Hash :
65fcf9c4
Author :
Date :
2024-10-26T10:53:18
Vulkan: Remove redundant dependent feature checks Since [1], when a feature is overriden, the dependent features automatically take the override into account. Tests no longer need to account for dependent features, neither does the logic in the code. [1]:https://chromium-review.googlesource.com/c/angle/angle/+/4749524 Bug: angleproject:42266725 Change-Id: I5440aba4a89cffbe710e26ad7de4cfee783e9bdf Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/5967414 Reviewed-by: Yuxin Hu <yuxinhu@google.com> Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org> Reviewed-by: Charlie Lao <cclao@google.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// VertexArrayVk.cpp:
// Implements the class methods for VertexArrayVk.
//
#include "libANGLE/renderer/vulkan/VertexArrayVk.h"
#include "common/debug.h"
#include "common/utilities.h"
#include "libANGLE/Context.h"
#include "libANGLE/renderer/vulkan/BufferVk.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "libANGLE/renderer/vulkan/vk_renderer.h"
#include "libANGLE/renderer/vulkan/vk_resource.h"
namespace rx
{
namespace
{
constexpr int kStreamIndexBufferCachedIndexCount = 6;
constexpr int kMaxCachedStreamIndexBuffers = 4;
constexpr size_t kDefaultValueSize = sizeof(gl::VertexAttribCurrentValueData::Values);
ANGLE_INLINE bool BindingIsAligned(const angle::Format &angleFormat,
VkDeviceSize offset,
GLuint stride)
{
ASSERT(stride != 0);
GLuint mask = angleFormat.componentAlignmentMask;
if (mask != std::numeric_limits<GLuint>::max())
{
return ((offset & mask) == 0 && (stride & mask) == 0);
}
else
{
// To perform the GPU conversion for formats with components that aren't byte-aligned
// (for example, A2BGR10 or RGB10A2), one element has to be placed in 4 bytes to perform
// the compute shader. So, binding offset and stride has to be aligned to formatSize.
unsigned int formatSize = angleFormat.pixelBytes;
return (offset % formatSize == 0) && (stride % formatSize == 0);
}
}
ANGLE_INLINE bool ClientBindingAligned(const gl::VertexAttribute &attrib,
GLuint stride,
size_t alignment)
{
return reinterpret_cast<intptr_t>(attrib.pointer) % alignment == 0 && stride % alignment == 0;
}
bool ShouldCombineAttributes(vk::Renderer *renderer,
const gl::VertexAttribute &attrib,
const gl::VertexBinding &binding)
{
if (!renderer->getFeatures().enableMergeClientAttribBuffer.enabled)
{
return false;
}
const vk::Format &vertexFormat = renderer->getFormat(attrib.format->id);
return !vertexFormat.getVertexLoadRequiresConversion(false) && binding.getDivisor() == 0 &&
ClientBindingAligned(attrib, binding.getStride(),
vertexFormat.getVertexInputAlignment(false));
}
void WarnOnVertexFormatConversion(ContextVk *contextVk,
const vk::Format &vertexFormat,
bool compressed,
bool insertEventMarker)
{
if (!vertexFormat.getVertexLoadRequiresConversion(compressed))
{
return;
}
ANGLE_VK_PERF_WARNING(
contextVk, GL_DEBUG_SEVERITY_LOW,
"The Vulkan driver does not support vertex attribute format 0x%04X, emulating with 0x%04X",
vertexFormat.getIntendedFormat().glInternalFormat,
vertexFormat.getActualBufferFormat(compressed).glInternalFormat);
}
angle::Result StreamVertexData(ContextVk *contextVk,
vk::BufferHelper *dstBufferHelper,
const uint8_t *srcData,
size_t bytesToCopy,
size_t dstOffset,
size_t vertexCount,
size_t srcStride,
VertexCopyFunction vertexLoadFunction)
{
vk::Renderer *renderer = contextVk->getRenderer();
// If the source pointer is null, it should not be accessed.
if (srcData == nullptr)
{
return angle::Result::Continue;
}
uint8_t *dst = dstBufferHelper->getMappedMemory() + dstOffset;
if (vertexLoadFunction != nullptr)
{
vertexLoadFunction(srcData, srcStride, vertexCount, dst);
}
else
{
memcpy(dst, srcData, bytesToCopy);
}
ANGLE_TRY(dstBufferHelper->flush(renderer));
return angle::Result::Continue;
}
angle::Result StreamVertexDataWithDivisor(ContextVk *contextVk,
vk::BufferHelper *dstBufferHelper,
const uint8_t *srcData,
size_t bytesToAllocate,
size_t srcStride,
size_t dstStride,
VertexCopyFunction vertexLoadFunction,
uint32_t divisor,
size_t numSrcVertices)
{
vk::Renderer *renderer = contextVk->getRenderer();
uint8_t *dst = dstBufferHelper->getMappedMemory();
// Each source vertex is used `divisor` times before advancing. Clamp to avoid OOB reads.
size_t clampedSize = std::min(numSrcVertices * dstStride * divisor, bytesToAllocate);
ASSERT(clampedSize % dstStride == 0);
ASSERT(divisor > 0);
uint32_t srcVertexUseCount = 0;
for (size_t dataCopied = 0; dataCopied < clampedSize; dataCopied += dstStride)
{
vertexLoadFunction(srcData, srcStride, 1, dst);
srcVertexUseCount++;
if (srcVertexUseCount == divisor)
{
srcData += srcStride;
srcVertexUseCount = 0;
}
dst += dstStride;
}
// Satisfy robustness constraints (only if extension enabled)
if (contextVk->getExtensions().robustnessAny())
{
if (clampedSize < bytesToAllocate)
{
memset(dst, 0, bytesToAllocate - clampedSize);
}
}
ANGLE_TRY(dstBufferHelper->flush(renderer));
return angle::Result::Continue;
}
size_t GetVertexCountForRange(GLint64 srcBufferBytes,
uint32_t srcFormatSize,
uint32_t srcVertexStride)
{
ASSERT(srcVertexStride != 0);
ASSERT(srcFormatSize != 0);
if (srcBufferBytes < srcFormatSize)
{
return 0;
}
size_t numVertices =
static_cast<size_t>(srcBufferBytes + srcVertexStride - 1) / srcVertexStride;
return numVertices;
}
size_t GetVertexCount(BufferVk *srcBuffer, const gl::VertexBinding &binding, uint32_t srcFormatSize)
{
// Bytes usable for vertex data.
GLint64 bytes = srcBuffer->getSize() - binding.getOffset();
GLuint stride = binding.getStride();
if (stride == 0)
{
stride = srcFormatSize;
}
return GetVertexCountForRange(bytes, srcFormatSize, stride);
}
angle::Result CalculateMaxVertexCountForConversion(ContextVk *contextVk,
BufferVk *srcBuffer,
VertexConversionBuffer *conversion,
const angle::Format &srcFormat,
const angle::Format &dstFormat,
size_t *maxNumVerticesOut)
{
// Initialize numVertices to 0
*maxNumVerticesOut = 0;
unsigned srcFormatSize = srcFormat.pixelBytes;
unsigned dstFormatSize = dstFormat.pixelBytes;
uint32_t srcStride = conversion->getCacheKey().stride;
uint32_t dstStride = dstFormatSize;
ASSERT(srcStride != 0);
ASSERT(conversion->dirty());
// Start the range with the range from the the beginning of the buffer to the end of
// buffer. Then scissor it with the dirtyRange.
