Hash :
8403e4c5
Author :
Date :
2022-10-10T20:59:29
EGL: Resource IDs for Surface, Context and EGL Image. This will make these classes play nicely with resource maps. As these objects are used in a lot of places, and simplified C can't handle unordered_map, it's necessary to index the maps by simple packed IDs in capture/replay code. This indirection will also have increased safety as we validate EGL resource ID handle values before accessing the memory directly. Also hides some of the other EGL capture methods behind helper methods to simplify the C code and hide assignments and other complex maps. Bug: angleproject:7758 Change-Id: Ibc7bb56430d3068bd38877c9dfb011979d4ea234 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/3957164 Reviewed-by: Cody Northrop <cnorthrop@google.com> Commit-Queue: Jamie Madill <jmadill@chromium.org> Reviewed-by: Yuxin Hu <yuxinhu@google.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
//
// Copyright 2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// angletypes.h : Defines a variety of structures and enum types that are used throughout libGLESv2
#ifndef LIBANGLE_ANGLETYPES_H_
#define LIBANGLE_ANGLETYPES_H_
#include "common/Color.h"
#include "common/FixedVector.h"
#include "common/PackedEnums.h"
#include "common/bitset_utils.h"
#include "common/vector_utils.h"
#include "libANGLE/Constants.h"
#include "libANGLE/Error.h"
#include "libANGLE/RefCountObject.h"
#include <inttypes.h>
#include <stdint.h>
#include <bitset>
#include <map>
#include <memory>
#include <unordered_map>
namespace gl
{
class Buffer;
class Texture;
enum class Command
{
// The Blit command carries the bitmask of which buffers are being blit. The command passed to
// the backends is:
//
// Blit + (Color?0x1) + (Depth?0x2) + (Stencil?0x4)
Blit,
BlitAll = Blit + 0x7,
Clear,
CopyImage,
Dispatch,
Draw,
GenerateMipmap,
Invalidate,
ReadPixels,
TexImage,
Other,
};
enum CommandBlitBuffer
{
CommandBlitBufferColor = 0x1,
CommandBlitBufferDepth = 0x2,
CommandBlitBufferStencil = 0x4,
};
enum class InitState
{
MayNeedInit,
Initialized,
};
template <typename T>
struct RectangleImpl
{
RectangleImpl() : x(T(0)), y(T(0)), width(T(0)), height(T(0)) {}
constexpr RectangleImpl(T x_in, T y_in, T width_in, T height_in)
: x(x_in), y(y_in), width(width_in), height(height_in)
{}
explicit constexpr RectangleImpl(const T corners[4])
: x(corners[0]),
y(corners[1]),
width(corners[2] - corners[0]),
height(corners[3] - corners[1])
{}
template <typename S>
explicit constexpr RectangleImpl(const RectangleImpl<S> rect)
: x(rect.x), y(rect.y), width(rect.width), height(rect.height)
{}
T x0() const { return x; }
T y0() const { return y; }
T x1() const { return x + width; }
T y1() const { return y + height; }
bool isReversedX() const { return width < T(0); }
bool isReversedY() const { return height < T(0); }
// Returns a rectangle with the same area but flipped in X, Y, neither or both.
RectangleImpl<T> flip(bool flipX, bool flipY) const
{
RectangleImpl flipped = *this;
if (flipX)
{
flipped.x = flipped.x + flipped.width;
flipped.width = -flipped.width;
}
if (flipY)
{
flipped.y = flipped.y + flipped.height;
flipped.height = -flipped.height;
}
return flipped;
}
// Returns a rectangle with the same area but with height and width guaranteed to be positive.
