Hash :
d81ed841
Author :
Date :
2015-05-12T12:46:35
Defer executing if statements in the global scope Unfolding of short-circuiting operators (ternary and logical operators) may create if statements in the global scope, which is not valid HLSL. Use existing deferred global initialization function to defer execution of if statements in the global scope. TEST=WebGL conformance tests BUG=angleproject:819 Change-Id: I2b0afcc6824dab6bb87eb6abed609e75b1384dab Reviewed-on: https://chromium-review.googlesource.com/270461 Reviewed-by: Jamie Madill <jmadill@chromium.org> Tested-by: Olli Etuaho <oetuaho@nvidia.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#ifndef COMPILER_TRANSLATOR_OUTPUTHLSL_H_
#define COMPILER_TRANSLATOR_OUTPUTHLSL_H_
#include <list>
#include <set>
#include <map>
#include <stack>
#include "angle_gl.h"
#include "compiler/translator/ASTMetadataHLSL.h"
#include "compiler/translator/IntermNode.h"
#include "compiler/translator/ParseContext.h"
class BuiltInFunctionEmulator;
namespace sh
{
class UnfoldShortCircuit;
class StructureHLSL;
class UniformHLSL;
typedef std::map<TString, TIntermSymbol*> ReferencedSymbols;
class OutputHLSL : public TIntermTraverser
{
public:
OutputHLSL(sh::GLenum shaderType, int shaderVersion,
const TExtensionBehavior &extensionBehavior,
const char *sourcePath, ShShaderOutput outputType,
int numRenderTargets, const std::vector<Uniform> &uniforms,
int compileOptions);
~OutputHLSL();
void output(TIntermNode *treeRoot, TInfoSinkBase &objSink);
const std::map<std::string, unsigned int> &getInterfaceBlockRegisterMap() const;
const std::map<std::string, unsigned int> &getUniformRegisterMap() const;
static TString initializer(const TType &type);
TInfoSinkBase &getInfoSink() { ASSERT(!mInfoSinkStack.empty()); return *mInfoSinkStack.top(); }
protected:
void header(const BuiltInFunctionEmulator *builtInFunctionEmulator);
// Visit AST nodes and output their code to the body stream
void visitSymbol(TIntermSymbol*);
void visitRaw(TIntermRaw*);
void visitConstantUnion(TIntermConstantUnion*);
bool visitBinary(Visit visit, TIntermBinary*);
bool visitUnary(Visit visit, TIntermUnary*);
bool visitSelection(Visit visit, TIntermSelection*);
bool visitSwitch(Visit visit, TIntermSwitch *);
bool visitCase(Visit visit, TIntermCase *);
bool visitAggregate(Visit visit, TIntermAggregate*);
bool visitLoop(Visit visit, TIntermLoop*);
bool visitBranch(Visit visit, TIntermBranch*);
bool isSingleStatement(TIntermNode *node);
bool handleExcessiveLoop(TIntermLoop *node);
// Emit one of three strings depending on traverse phase. Called with literal strings so using const char* instead of TString.
void outputTriplet(Visit visit, const char *preString, const char *inString, const char *postString, TInfoSinkBase &out);
void outputTriplet(Visit visit, const char *preString, const char *inString, const char *postString);
void outputLineDirective(int line);
TString argumentString(const TIntermSymbol *symbol);
int vectorSize(const TType &type) const;
// Emit constructor. Called with literal names so using const char* instead of TString.
void outputConstructor(Visit visit, const TType &type, const char *name, const TIntermSequence *parameters);
const TConstantUnion *writeConstantUnion(const TType &type, const TConstantUnion *constUnion);
void outputEqual(Visit visit, const TType &type, TOperator op, TInfoSinkBase &out);
void writeEmulatedFunctionTriplet(Visit visit, const char *preStr);
void makeFlaggedStructMaps(const std::vector<TIntermTyped *> &flaggedStructs);
// Returns true if it found a 'same symbol' initializer (initializer that references the variable it's initting)
bool writeSameSymbolInitializer(TInfoSinkBase &out, TIntermSymbol *symbolNode, TIntermTyped *expression);
void writeDeferredGlobalInitializers(TInfoSinkBase &out);
void writeSelection(TIntermSelection *node);
// Returns the function name
TString addStructEqualityFunction(const TStructure &structure);
TString addArrayEqualityFunction(const TType &type);
TString addArrayAssignmentFunction(const TType &type);
TString addArrayConstructIntoFunction(const TType &type);
// Ensures if the type is a struct, the struct is defined
void ensureStructDefined(const TType &type);
sh::GLenum mShaderType;
int mShaderVersion;
const TExtensionBehavior &mExtensionBehavior;
const char *mSourcePath;
const ShShaderOutput mOutputType;
int mCompileOptions;
bool mInsideFunction;
// Output streams
TInfoSinkBase mHeader;
TInfoSinkBase mBody;
TInfoSinkBase mFooter;
// A stack is useful when we want to traverse in the header, or in helper functions, but not always
// write to the body. Instead use an InfoSink stack to keep our current state intact.