size_t srcOffset = conversion->getCacheKey().offset;
GLint64 srcLength = srcBuffer->getSize() - srcOffset;
// The max number of vertices from binding to the end of the buffer
size_t maxNumVertices = GetVertexCountForRange(srcLength, srcFormatSize, srcStride);
if (maxNumVertices == 0)
{
return angle::Result::Continue;
}
// Allocate buffer for results
vk::MemoryHostVisibility hostVisible = conversion->getCacheKey().hostVisible
? vk::MemoryHostVisibility::Visible
: vk::MemoryHostVisibility::NonVisible;
ANGLE_TRY(contextVk->initBufferForVertexConversion(conversion, maxNumVertices * dstStride,
hostVisible));
// Calculate numVertices to convert
*maxNumVerticesOut = GetVertexCountForRange(srcLength, srcFormatSize, srcStride);
return angle::Result::Continue;
}
void CalculateOffsetAndVertexCountForDirtyRange(BufferVk *bufferVk,
VertexConversionBuffer *conversion,
const angle::Format &srcFormat,
const angle::Format &dstFormat,
const RangeDeviceSize &dirtyRange,
uint32_t *srcOffsetOut,
uint32_t *dstOffsetOut,
uint32_t *numVerticesOut)
{
ASSERT(!dirtyRange.empty());
unsigned srcFormatSize = srcFormat.pixelBytes;
unsigned dstFormatSize = dstFormat.pixelBytes;
uint32_t srcStride = conversion->getCacheKey().stride;
uint32_t dstStride = dstFormatSize;
ASSERT(srcStride != 0);
ASSERT(conversion->dirty());
// Start the range with the range from the the beginning of the buffer to the end of
// buffer. Then scissor it with the dirtyRange.
size_t srcOffset = conversion->getCacheKey().offset;
size_t dstOffset = 0;
GLint64 srcLength = bufferVk->getSize() - srcOffset;
// Adjust offset to the begining of the dirty range
if (dirtyRange.low() > srcOffset)
{
size_t vertexCountToSkip = (static_cast<size_t>(dirtyRange.low()) - srcOffset) / srcStride;
size_t srcBytesToSkip = vertexCountToSkip * srcStride;
size_t dstBytesToSkip = vertexCountToSkip * dstStride;
srcOffset += srcBytesToSkip;
srcLength -= srcBytesToSkip;
dstOffset += dstBytesToSkip;
}
// Adjust dstOffset to align to 4 bytes. The GPU convert code path always write a uint32_t and
// must aligned at 4 bytes. We could possibly make it able to store at unaligned uint32_t but
// performance will be worse than just convert a few extra data.
while ((dstOffset % 4) != 0)
{
dstOffset -= dstStride;
srcOffset -= srcStride;
srcLength += srcStride;
}
// Adjust length
if (dirtyRange.high() < static_cast<VkDeviceSize>(bufferVk->getSize()))
{
srcLength = dirtyRange.high() - srcOffset;
}
// Calculate numVertices to convert
size_t numVertices = GetVertexCountForRange(srcLength, srcFormatSize, srcStride);
*numVerticesOut = static_cast<uint32_t>(numVertices);
*srcOffsetOut = static_cast<uint32_t>(srcOffset);
*dstOffsetOut = static_cast<uint32_t>(dstOffset);
}
} // anonymous namespace
VertexArrayVk::VertexArrayVk(ContextVk *contextVk, const gl::VertexArrayState &state)
: VertexArrayImpl(state),
mCurrentArrayBufferHandles{},
mCurrentArrayBufferOffsets{},
mCurrentArrayBufferRelativeOffsets{},
mCurrentArrayBuffers{},
mCurrentArrayBufferStrides{},
mCurrentArrayBufferDivisors{},
mCurrentElementArrayBuffer(nullptr),
mLineLoopHelper(contextVk->getRenderer()),
mDirtyLineLoopTranslation(true)
{
vk::BufferHelper &emptyBuffer = contextVk->getEmptyBuffer();
mCurrentArrayBufferHandles.fill(emptyBuffer.getBuffer().getHandle());
mCurrentArrayBufferOffsets.fill(0);
mCurrentArrayBufferRelativeOffsets.fill(0);
mCurrentArrayBuffers.fill(&emptyBuffer);
mCurrentArrayBufferStrides.fill(0);
mCurrentArrayBufferDivisors.fill(0);
mBindingDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_BINDING_DIVISOR);
if (!contextVk->getFeatures().useVertexInputBindingStrideDynamicState.enabled)
{
mBindingDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_BINDING_STRIDE);
}
// All but DIRTY_ATTRIB_POINTER_BUFFER requires graphics pipeline update
mAttribDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_ATTRIB_ENABLED);
mAttribDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_ATTRIB_POINTER);
mAttribDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_ATTRIB_FORMAT);
mAttribDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_ATTRIB_BINDING);
}
VertexArrayVk::~VertexArrayVk() {}
void VertexArrayVk::destroy(const gl::Context *context)
{
ContextVk *contextVk = vk::GetImpl(context);
vk::Renderer *renderer = contextVk->getRenderer();
for (std::unique_ptr<vk::BufferHelper> &buffer : mCachedStreamIndexBuffers)
{
buffer->release(renderer);
}
mStreamedIndexData.release(renderer);
mTranslatedByteIndexData.release(renderer);
mTranslatedByteIndirectData.release(renderer);
mLineLoopHelper.release(contextVk);
}
angle::Result VertexArrayVk::convertIndexBufferGPU(ContextVk *contextVk,
BufferVk *bufferVk,
const void *indices)
{
intptr_t offsetIntoSrcData = reinterpret_cast<intptr_t>(indices);
size_t srcDataSize = static_cast<size_t>(bufferVk->getSize()) - offsetIntoSrcData;
// Allocate buffer for results
ANGLE_TRY(contextVk->initBufferForVertexConversion(&mTranslatedByteIndexData,
sizeof(GLushort) * srcDataSize,
vk::MemoryHostVisibility::NonVisible));
mCurrentElementArrayBuffer = mTranslatedByteIndexData.getBuffer();
vk::BufferHelper *dst = mTranslatedByteIndexData.getBuffer();
vk::BufferHelper *src = &bufferVk->getBuffer();
// Copy relevant section of the source into destination at allocated offset. Note that the
// offset returned by allocate() above is in bytes. As is the indices offset pointer.
UtilsVk::ConvertIndexParameters params = {};
params.srcOffset = static_cast<uint32_t>(offsetIntoSrcData);
params.dstOffset = 0;
params.maxIndex = static_cast<uint32_t>(bufferVk->getSize());
ANGLE_TRY(contextVk->getUtils().convertIndexBuffer(contextVk, dst, src, params));
mTranslatedByteIndexData.clearDirty();
return angle::Result::Continue;
}
angle::Result VertexArrayVk::convertIndexBufferIndirectGPU(ContextVk *contextVk,
vk::BufferHelper *srcIndirectBuf,
VkDeviceSize srcIndirectBufOffset,
vk::BufferHelper **indirectBufferVkOut)
{
size_t srcDataSize = static_cast<size_t>(mCurrentElementArrayBuffer->getSize());
ASSERT(mCurrentElementArrayBuffer ==
&vk::GetImpl(getState().getElementArrayBuffer())->getBuffer());
vk::BufferHelper *srcIndexBuf = mCurrentElementArrayBuffer;
// Allocate buffer for results
ANGLE_TRY(contextVk->initBufferForVertexConversion(&mTranslatedByteIndexData,
sizeof(GLushort) * srcDataSize,
vk::MemoryHostVisibility::NonVisible));
vk::BufferHelper *dstIndexBuf = mTranslatedByteIndexData.getBuffer();
ANGLE_TRY(contextVk->initBufferForVertexConversion(&mTranslatedByteIndirectData,
sizeof(VkDrawIndexedIndirectCommand),
vk::MemoryHostVisibility::NonVisible));
vk::BufferHelper *dstIndirectBuf = mTranslatedByteIndirectData.getBuffer();
// Save new element array buffer
mCurrentElementArrayBuffer = dstIndexBuf;
// Tell caller what new indirect buffer is
*indirectBufferVkOut = dstIndirectBuf;
// Copy relevant section of the source into destination at allocated offset. Note that the
// offset returned by allocate() above is in bytes. As is the indices offset pointer.