RectangleImpl<T> removeReversal() const { return flip(isReversedX(), isReversedY()); }
bool encloses(const RectangleImpl<T> &inside) const
{
return x0() <= inside.x0() && y0() <= inside.y0() && x1() >= inside.x1() &&
y1() >= inside.y1();
}
bool empty() const;
T x;
T y;
T width;
T height;
};
template <typename T>
bool operator==(const RectangleImpl<T> &a, const RectangleImpl<T> &b);
template <typename T>
bool operator!=(const RectangleImpl<T> &a, const RectangleImpl<T> &b);
using Rectangle = RectangleImpl<int>;
enum class ClipSpaceOrigin
{
LowerLeft = 0,
UpperLeft = 1
};
// Calculate the intersection of two rectangles. Returns false if the intersection is empty.
[[nodiscard]] bool ClipRectangle(const Rectangle &source,
const Rectangle &clip,
Rectangle *intersection);
// Calculate the smallest rectangle that covers both rectangles. This rectangle may cover areas
// not covered by the two rectangles, for example in this situation:
//
// +--+ +----+
// | ++-+ -> | |
// +-++ | | |
// +--+ +----+
//
void GetEnclosingRectangle(const Rectangle &rect1, const Rectangle &rect2, Rectangle *rectUnion);
// Extend the source rectangle to cover parts (or all of) the second rectangle, in such a way that
// no area is covered that isn't covered by both rectangles. For example:
//
// +--+ +--+
// source --> | | | |
// ++--+-+ -> | |
// |+--+ | | |
// +-----+ +--+
//
void ExtendRectangle(const Rectangle &source, const Rectangle &extend, Rectangle *extended);
struct Offset
{
constexpr Offset() : x(0), y(0), z(0) {}
constexpr Offset(int x_in, int y_in, int z_in) : x(x_in), y(y_in), z(z_in) {}
int x;
int y;
int z;
};
constexpr Offset kOffsetZero(0, 0, 0);
bool operator==(const Offset &a, const Offset &b);
bool operator!=(const Offset &a, const Offset &b);
struct Extents
{
Extents() : width(0), height(0), depth(0) {}
Extents(int width_, int height_, int depth_) : width(width_), height(height_), depth(depth_) {}
Extents(const Extents &other) = default;
Extents &operator=(const Extents &other) = default;
bool empty() const { return (width * height * depth) == 0; }
int width;
int height;
int depth;
};
bool operator==(const Extents &lhs, const Extents &rhs);
bool operator!=(const Extents &lhs, const Extents &rhs);
struct Box
{
Box() : x(0), y(0), z(0), width(0), height(0), depth(0) {}
Box(int x_in, int y_in, int z_in, int width_in, int height_in, int depth_in)
: x(x_in), y(y_in), z(z_in), width(width_in), height(height_in), depth(depth_in)
{}
template <typename O, typename E>
Box(const O &offset, const E &size)
: x(offset.x),
y(offset.y),
z(offset.z),
width(size.width),
height(size.height),
depth(size.depth)
{}
bool valid() const;
bool operator==(const Box &other) const;
bool operator!=(const Box &other) const;
Rectangle toRect() const;
// Whether the Box has offset 0 and the same extents as argument.
bool coversSameExtent(const Extents &size) const;
bool contains(const Box &other) const;
size_t volume() const;
void extend(const Box &other);
int x;
int y;
int z;
int width;
int height;
int depth;
};
struct RasterizerState final
{
// This will zero-initialize the struct, including padding.
RasterizerState();
RasterizerState(const RasterizerState &other);
RasterizerState &operator=(const RasterizerState &other);
bool cullFace;
CullFaceMode cullMode;
GLenum frontFace;
bool polygonOffsetFill;
GLfloat polygonOffsetFactor;
GLfloat polygonOffsetUnits;
// pointDrawMode/multiSample are only used in the D3D back-end right now.
bool pointDrawMode;
bool multiSample;
bool rasterizerDiscard;
bool dither;
};
bool operator==(const RasterizerState &a, const RasterizerState &b);
bool operator!=(const RasterizerState &a, const RasterizerState &b);
struct BlendState final
{
// This will zero-initialize the struct, including padding.
