can report that
the maximum sampler index is exceeded when in fact it is not. This can
happen when an array of samplers is declared in the shader. Because of
this the new approach can't be used on D3D11 feature level 9_3, but it
will continue using the old approach instead.
BUG=angleproject:1261
TEST=angle_end2end_tests,
dEQP-GLES3.functional.shaders.texture_functions.* (no regressions)
dEQP-GLES3.functional.texture.units.* (no regressions)
Change-Id: I5fbb0c4280000202dc2795a628b56bd8194ef96f
Reviewed-on: https://chromium-review.googlesource.com/320571
Reviewed-by: Zhenyao Mo <zmo@chromium.org>
Reviewed-by: Jamie Madill <jmadill@chromium.org>
Tested-by: Olli Etuaho <oetuaho@nvidia.com>
Commit-Queue: Olli Etuaho <oetuaho@nvidia.com>
Tryjob-Request: Olli Etuaho <oetuaho@nvidia.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
//
// Copyright (c) 2013-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// blocklayout.cpp:
// Implementation for block layout classes and methods.
//
#include "compiler/translator/blocklayoutHLSL.h"
#include "common/mathutil.h"
#include "common/utilities.h"
namespace sh
{
HLSLBlockEncoder::HLSLBlockEncoder(HLSLBlockEncoderStrategy strategy)
: mEncoderStrategy(strategy),
mTransposeMatrices(false)
{
}
void HLSLBlockEncoder::enterAggregateType()
{
nextRegister();
}
void HLSLBlockEncoder::exitAggregateType()
{
}
void HLSLBlockEncoder::getBlockLayoutInfo(GLenum typeIn, unsigned int arraySize, bool isRowMajorMatrix, int *arrayStrideOut, int *matrixStrideOut)
{
GLenum type = (mTransposeMatrices ? gl::TransposeMatrixType(typeIn) : typeIn);
// We assume we are only dealing with 4 byte components (no doubles or half-words currently)
ASSERT(gl::VariableComponentSize(gl::VariableComponentType(type)) == BytesPerComponent);
int matrixStride = 0;
int arrayStride = 0;
// if variables are not to be packed, or we're about to
// pack a matrix or array, skip to the start of the next
// register
if (!isPacked() ||
gl::IsMatrixType(type) ||
arraySize > 0)
{
nextRegister();
}
if (gl::IsMatrixType(type))
{
matrixStride = ComponentsPerRegister;
if (arraySize > 0)
{
const int numRegisters = gl::MatrixRegisterCount(type, isRowMajorMatrix);
arrayStride = ComponentsPerRegister * numRegisters;
}
}
else if (arraySize > 0)
{
arrayStride = ComponentsPerRegister;
}
else if (isPacked())
{
int numComponents = gl::VariableComponentCount(type);
if ((numComponents + (mCurrentOffset % ComponentsPerRegister)) > ComponentsPerRegister)
{
nextRegister();
}
}
*matrixStrideOut = matrixStride;
*arrayStrideOut = arrayStride;
}
void HLSLBlockEncoder::advanceOffset(GLenum typeIn, unsigned int arraySize, bool isRowMajorMatrix, int arrayStride, int matrixStride)
{
GLenum type = (mTransposeMatrices ? gl::TransposeMatrixType(typeIn) : typeIn);
if (arraySize > 0)
{
mCurrentOffset += arrayStride * (arraySize - 1);
}
if (gl::IsMatrixType(type))
{
ASSERT(matrixStride == ComponentsPerRegister);
const int numRegisters = gl::MatrixRegisterCount(type, isRowMajorMatrix);
const int numComponents = gl::MatrixComponentCount(type, isRowMajorMatrix);
mCurrentOffset += ComponentsPerRegister * (numRegisters - 1);
mCurrentOffset += numComponents;
}
else if (isPacked())
{
mCurrentOffset += gl::VariableComponentCount(type);
}
else
{
mCurrentOffset += ComponentsPerRegister;
}
}
void HLSLBlockEncoder::skipRegisters(unsigned int numRegisters)
{
mCurrentOffset += (numRegisters * ComponentsPerRegister);
}
HLSLBlockEncoder::HLSLBlockEncoderStrategy HLSLBlockEncoder::GetStrategyFor(ShShaderOutput outputType)
{
switch (outputType)
{
case SH_HLSL_3_0_OUTPUT:
return ENCODE_LOOSE;
case SH_HLSL_4_1_OUTPUT:
case SH_HLSL_4_0_FL9_3_OUTPUT:
return ENCODE_PACKED;
default:
UNREACHABLE();
return ENCODE_PACKED;
}
}
template <class ShaderVarType>
void HLSLVariableRegisterCount(const ShaderVarType &variable, HLSLBlockEncoder *encoder)
{
if (variable.isStruct())
{
for (size_t arrayElement = 0; arrayElement < variable.elementCount(); arrayElement++)
{
encoder->enterAggregateType();
for (size_t fieldIndex = 0; fieldIndex < variable.fields.size(); fieldIndex++)
{
HLSLVariableRegisterCount(variable.fields[fieldIndex], encoder);
}
encoder->exitAggregateType();
}
}
else
{
// We operate only on varyings and uniforms, which do not have matrix layout qualifiers
encoder->encodeType(variable.type, variable.arraySize, false);
}
}
unsigned int HLSLVariableRegisterCount(const Varying &variable, bool transposeMatrices)
{
HLSLBlockEncoder encoder(HLSLBlockEncoder::ENCODE_PACKED);
encoder.setTransposeMatrices(transposeMatrices);
HLSLVariableRegisterCount(variable, &encoder);
const size_t registerBytes = (encoder.BytesPerComponent * encoder.ComponentsPerRegister);
return static_cast<unsigned int>(rx::roundUp<size_t>(encoder.getBlockSize(), registerBytes) / registerBytes);
}
unsigned int HLSLVariableRegisterCount(const Uniform &variable, ShShaderOutput outputType)
{
HLSLBlockEncoder encoder(HLSLBlockEncoder::GetStrategyFor(outputType));
encoder.setTransposeMatrices(true);
HLSLVariableRegisterCount(variable, &encoder);
const size_t registerBytes = (encoder.BytesPerComponent * encoder.ComponentsPerRegister);
return static_cast<unsigned int>(rx::roundUp<size_t>(encoder.getBlockSize(), registerBytes) / registerBytes);
}
}