UtilsVk::ConvertIndexIndirectParameters params = {};
params.srcIndirectBufOffset = static_cast<uint32_t>(srcIndirectBufOffset);
params.srcIndexBufOffset = 0;
params.dstIndexBufOffset = 0;
params.maxIndex = static_cast<uint32_t>(srcDataSize);
params.dstIndirectBufOffset = 0;
ANGLE_TRY(contextVk->getUtils().convertIndexIndirectBuffer(
contextVk, srcIndirectBuf, srcIndexBuf, dstIndirectBuf, dstIndexBuf, params));
mTranslatedByteIndexData.clearDirty();
mTranslatedByteIndirectData.clearDirty();
return angle::Result::Continue;
}
angle::Result VertexArrayVk::handleLineLoopIndexIndirect(ContextVk *contextVk,
gl::DrawElementsType glIndexType,
vk::BufferHelper *srcIndexBuffer,
vk::BufferHelper *srcIndirectBuffer,
VkDeviceSize indirectBufferOffset,
vk::BufferHelper **indexBufferOut,
vk::BufferHelper **indirectBufferOut)
{
return mLineLoopHelper.streamIndicesIndirect(contextVk, glIndexType, srcIndexBuffer,
srcIndirectBuffer, indirectBufferOffset,
indexBufferOut, indirectBufferOut);
}
angle::Result VertexArrayVk::handleLineLoopIndirectDraw(const gl::Context *context,
vk::BufferHelper *indirectBufferVk,
VkDeviceSize indirectBufferOffset,
vk::BufferHelper **indexBufferOut,
vk::BufferHelper **indirectBufferOut)
{
size_t maxVertexCount = 0;
ContextVk *contextVk = vk::GetImpl(context);
const gl::AttributesMask activeAttribs =
context->getStateCache().getActiveBufferedAttribsMask();
const auto &attribs = mState.getVertexAttributes();
const auto &bindings = mState.getVertexBindings();
for (size_t attribIndex : activeAttribs)
{
const gl::VertexAttribute &attrib = attribs[attribIndex];
ASSERT(attrib.enabled);
VkDeviceSize bufSize = getCurrentArrayBuffers()[attribIndex]->getSize();
const gl::VertexBinding &binding = bindings[attrib.bindingIndex];
size_t stride = binding.getStride();
size_t vertexCount = static_cast<size_t>(bufSize / stride);
if (vertexCount > maxVertexCount)
{
maxVertexCount = vertexCount;
}
}
ANGLE_TRY(mLineLoopHelper.streamArrayIndirect(contextVk, maxVertexCount + 1, indirectBufferVk,
indirectBufferOffset, indexBufferOut,
indirectBufferOut));
return angle::Result::Continue;
}
angle::Result VertexArrayVk::convertIndexBufferCPU(ContextVk *contextVk,
gl::DrawElementsType indexType,
size_t indexCount,
const void *sourcePointer,
BufferBindingDirty *bindingDirty)
{
ASSERT(!mState.getElementArrayBuffer() || indexType == gl::DrawElementsType::UnsignedByte);
vk::Renderer *renderer = contextVk->getRenderer();
size_t elementSize = contextVk->getVkIndexTypeSize(indexType);
const size_t amount = elementSize * indexCount;
// Applications often time draw a quad with two triangles. This is try to catch all the
// common used element array buffer with pre-created BufferHelper objects to improve
// performance.
if (indexCount == kStreamIndexBufferCachedIndexCount &&
indexType == gl::DrawElementsType::UnsignedShort)
{
for (std::unique_ptr<vk::BufferHelper> &buffer : mCachedStreamIndexBuffers)
{
void *ptr = buffer->getMappedMemory();
if (memcmp(sourcePointer, ptr, amount) == 0)
{
// Found a matching cached buffer, use the cached internal index buffer.
*bindingDirty = mCurrentElementArrayBuffer == buffer.get()
? BufferBindingDirty::No
: BufferBindingDirty::Yes;
mCurrentElementArrayBuffer = buffer.get();
return angle::Result::Continue;
}
}
// If we still have capacity, cache this index buffer for future use.
if (mCachedStreamIndexBuffers.size() < kMaxCachedStreamIndexBuffers)
{
std::unique_ptr<vk::BufferHelper> buffer = std::make_unique<vk::BufferHelper>();
ANGLE_TRY(contextVk->initBufferAllocation(
buffer.get(),
renderer->getVertexConversionBufferMemoryTypeIndex(
vk::MemoryHostVisibility::Visible),
amount, renderer->getVertexConversionBufferAlignment(), BufferUsageType::Static));
memcpy(buffer->getMappedMemory(), sourcePointer, amount);
ANGLE_TRY(buffer->flush(renderer));
mCachedStreamIndexBuffers.push_back(std::move(buffer));
*bindingDirty = BufferBindingDirty::Yes;
mCurrentElementArrayBuffer = mCachedStreamIndexBuffers.back().get();
return angle::Result::Continue;
}
}
ANGLE_TRY(contextVk->initBufferForVertexConversion(&mStreamedIndexData, amount,
vk::MemoryHostVisibility::Visible));
mCurrentElementArrayBuffer = mStreamedIndexData.getBuffer();
GLubyte *dst = mCurrentElementArrayBuffer->getMappedMemory();
*bindingDirty = BufferBindingDirty::Yes;
if (contextVk->shouldConvertUint8VkIndexType(indexType))
{
// Unsigned bytes don't have direct support in Vulkan so we have to expand the
// memory to a GLushort.
const GLubyte *in = static_cast<const GLubyte *>(sourcePointer);
GLushort *expandedDst = reinterpret_cast<GLushort *>(dst);
bool primitiveRestart = contextVk->getState().isPrimitiveRestartEnabled();
constexpr GLubyte kUnsignedByteRestartValue = 0xFF;
constexpr GLushort kUnsignedShortRestartValue = 0xFFFF;
if (primitiveRestart)
{
for (size_t index = 0; index < indexCount; index++)
{
GLushort value = static_cast<GLushort>(in[index]);
if (in[index] == kUnsignedByteRestartValue)
{
// Convert from 8-bit restart value to 16-bit restart value
value = kUnsignedShortRestartValue;
}
expandedDst[index] = value;
}
}
else
{
// Fast path for common case.
for (size_t index = 0; index < indexCount; index++)
{
expandedDst[index] = static_cast<GLushort>(in[index]);
}
}
}
else
{
// The primitive restart value is the same for OpenGL and Vulkan,
// so there's no need to perform any conversion.
memcpy(dst, sourcePointer, amount);
}
mStreamedIndexData.clearDirty();
return mCurrentElementArrayBuffer->flush(contextVk->getRenderer());
}
// We assume the buffer is completely full of the same kind of data and convert
// and/or align it as we copy it to a buffer. The assumption could be wrong
// but the alternative of copying it piecemeal on each draw would have a lot more
// overhead.