// TODO (jmadill): Just passing an InfoSink in function parameters would be simpler.
std::stack<TInfoSinkBase *> mInfoSinkStack;
ReferencedSymbols mReferencedUniforms;
ReferencedSymbols mReferencedInterfaceBlocks;
ReferencedSymbols mReferencedAttributes;
ReferencedSymbols mReferencedVaryings;
ReferencedSymbols mReferencedOutputVariables;
StructureHLSL *mStructureHLSL;
UniformHLSL *mUniformHLSL;
struct TextureFunction
{
enum Method
{
IMPLICIT, // Mipmap LOD determined implicitly (standard lookup)
BIAS,
LOD,
LOD0,
LOD0BIAS,
SIZE, // textureSize()
FETCH,
GRAD
};
TBasicType sampler;
int coords;
bool proj;
bool offset;
Method method;
TString name() const;
bool operator<(const TextureFunction &rhs) const;
};
typedef std::set<TextureFunction> TextureFunctionSet;
// Parameters determining what goes in the header output
TextureFunctionSet mUsesTexture;
bool mUsesFragColor;
bool mUsesFragData;
bool mUsesDepthRange;
bool mUsesFragCoord;
bool mUsesPointCoord;
bool mUsesFrontFacing;
bool mUsesPointSize;
bool mUsesInstanceID;
bool mUsesFragDepth;
bool mUsesXor;
bool mUsesDiscardRewriting;
bool mUsesNestedBreak;
bool mRequiresIEEEStrictCompiling;
int mNumRenderTargets;
int mUniqueIndex; // For creating unique names
CallDAG mCallDag;
MetadataList mASTMetadataList;
ASTMetadataHLSL *mCurrentFunctionMetadata;
bool mOutputLod0Function;
bool mInsideDiscontinuousLoop;
int mNestedLoopDepth;
TIntermSymbol *mExcessiveLoopIndex;
TString structInitializerString(int indent, const TStructure &structure, const TString &rhsStructName);
std::map<TIntermTyped*, TString> mFlaggedStructMappedNames;
std::map<TIntermTyped*, TString> mFlaggedStructOriginalNames;
// Some initializers may have been unfolded into if statements, thus we can't evaluate all initializers
// at global static scope in HLSL. Instead, we can initialize these static globals inside a helper function.
// This also enables initialization of globals with uniforms.
TIntermSequence mDeferredGlobalInitializers;
struct HelperFunction
{
TString functionName;
TString functionDefinition;
virtual ~HelperFunction() {}
};
// A list of all equality comparison functions. It's important to preserve the order at
// which we add the functions, since nested structures call each other recursively, and
// structure equality functions may need to call array equality functions and vice versa.
// The ownership of the pointers is maintained by the type-specific arrays.
std::vector<HelperFunction*> mEqualityFunctions;
struct StructEqualityFunction : public HelperFunction
{
const TStructure *structure;
};
std::vector<StructEqualityFunction*> mStructEqualityFunctions;
struct ArrayHelperFunction : public HelperFunction
{
TType type;
};
std::vector<ArrayHelperFunction*> mArrayEqualityFunctions;
std::vector<ArrayHelperFunction> mArrayAssignmentFunctions;
// The construct-into functions are functions that fill an N-element array passed as an out parameter
// with the other N parameters of the function. This is used to work around that arrays can't be
// return values in HLSL.
std::vector<ArrayHelperFunction> mArrayConstructIntoFunctions;
};
}
#endif // COMPILER_TRANSLATOR_OUTPUTHLSL_H_