BlendState();
BlendState(const BlendState &other);
bool blend;
GLenum sourceBlendRGB;
GLenum destBlendRGB;
GLenum sourceBlendAlpha;
GLenum destBlendAlpha;
GLenum blendEquationRGB;
GLenum blendEquationAlpha;
bool colorMaskRed;
bool colorMaskGreen;
bool colorMaskBlue;
bool colorMaskAlpha;
};
bool operator==(const BlendState &a, const BlendState &b);
bool operator!=(const BlendState &a, const BlendState &b);
struct DepthStencilState final
{
// This will zero-initialize the struct, including padding.
DepthStencilState();
DepthStencilState(const DepthStencilState &other);
DepthStencilState &operator=(const DepthStencilState &other);
bool isDepthMaskedOut() const;
bool isStencilMaskedOut() const;
bool isStencilNoOp() const;
bool isStencilBackNoOp() const;
bool depthTest;
GLenum depthFunc;
bool depthMask;
bool stencilTest;
GLenum stencilFunc;
GLuint stencilMask;
GLenum stencilFail;
GLenum stencilPassDepthFail;
GLenum stencilPassDepthPass;
GLuint stencilWritemask;
GLenum stencilBackFunc;
GLuint stencilBackMask;
GLenum stencilBackFail;
GLenum stencilBackPassDepthFail;
GLenum stencilBackPassDepthPass;
GLuint stencilBackWritemask;
};
bool operator==(const DepthStencilState &a, const DepthStencilState &b);
bool operator!=(const DepthStencilState &a, const DepthStencilState &b);
// Packs a sampler state for completeness checks:
// * minFilter: 5 values (3 bits)
// * magFilter: 2 values (1 bit)
// * wrapS: 3 values (2 bits)
// * wrapT: 3 values (2 bits)
// * compareMode: 1 bit (for == GL_NONE).
// This makes a total of 9 bits. We can pack this easily into 32 bits:
// * minFilter: 8 bits
// * magFilter: 8 bits
// * wrapS: 8 bits
// * wrapT: 4 bits
// * compareMode: 4 bits
struct PackedSamplerCompleteness
{
uint8_t minFilter;
uint8_t magFilter;
uint8_t wrapS;
uint8_t wrapTCompareMode;
};
static_assert(sizeof(PackedSamplerCompleteness) == sizeof(uint32_t), "Unexpected size");
// State from Table 6.10 (state per sampler object)
class SamplerState final
{
public:
// This will zero-initialize the struct, including padding.
SamplerState();
SamplerState(const SamplerState &other);
SamplerState &operator=(const SamplerState &other);
static SamplerState CreateDefaultForTarget(TextureType type);
GLenum getMinFilter() const { return mMinFilter; }
bool setMinFilter(GLenum minFilter);
GLenum getMagFilter() const { return mMagFilter; }
bool setMagFilter(GLenum magFilter);
GLenum getWrapS() const { return mWrapS; }
bool setWrapS(GLenum wrapS);
GLenum getWrapT() const { return mWrapT; }
bool setWrapT(GLenum wrapT);
GLenum getWrapR() const { return mWrapR; }
bool setWrapR(GLenum wrapR);
float getMaxAnisotropy() const { return mMaxAnisotropy; }
bool setMaxAnisotropy(float maxAnisotropy);
GLfloat getMinLod() const { return mMinLod; }
bool setMinLod(GLfloat minLod);
GLfloat getMaxLod() const { return mMaxLod; }
bool setMaxLod(GLfloat maxLod);
GLenum getCompareMode() const { return mCompareMode; }
bool setCompareMode(GLenum compareMode);
GLenum getCompareFunc() const { return mCompareFunc; }
bool setCompareFunc(GLenum compareFunc);
GLenum getSRGBDecode() const { return mSRGBDecode; }
bool setSRGBDecode(GLenum sRGBDecode);
bool setBorderColor(const ColorGeneric &color);
const ColorGeneric &getBorderColor() const { return mBorderColor; }
bool sameCompleteness(const SamplerState &samplerState) const