angle::Result VertexArrayVk::convertVertexBufferGPU(ContextVk *contextVk,
BufferVk *srcBuffer,
VertexConversionBuffer *conversion,
const angle::Format &srcFormat,
const angle::Format &dstFormat)
{
uint32_t srcStride = conversion->getCacheKey().stride;
ASSERT(srcStride % (srcFormat.pixelBytes / srcFormat.channelCount) == 0);
size_t maxNumVertices;
ANGLE_TRY(CalculateMaxVertexCountForConversion(contextVk, srcBuffer, conversion, srcFormat,
dstFormat, &maxNumVertices));
if (maxNumVertices == 0)
{
return angle::Result::Continue;
}
vk::BufferHelper *srcBufferHelper = &srcBuffer->getBuffer();
vk::BufferHelper *dstBuffer = conversion->getBuffer();
UtilsVk::OffsetAndVertexCounts additionalOffsetVertexCounts;
UtilsVk::ConvertVertexParameters params;
params.srcFormat = &srcFormat;
params.dstFormat = &dstFormat;
params.srcStride = srcStride;
params.vertexCount = 0;
if (conversion->isEntireBufferDirty())
{
params.vertexCount = static_cast<uint32_t>(maxNumVertices);
params.srcOffset = static_cast<uint32_t>(conversion->getCacheKey().offset);
params.dstOffset = 0;
}
else
{
// dirtyRanges may overlap with each other. Try to do a quick merge to reduce the number of
// dispatch calls as well as avoid redundant conversion in the overlapped area.
conversion->consolidateDirtyRanges();
const std::vector<RangeDeviceSize> &dirtyRanges = conversion->getDirtyBufferRanges();
additionalOffsetVertexCounts.reserve(dirtyRanges.size());
for (const RangeDeviceSize &dirtyRange : dirtyRanges)
{
if (dirtyRange.empty())
{
// consolidateDirtyRanges may end up with invalid range if it gets merged.
continue;
}
uint32_t srcOffset, dstOffset, numVertices;
CalculateOffsetAndVertexCountForDirtyRange(srcBuffer, conversion, srcFormat, dstFormat,
dirtyRange, &srcOffset, &dstOffset,
&numVertices);
if (params.vertexCount == 0)
{
params.vertexCount = numVertices;
params.srcOffset = srcOffset;
params.dstOffset = dstOffset;
}
else
{
additionalOffsetVertexCounts.emplace_back();
additionalOffsetVertexCounts.back().srcOffset = srcOffset;
additionalOffsetVertexCounts.back().dstOffset = dstOffset;
additionalOffsetVertexCounts.back().vertexCount = numVertices;
}
}
}
ANGLE_TRY(contextVk->getUtils().convertVertexBuffer(contextVk, dstBuffer, srcBufferHelper,
params, additionalOffsetVertexCounts));
conversion->clearDirty();
return angle::Result::Continue;
}
angle::Result VertexArrayVk::convertVertexBufferCPU(ContextVk *contextVk,
BufferVk *srcBuffer,
VertexConversionBuffer *conversion,
const angle::Format &srcFormat,
const angle::Format &dstFormat,
const VertexCopyFunction vertexLoadFunction)
{
ANGLE_TRACE_EVENT0("gpu.angle", "VertexArrayVk::convertVertexBufferCpu");
size_t maxNumVertices;
ANGLE_TRY(CalculateMaxVertexCountForConversion(contextVk, srcBuffer, conversion, srcFormat,
dstFormat, &maxNumVertices));
if (maxNumVertices == 0)
{
return angle::Result::Continue;
}
uint8_t *src = nullptr;
ANGLE_TRY(srcBuffer->mapImpl(contextVk, GL_MAP_READ_BIT, reinterpret_cast<void **>(&src)));
uint32_t srcStride = conversion->getCacheKey().stride;
if (conversion->isEntireBufferDirty())
{
size_t srcOffset = conversion->getCacheKey().offset;
size_t dstOffset = 0;
const uint8_t *srcBytes = src + srcOffset;
size_t bytesToCopy = maxNumVertices * dstFormat.pixelBytes;
ANGLE_TRY(StreamVertexData(contextVk, conversion->getBuffer(), srcBytes, bytesToCopy,
dstOffset, maxNumVertices, srcStride, vertexLoadFunction));
}
else
{
// dirtyRanges may overlap with each other. Try to do a quick merge to avoid redundant
// conversion in the overlapped area.
conversion->consolidateDirtyRanges();
const std::vector<RangeDeviceSize> &dirtyRanges = conversion->getDirtyBufferRanges();
for (const RangeDeviceSize &dirtyRange : dirtyRanges)
{
if (dirtyRange.empty())
{
// consolidateDirtyRanges may end up with invalid range if it gets merged.
continue;
}
uint32_t srcOffset, dstOffset, numVertices;
CalculateOffsetAndVertexCountForDirtyRange(srcBuffer, conversion, srcFormat, dstFormat,
dirtyRange, &srcOffset, &dstOffset,
&numVertices);
if (numVertices > 0)
{
const uint8_t *srcBytes = src + srcOffset;
size_t bytesToCopy = maxNumVertices * dstFormat.pixelBytes;
ANGLE_TRY(StreamVertexData(contextVk, conversion->getBuffer(), srcBytes,
bytesToCopy, dstOffset, maxNumVertices, srcStride,
vertexLoadFunction));
}
}
}
conversion->clearDirty();
ANGLE_TRY(srcBuffer->unmapImpl(contextVk));
return angle::Result::Continue;
}
void VertexArrayVk::updateCurrentElementArrayBuffer()
{
ASSERT(mState.getElementArrayBuffer() != nullptr);
ASSERT(mState.getElementArrayBuffer()->getSize() > 0);
BufferVk *bufferVk = vk::GetImpl(mState.getElementArrayBuffer());
mCurrentElementArrayBuffer = &bufferVk->getBuffer();
}
angle::Result VertexArrayVk::syncState(const gl::Context *context,
const gl::VertexArray::DirtyBits &dirtyBits,
gl::VertexArray::DirtyAttribBitsArray *attribBits,
gl::VertexArray::DirtyBindingBitsArray *bindingBits)
{
ASSERT(dirtyBits.any());
ContextVk *contextVk = vk::GetImpl(context);
contextVk->getPerfCounters().vertexArraySyncStateCalls++;
const std::vector<gl::VertexAttribute> &attribs = mState.getVertexAttributes();
const std::vector<gl::VertexBinding> &bindings = mState.getVertexBindings();
for (auto iter = dirtyBits.begin(), endIter = dirtyBits.end(); iter != endIter; ++iter)
{
size_t dirtyBit = *iter;
switch (dirtyBit)
{
case gl::VertexArray::DIRTY_BIT_LOST_OBSERVATION:
{
// If vertex array was not observing while unbound, we need to check buffer's
// internal storage and take action if buffer storage has changed while not
// observing.
if (contextVk->getFeatures().compressVertexData.enabled ||
mContentsObservers->any())
{
// We may have lost buffer content change when it became non-current. In that
// case we always assume buffer has changed. If compressVertexData.enabled is
// true, it also depends on buffer usage which may have changed.
iter.setLaterBits(
gl::VertexArray::DirtyBits(mState.getBufferBindingMask().to_ulong()
<< gl::VertexArray::DIRTY_BIT_BINDING_0));
}
else
{
for (size_t bindingIndex : mState.getBufferBindingMask())
{
const gl::Buffer *bufferGL = bindings[bindingIndex].getBuffer().get();
vk::BufferSerial bufferSerial = vk::GetImpl(bufferGL)->getBufferSerial();
for (size_t attribIndex : bindings[bindingIndex].getBoundAttributesMask())
{
if (attribs[attribIndex].enabled &&
(!bufferSerial.valid() ||
bufferSerial != mCurrentArrayBufferSerial[attribIndex]))
{
iter.setLaterBit(gl::VertexArray::DIRTY_BIT_BINDING_0 +
bindingIndex);
break;
}
}
}
}
break;
}
case gl::VertexArray::DIRTY_BIT_ELEMENT_ARRAY_BUFFER:
case gl::VertexArray::DIRTY_BIT_ELEMENT_ARRAY_BUFFER_DATA:
{
gl::Buffer *bufferGL = mState.getElementArrayBuffer();
if (bufferGL && bufferGL->getSize() > 0)
{
// Note that just updating buffer data may still result in a new
// vk::BufferHelper allocation.
updateCurrentElementArrayBuffer();
}
else
{
mCurrentElementArrayBuffer = nullptr;
}
mLineLoopBufferFirstIndex.reset();
mLineLoopBufferLastIndex.reset();
ANGLE_TRY(contextVk->onIndexBufferChange(mCurrentElementArrayBuffer));
mDirtyLineLoopTranslation = true;
break;
}
#define ANGLE_VERTEX_DIRTY_ATTRIB_FUNC(INDEX) \
case gl::VertexArray::DIRTY_BIT_ATTRIB_0 + INDEX: \
{ \
gl::VertexArray::DirtyAttribBits dirtyAttribBitsRequiresPipelineUpdate = \
(*attribBits)[INDEX] & mAttribDirtyBitsRequiresPipelineUpdate; \
const bool bufferOnly = dirtyAttribBitsRequiresPipelineUpdate.none(); \
ANGLE_TRY(syncDirtyAttrib(contextVk, attribs[INDEX], \
bindings[attribs[INDEX].bindingIndex], INDEX, bufferOnly)); \
(*attribBits)[INDEX].reset(); \
break; \
}
ANGLE_VERTEX_INDEX_CASES(ANGLE_VERTEX_DIRTY_ATTRIB_FUNC)
// Since BINDING already implies DATA and ATTRIB change, we remove these here to avoid redundant
// processing.
#define ANGLE_VERTEX_DIRTY_BINDING_FUNC(INDEX) \
case gl::VertexArray::DIRTY_BIT_BINDING_0 + INDEX: \
{ \
gl::VertexArray::DirtyBindingBits dirtyBindingBitsRequirePipelineUpdate = \
(*bindingBits)[INDEX] & mBindingDirtyBitsRequiresPipelineUpdate; \
\
for (size_t attribIndex : bindings[INDEX].getBoundAttributesMask()) \
{ \
gl::VertexArray::DirtyAttribBits dirtyAttribBitsRequiresPipelineUpdate = \
(*attribBits)[attribIndex] & mAttribDirtyBitsRequiresPipelineUpdate; \
const bool bufferOnly = dirtyBindingBitsRequirePipelineUpdate.none() && \
dirtyAttribBitsRequiresPipelineUpdate.none(); \
ANGLE_TRY(syncDirtyAttrib(contextVk, attribs[attribIndex], bindings[INDEX], \
attribIndex, bufferOnly)); \
iter.resetLaterBit(gl::VertexArray::DIRTY_BIT_BUFFER_DATA_0 + attribIndex); \
iter.resetLaterBit(gl::VertexArray::DIRTY_BIT_ATTRIB_0 + attribIndex); \
(*attribBits)[attribIndex].reset(); \
} \
(*bindingBits)[INDEX].reset(); \
break; \
}
ANGLE_VERTEX_INDEX_CASES(ANGLE_VERTEX_DIRTY_BINDING_FUNC)
#define ANGLE_VERTEX_DIRTY_BUFFER_DATA_FUNC(INDEX) \
case gl::VertexArray::DIRTY_BIT_BUFFER_DATA_0 + INDEX: \
ANGLE_TRY(syncDirtyAttrib(contextVk, attribs[INDEX], \
bindings[attribs[INDEX].bindingIndex], INDEX, false)); \
iter.resetLaterBit(gl::VertexArray::DIRTY_BIT_ATTRIB_0 + INDEX); \
(*attribBits)[INDEX].reset(); \
break;
ANGLE_VERTEX_INDEX_CASES(ANGLE_VERTEX_DIRTY_BUFFER_DATA_FUNC)
default:
UNREACHABLE();
break;
}
}
return angle::Result::Continue;
} // namespace rx
#undef ANGLE_VERTEX_DIRTY_ATTRIB_FUNC
#undef ANGLE_VERTEX_DIRTY_BINDING_FUNC
#undef ANGLE_VERTEX_DIRTY_BUFFER_DATA_FUNC
ANGLE_INLINE angle::Result VertexArrayVk::setDefaultPackedInput(ContextVk *contextVk,
size_t attribIndex,
angle::FormatID *formatOut)
{
const gl::State &glState = contextVk->getState();
const gl::VertexAttribCurrentValueData &defaultValue =
glState.getVertexAttribCurrentValues()[attribIndex];
*formatOut = GetCurrentValueFormatID(defaultValue.Type);
return contextVk->onVertexAttributeChange(attribIndex, 0, 0, *formatOut, false, 0, nullptr);
}
angle::Result VertexArrayVk::updateActiveAttribInfo(ContextVk *contextVk)
{
const std::vector<gl::VertexAttribute> &attribs = mState.getVertexAttributes();
const std::vector<gl::VertexBinding> &bindings = mState.getVertexBindings();
// Update pipeline cache with current active attribute info
for (size_t attribIndex : mState.getEnabledAttributesMask())
{
const gl::VertexAttribute &attrib = attribs[attribIndex];
const gl::VertexBinding &binding = bindings[attribs[attribIndex].bindingIndex];
const angle::FormatID format = attrib.format->id;
ANGLE_TRY(contextVk->onVertexAttributeChange(
attribIndex, mCurrentArrayBufferStrides[attribIndex], binding.getDivisor(), format,
mCurrentArrayBufferCompressed.test(attribIndex),
mCurrentArrayBufferRelativeOffsets[attribIndex], mCurrentArrayBuffers[attribIndex]));
mCurrentArrayBufferFormats[attribIndex] = format;
}
return angle::Result::Continue;
}
angle::Result VertexArrayVk::syncDirtyAttrib(ContextVk *contextVk,
const gl::VertexAttribute &attrib,
const gl::VertexBinding &binding,
size_t attribIndex,
bool bufferOnly)
{
vk::Renderer *renderer = contextVk->getRenderer();
if (attrib.enabled)
{
const vk::Format &vertexFormat = renderer->getFormat(attrib.format->id);
// Init attribute offset to the front-end value
mCurrentArrayBufferRelativeOffsets[attribIndex] = attrib.relativeOffset;
gl::Buffer *bufferGL = binding.getBuffer().get();
// Emulated and/or client-side attribs will be streamed
bool isStreamingVertexAttrib =
(binding.getDivisor() > renderer->getMaxVertexAttribDivisor()) || (bufferGL == nullptr);
// If we sre switching between streaming and buffer mode, set bufferOnly to false since we
// are actually changing the buffer.
if (bufferOnly && isStreamingVertexAttrib != mStreamingVertexAttribsMask.test(attribIndex))
{
bufferOnly = false;
}
mStreamingVertexAttribsMask.set(attribIndex, isStreamingVertexAttrib);
bool compressed = false;
if (bufferGL)
{
mContentsObservers->disableForBuffer(bufferGL, static_cast<uint32_t>(attribIndex));
}
if (!isStreamingVertexAttrib && bufferGL->getSize() > 0)
{
BufferVk *bufferVk = vk::GetImpl(bufferGL);
const angle::Format &srcFormat = vertexFormat.getIntendedFormat();
unsigned srcFormatSize = srcFormat.pixelBytes;
uint32_t srcStride = binding.getStride() == 0 ? srcFormatSize : binding.getStride();
size_t numVertices = GetVertexCount(bufferVk, binding, srcFormatSize);
bool bindingIsAligned =
BindingIsAligned(srcFormat, binding.getOffset() + attrib.relativeOffset, srcStride);
if (renderer->getFeatures().compressVertexData.enabled &&
gl::IsStaticBufferUsage(bufferGL->getUsage()) &&
vertexFormat.canCompressBufferData())
{
compressed = true;
}
bool needsConversion =
numVertices > 0 &&
(vertexFormat.getVertexLoadRequiresConversion(compressed) || !bindingIsAligned);
if (needsConversion)
{
const angle::Format &dstFormat = vertexFormat.getActualBufferFormat(compressed);
// Converted buffer is tightly packed
uint32_t dstStride = dstFormat.pixelBytes;
ASSERT(vertexFormat.getVertexInputAlignment(compressed) <=
vk::kVertexBufferAlignment);
mContentsObservers->enableForBuffer(bufferGL, static_cast<uint32_t>(attribIndex));
WarnOnVertexFormatConversion(contextVk, vertexFormat, compressed, true);
const VertexConversionBuffer::CacheKey cacheKey{
srcFormat.id, srcStride,
static_cast<size_t>(binding.getOffset()) + attrib.relativeOffset,
!bindingIsAligned, false};
VertexConversionBuffer *conversion =
bufferVk->getVertexConversionBuffer(renderer, cacheKey);
// Converted attribs are packed in their own VK buffer so offset is relative to the
// binding and coversion's offset. The conversion buffer try to reuse the existing
// buffer as much as possible to reduce the amount of data that has to be converted.
// When binding's offset changes, it will check if new offset and existing buffer's
// offset are multiple of strides apart. It yes it will reuse. If new offset is
// larger, all existing data are still valid. If the new offset is smaller it will
// mark the newly exposed range dirty and then rely on
// ContextVk::initBufferForVertexConversion to decide buffer's size is big enough or
// not and reallocate (and mark entire buffer dirty) if needed.
//
// bufferVk:-----------------------------------------------------------------------
// | |
// | bingding.offset + attrib.relativeOffset.
// conversion->getCacheKey().offset
//
// conversion.buffer: --------------------------------------------------------------
// |
// dstRelativeOffset
size_t srcRelativeOffset =
binding.getOffset() + attrib.relativeOffset - conversion->getCacheKey().offset;
size_t numberOfVerticesToSkip = srcRelativeOffset / srcStride;
size_t dstRelativeOffset = numberOfVerticesToSkip * dstStride;
if (conversion->dirty())
{
if (compressed)
{
INFO() << "Compressing vertex data in buffer " << bufferGL->id().value
<< " from " << ToUnderlying(srcFormat.id) << " to "
<< ToUnderlying(dstFormat.id) << ".";
}
if (bindingIsAligned)
{
ANGLE_TRY(convertVertexBufferGPU(contextVk, bufferVk, conversion, srcFormat,
dstFormat));
}
else
{
ANGLE_VK_PERF_WARNING(
contextVk, GL_DEBUG_SEVERITY_HIGH,
"GPU stall due to vertex format conversion of unaligned data");
ANGLE_TRY(convertVertexBufferCPU(
contextVk, bufferVk, conversion, srcFormat, dstFormat,
vertexFormat.getVertexLoadFunction(compressed)));
}
// If conversion happens, the destination buffer stride may be changed,
// therefore an attribute change needs to be called. Note that it may trigger
// unnecessary vulkan PSO update when the destination buffer stride does not
// change, but for simplicity just make it conservative
bufferOnly = false;
}
vk::BufferHelper *bufferHelper = conversion->getBuffer();
mCurrentArrayBuffers[attribIndex] = bufferHelper;
mCurrentArrayBufferSerial[attribIndex] = bufferHelper->getBufferSerial();
VkDeviceSize bufferOffset;
mCurrentArrayBufferHandles[attribIndex] =
bufferHelper
->getBufferForVertexArray(contextVk, bufferHelper->getSize(), &bufferOffset)
.getHandle();
ASSERT(BindingIsAligned(dstFormat, bufferOffset + dstRelativeOffset, dstStride));
mCurrentArrayBufferOffsets[attribIndex] = bufferOffset + dstRelativeOffset;
mCurrentArrayBufferRelativeOffsets[attribIndex] = 0;
mCurrentArrayBufferStrides[attribIndex] = dstStride;
}
else
{
if (numVertices == 0)
{
vk::BufferHelper &emptyBuffer = contextVk->getEmptyBuffer();
mCurrentArrayBuffers[attribIndex] = &emptyBuffer;
mCurrentArrayBufferSerial[attribIndex] = emptyBuffer.getBufferSerial();
mCurrentArrayBufferHandles[attribIndex] = emptyBuffer.getBuffer().getHandle();
mCurrentArrayBufferOffsets[attribIndex] = emptyBuffer.getOffset();
mCurrentArrayBufferStrides[attribIndex] = 0;
}
else
{
vk::BufferHelper &bufferHelper = bufferVk->getBuffer();
mCurrentArrayBuffers[attribIndex] = &bufferHelper;
mCurrentArrayBufferSerial[attribIndex] = bufferHelper.getBufferSerial();
VkDeviceSize bufferOffset;
mCurrentArrayBufferHandles[attribIndex] =
bufferHelper
.getBufferForVertexArray(contextVk, bufferVk->getSize(), &bufferOffset)
.getHandle();
// Vulkan requires the offset is within the buffer. We use robust access
// behaviour to reset the offset if it starts outside the buffer.
mCurrentArrayBufferOffsets[attribIndex] =
binding.getOffset() < static_cast<GLint64>(bufferVk->getSize())
? binding.getOffset() + bufferOffset
: bufferOffset;
mCurrentArrayBufferStrides[attribIndex] = binding.getStride();
}
}
}
else
{
vk::BufferHelper &emptyBuffer = contextVk->getEmptyBuffer();
mCurrentArrayBuffers[attribIndex] = &emptyBuffer;
mCurrentArrayBufferSerial[attribIndex] = emptyBuffer.getBufferSerial();
mCurrentArrayBufferHandles[attribIndex] = emptyBuffer.getBuffer().getHandle();
mCurrentArrayBufferOffsets[attribIndex] = emptyBuffer.getOffset();
bool combined = ShouldCombineAttributes(renderer, attrib, binding);
mCurrentArrayBufferStrides[attribIndex] =
combined ? binding.getStride()
: vertexFormat.getActualBufferFormat(compressed).pixelBytes;
}
if (bufferOnly)
{
ANGLE_TRY(contextVk->onVertexBufferChange(mCurrentArrayBuffers[attribIndex]));
}
else
{
const angle::FormatID format = attrib.format->id;
ANGLE_TRY(contextVk->onVertexAttributeChange(
attribIndex, mCurrentArrayBufferStrides[attribIndex], binding.getDivisor(), format,
compressed, mCurrentArrayBufferRelativeOffsets[attribIndex],
mCurrentArrayBuffers[attribIndex]));
mCurrentArrayBufferFormats[attribIndex] = format;
mCurrentArrayBufferCompressed[attribIndex] = compressed;
mCurrentArrayBufferDivisors[attribIndex] = binding.getDivisor();
}
}
else
{
contextVk->invalidateDefaultAttribute(attribIndex);
// These will be filled out by the ContextVk.
vk::BufferHelper &emptyBuffer = contextVk->getEmptyBuffer();
mCurrentArrayBuffers[attribIndex] = &emptyBuffer;
mCurrentArrayBufferSerial[attribIndex] = emptyBuffer.getBufferSerial();
mCurrentArrayBufferHandles[attribIndex] = emptyBuffer.getBuffer().getHandle();
mCurrentArrayBufferOffsets[attribIndex] = emptyBuffer.getOffset();
mCurrentArrayBufferStrides[attribIndex] = 0;
mCurrentArrayBufferDivisors[attribIndex] = 0;
mCurrentArrayBufferCompressed[attribIndex] = false;
mCurrentArrayBufferRelativeOffsets[attribIndex] = 0;
ANGLE_TRY(setDefaultPackedInput(contextVk, attribIndex,
&mCurrentArrayBufferFormats[attribIndex]));
}
return angle::Result::Continue;
}
gl::AttributesMask VertexArrayVk::mergeClientAttribsRange(
vk::Renderer *renderer,
const gl::AttributesMask activeStreamedAttribs,
size_t startVertex,
size_t endVertex,
std::array<AttributeRange, gl::MAX_VERTEX_ATTRIBS> &mergeRangesOut,
std::array<size_t, gl::MAX_VERTEX_ATTRIBS> &mergedIndexesOut) const
{
const std::vector<gl::VertexAttribute> &attribs = mState.getVertexAttributes();
const std::vector<gl::VertexBinding> &bindings = mState.getVertexBindings();
gl::AttributesMask attributeMaskCanCombine;
angle::FixedVector<size_t, gl::MAX_VERTEX_ATTRIBS> combinedIndexes;
for (size_t attribIndex : activeStreamedAttribs)
{
const gl::VertexAttribute &attrib = attribs[attribIndex];
ASSERT(attrib.enabled);
const gl::VertexBinding &binding = bindings[attrib.bindingIndex];
const vk::Format &vertexFormat = renderer->getFormat(attrib.format->id);
bool combined = ShouldCombineAttributes(renderer, attrib, binding);
attributeMaskCanCombine.set(attribIndex, combined);
if (combined)
{
combinedIndexes.push_back(attribIndex);
}
GLuint pixelBytes = vertexFormat.getActualBufferFormat(false).pixelBytes;
size_t destStride = combined ? binding.getStride() : pixelBytes;
uintptr_t startAddress = reinterpret_cast<uintptr_t>(attrib.pointer);
mergeRangesOut[attribIndex].startAddr = startAddress;
mergeRangesOut[attribIndex].endAddr =
startAddress + (endVertex - 1) * destStride + pixelBytes;
mergeRangesOut[attribIndex].copyStartAddr =
startAddress + startVertex * binding.getStride();
mergedIndexesOut[attribIndex] = attribIndex;
}
if (attributeMaskCanCombine.none())
{
return attributeMaskCanCombine;
}
auto comp = [&mergeRangesOut](size_t a, size_t b) -> bool {
return mergeRangesOut[a] < mergeRangesOut[b];
};
// Only sort combined range indexes.
std::sort(combinedIndexes.begin(), combinedIndexes.end(), comp);
// Merge combined range span.
auto next = combinedIndexes.begin();
auto cur = next++;
while (next != combinedIndexes.end() || (cur != next))
{
// Cur and next overlaps: merge next into cur and move next.
if (next != combinedIndexes.end() &&
mergeRangesOut[*cur].endAddr >= mergeRangesOut[*next].startAddr)
{
mergeRangesOut[*cur].endAddr =
std::max(mergeRangesOut[*cur].endAddr, mergeRangesOut[*next].endAddr);
mergeRangesOut[*cur].copyStartAddr =
std::min(mergeRangesOut[*cur].copyStartAddr, mergeRangesOut[*next].copyStartAddr);
mergedIndexesOut[*next] = mergedIndexesOut[*cur];
++next;
}
else
{
++cur;
if (cur != next)
{
mergeRangesOut[*cur] = mergeRangesOut[*(cur - 1)];
}
else if (next != combinedIndexes.end())
{
++next;
}
}
}
return attributeMaskCanCombine;
}
// Handle copying client attribs and/or expanding attrib buffer in case where attribute
// divisor value has to be emulated.
angle::Result VertexArrayVk::updateStreamedAttribs(const gl::Context *context,
GLint firstVertex,
GLsizei vertexOrIndexCount,
GLsizei instanceCount,
gl::DrawElementsType indexTypeOrInvalid,
const void *indices)
{
ContextVk *contextVk = vk::GetImpl(context);
vk::Renderer *renderer = contextVk->getRenderer();
const gl::AttributesMask activeAttribs =
context->getStateCache().getActiveClientAttribsMask() |
context->getStateCache().getActiveBufferedAttribsMask();
const gl::AttributesMask activeStreamedAttribs = mStreamingVertexAttribsMask & activeAttribs;
// Early return for corner case where emulated buffered attribs are not active
if (!activeStreamedAttribs.any())
{
return angle::Result::Continue;
}
GLint startVertex;
size_t vertexCount;
ANGLE_TRY(GetVertexRangeInfo(context, firstVertex, vertexOrIndexCount, indexTypeOrInvalid,
indices, 0, &startVertex, &vertexCount));
ASSERT(vertexCount > 0);
const auto &attribs = mState.getVertexAttributes();
const auto &bindings = mState.getVertexBindings();
std::array<size_t, gl::MAX_VERTEX_ATTRIBS> mergedIndexes;
std::array<AttributeRange, gl::MAX_VERTEX_ATTRIBS> mergeRanges;
std::array<vk::BufferHelper *, gl::MAX_VERTEX_ATTRIBS> attribBufferHelper = {};
auto mergeAttribMask =
mergeClientAttribsRange(renderer, activeStreamedAttribs, startVertex,
startVertex + vertexCount, mergeRanges, mergedIndexes);
for (size_t attribIndex : activeStreamedAttribs)
{
const gl::VertexAttribute &attrib = attribs[attribIndex];
ASSERT(attrib.enabled);
const gl::VertexBinding &binding = bindings[attrib.bindingIndex];
const vk::Format &vertexFormat = renderer->getFormat(attrib.format->id);
const angle::Format &dstFormat = vertexFormat.getActualBufferFormat(false);
GLuint pixelBytes = dstFormat.pixelBytes;
const bool compressed = false;
ASSERT(vertexFormat.getVertexInputAlignment(false) <= vk::kVertexBufferAlignment);
vk::BufferHelper *vertexDataBuffer = nullptr;
const uint8_t *src = static_cast<const uint8_t *>(attrib.pointer);
const uint32_t divisor = binding.getDivisor();
bool combined = mergeAttribMask.test(attribIndex);
GLuint stride = combined ? binding.getStride() : pixelBytes;
VkDeviceSize startOffset = 0;
if (divisor > 0)
{
// Instanced attrib
if (divisor > renderer->getMaxVertexAttribDivisor())
{
// Divisor will be set to 1 & so update buffer to have 1 attrib per instance
size_t bytesToAllocate = instanceCount * stride;
// Allocate buffer for results
ANGLE_TRY(contextVk->allocateStreamedVertexBuffer(attribIndex, bytesToAllocate,
&vertexDataBuffer));
gl::Buffer *bufferGL = binding.getBuffer().get();
if (bufferGL != nullptr)
{
// Only do the data copy if src buffer is valid.
if (bufferGL->getSize() > 0)
{
// Map buffer to expand attribs for divisor emulation
BufferVk *bufferVk = vk::GetImpl(binding.getBuffer().get());
void *buffSrc = nullptr;
ANGLE_TRY(bufferVk->mapImpl(contextVk, GL_MAP_READ_BIT, &buffSrc));
src = reinterpret_cast<const uint8_t *>(buffSrc) + binding.getOffset();
uint32_t srcAttributeSize =
static_cast<uint32_t>(ComputeVertexAttributeTypeSize(attrib));
size_t numVertices = GetVertexCount(bufferVk, binding, srcAttributeSize);
ANGLE_TRY(StreamVertexDataWithDivisor(
contextVk, vertexDataBuffer, src, bytesToAllocate, binding.getStride(),
stride, vertexFormat.getVertexLoadFunction(compressed), divisor,
numVertices));
ANGLE_TRY(bufferVk->unmapImpl(contextVk));
}
else if (contextVk->getExtensions().robustnessAny())
{
// Satisfy robustness constraints (only if extension enabled)
uint8_t *dst = vertexDataBuffer->getMappedMemory();
memset(dst, 0, bytesToAllocate);
}
}
else
{
size_t numVertices = instanceCount;
ANGLE_TRY(StreamVertexDataWithDivisor(
contextVk, vertexDataBuffer, src, bytesToAllocate, binding.getStride(),
stride, vertexFormat.getVertexLoadFunction(compressed), divisor,
numVertices));
}
}
else
{
ASSERT(binding.getBuffer().get() == nullptr);
size_t count = UnsignedCeilDivide(instanceCount, divisor);
size_t bytesToAllocate = count * stride;
// Allocate buffer for results
ANGLE_TRY(contextVk->allocateStreamedVertexBuffer(attribIndex, bytesToAllocate,
&vertexDataBuffer));
ANGLE_TRY(StreamVertexData(contextVk, vertexDataBuffer, src, bytesToAllocate, 0,
count, binding.getStride(),
vertexFormat.getVertexLoadFunction(compressed)));
}
}
else
{
ASSERT(binding.getBuffer().get() == nullptr);
size_t mergedAttribIdx = mergedIndexes[attribIndex];
const AttributeRange &range = mergeRanges[attribIndex];
if (attribBufferHelper[mergedAttribIdx] == nullptr)
{
size_t destOffset =
combined ? range.copyStartAddr - range.startAddr : startVertex * stride;
size_t bytesToAllocate = range.endAddr - range.startAddr;
ANGLE_TRY(contextVk->allocateStreamedVertexBuffer(
mergedAttribIdx, bytesToAllocate, &attribBufferHelper[mergedAttribIdx]));
ANGLE_TRY(StreamVertexData(
contextVk, attribBufferHelper[mergedAttribIdx],
(const uint8_t *)range.copyStartAddr, bytesToAllocate - destOffset, destOffset,
vertexCount, binding.getStride(),
combined ? nullptr : vertexFormat.getVertexLoadFunction(compressed)));
}
vertexDataBuffer = attribBufferHelper[mergedAttribIdx];
startOffset = combined ? (uintptr_t)attrib.pointer - range.startAddr : 0;
}
ASSERT(vertexDataBuffer != nullptr);
mCurrentArrayBuffers[attribIndex] = vertexDataBuffer;
mCurrentArrayBufferSerial[attribIndex] = vertexDataBuffer->getBufferSerial();
VkDeviceSize bufferOffset;
mCurrentArrayBufferHandles[attribIndex] =
vertexDataBuffer
->getBufferForVertexArray(contextVk, vertexDataBuffer->getSize(), &bufferOffset)
.getHandle();
mCurrentArrayBufferOffsets[attribIndex] = bufferOffset + startOffset;
mCurrentArrayBufferStrides[attribIndex] = stride;
mCurrentArrayBufferDivisors[attribIndex] = divisor;
ASSERT(BindingIsAligned(dstFormat, mCurrentArrayBufferOffsets[attribIndex],
mCurrentArrayBufferStrides[attribIndex]));
}
return angle::Result::Continue;
}
angle::Result VertexArrayVk::handleLineLoop(ContextVk *contextVk,
GLint firstVertex,
GLsizei vertexOrIndexCount,
gl::DrawElementsType indexTypeOrInvalid,
const void *indices,
vk::BufferHelper **indexBufferOut,
uint32_t *indexCountOut)
{
if (indexTypeOrInvalid != gl::DrawElementsType::InvalidEnum)
{
// Handle GL_LINE_LOOP drawElements.
if (mDirtyLineLoopTranslation)
{
gl::Buffer *elementArrayBuffer = mState.getElementArrayBuffer();
if (!elementArrayBuffer)
{
ANGLE_TRY(mLineLoopHelper.streamIndices(
contextVk, indexTypeOrInvalid, vertexOrIndexCount,
reinterpret_cast<const uint8_t *>(indices), indexBufferOut, indexCountOut));
}
else
{
// When using an element array buffer, 'indices' is an offset to the first element.
intptr_t offset = reinterpret_cast<intptr_t>(indices);
BufferVk *elementArrayBufferVk = vk::GetImpl(elementArrayBuffer);
ANGLE_TRY(mLineLoopHelper.getIndexBufferForElementArrayBuffer(
contextVk, elementArrayBufferVk, indexTypeOrInvalid, vertexOrIndexCount, offset,
indexBufferOut, indexCountOut));
}
}
// If we've had a drawArrays call with a line loop before, we want to make sure this is
// invalidated the next time drawArrays is called since we use the same index buffer for
// both calls.
mLineLoopBufferFirstIndex.reset();
mLineLoopBufferLastIndex.reset();
return angle::Result::Continue;
}
// Note: Vertex indexes can be arbitrarily large.
uint32_t clampedVertexCount = gl::clampCast<uint32_t>(vertexOrIndexCount);
// Handle GL_LINE_LOOP drawArrays.
size_t lastVertex = static_cast<size_t>(firstVertex + clampedVertexCount);
if (!mLineLoopBufferFirstIndex.valid() || !mLineLoopBufferLastIndex.valid() ||
mLineLoopBufferFirstIndex != firstVertex || mLineLoopBufferLastIndex != lastVertex)
{
ANGLE_TRY(mLineLoopHelper.getIndexBufferForDrawArrays(contextVk, clampedVertexCount,
firstVertex, indexBufferOut));
mLineLoopBufferFirstIndex = firstVertex;
mLineLoopBufferLastIndex = lastVertex;
}
else
{
*indexBufferOut = mLineLoopHelper.getCurrentIndexBuffer();
}
*indexCountOut = vertexOrIndexCount + 1;
return angle::Result::Continue;
}
angle::Result VertexArrayVk::updateDefaultAttrib(ContextVk *contextVk, size_t attribIndex)
{
if (!mState.getEnabledAttributesMask().test(attribIndex))
{
vk::BufferHelper *bufferHelper;
ANGLE_TRY(
contextVk->allocateStreamedVertexBuffer(attribIndex, kDefaultValueSize, &bufferHelper));
const gl::VertexAttribCurrentValueData &defaultValue =
contextVk->getState().getVertexAttribCurrentValues()[attribIndex];
uint8_t *ptr = bufferHelper->getMappedMemory();
memcpy(ptr, &defaultValue.Values, kDefaultValueSize);
ANGLE_TRY(bufferHelper->flush(contextVk->getRenderer()));
VkDeviceSize bufferOffset;
mCurrentArrayBufferHandles[attribIndex] =
bufferHelper->getBufferForVertexArray(contextVk, kDefaultValueSize, &bufferOffset)
.getHandle();
mCurrentArrayBufferOffsets[attribIndex] = bufferOffset;
mCurrentArrayBuffers[attribIndex] = bufferHelper;
mCurrentArrayBufferSerial[attribIndex] = bufferHelper->getBufferSerial();
mCurrentArrayBufferStrides[attribIndex] = 0;
mCurrentArrayBufferDivisors[attribIndex] = 0;
ANGLE_TRY(setDefaultPackedInput(contextVk, attribIndex,
&mCurrentArrayBufferFormats[attribIndex]));
}
return angle::Result::Continue;
}
} // namespace rx