{
return mCompleteness.packed == samplerState.mCompleteness.packed;
}
private:
void updateWrapTCompareMode();
GLenum mMinFilter;
GLenum mMagFilter;
GLenum mWrapS;
GLenum mWrapT;
GLenum mWrapR;
// From EXT_texture_filter_anisotropic
float mMaxAnisotropy;
GLfloat mMinLod;
GLfloat mMaxLod;
GLenum mCompareMode;
GLenum mCompareFunc;
GLenum mSRGBDecode;
ColorGeneric mBorderColor;
union Completeness
{
uint32_t packed;
PackedSamplerCompleteness typed;
};
Completeness mCompleteness;
};
bool operator==(const SamplerState &a, const SamplerState &b);
bool operator!=(const SamplerState &a, const SamplerState &b);
struct DrawArraysIndirectCommand
{
GLuint count;
GLuint instanceCount;
GLuint first;
GLuint baseInstance;
};
static_assert(sizeof(DrawArraysIndirectCommand) == 16,
"Unexpected size of DrawArraysIndirectCommand");
struct DrawElementsIndirectCommand
{
GLuint count;
GLuint primCount;
GLuint firstIndex;
GLint baseVertex;
GLuint baseInstance;
};
static_assert(sizeof(DrawElementsIndirectCommand) == 20,
"Unexpected size of DrawElementsIndirectCommand");
struct ImageUnit
{
ImageUnit();
ImageUnit(const ImageUnit &other);
~ImageUnit();
BindingPointer<Texture> texture;
GLint level;
GLboolean layered;
GLint layer;
GLenum access;
GLenum format;
};
using ImageUnitTextureTypeMap = std::map<unsigned int, gl::TextureType>;
struct PixelStoreStateBase
{
GLint alignment = 4;
GLint rowLength = 0;
GLint skipRows = 0;
GLint skipPixels = 0;
GLint imageHeight = 0;
GLint skipImages = 0;
};
struct PixelUnpackState : PixelStoreStateBase
{};
struct PixelPackState : PixelStoreStateBase
{
bool reverseRowOrder = false;
};
// Used in Program and VertexArray.
using AttributesMask = angle::BitSet<MAX_VERTEX_ATTRIBS>;
// Used in Program
using UniformBlockBindingMask = angle::BitSet<IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS>;
// Used in Framebuffer / Program
using DrawBufferMask = angle::BitSet8<IMPLEMENTATION_MAX_DRAW_BUFFERS>;
class BlendStateExt final
{
static_assert(IMPLEMENTATION_MAX_DRAW_BUFFERS == 8, "Only up to 8 draw buffers supported.");
public:
template <typename ElementType, size_t ElementCount>
struct StorageType final
{
static_assert(ElementCount <= 256, "ElementCount cannot exceed 256.");
#if defined(ANGLE_IS_64_BIT_CPU)
// Always use uint64_t on 64-bit systems
static constexpr size_t kBits = 8;
#else
static constexpr size_t kBits = ElementCount > 16 ? 8 : 4;
#endif
using Type = typename std::conditional<kBits == 8, uint64_t, uint32_t>::type;
static constexpr Type kMaxValueMask = (kBits == 8) ? 0xFF : 0xF;
static constexpr Type GetMask(const size_t drawBuffers)
{
ASSERT(drawBuffers > 0);
ASSERT(drawBuffers <= IMPLEMENTATION_MAX_DRAW_BUFFERS);
return static_cast<Type>(0xFFFFFFFFFFFFFFFFull >> (64 - drawBuffers * kBits));
}
// A multiplier that is used to replicate 4- or 8-bit value 8 times.
static constexpr Type kReplicator = (kBits == 8) ? 0x0101010101010101ull : 0x11111111;
// Extract packed `Bits`-bit value of index `index`. `values` variable contains up to 8
// packed values.
static constexpr ElementType GetValueIndexed(const size_t index, const Type values)
{
ASSERT(index < IMPLEMENTATION_MAX_DRAW_BUFFERS);
return static_cast<ElementType>((values >> (index * kBits)) & kMaxValueMask);
}
// Replicate `Bits`-bit value 8 times and mask the result.
static constexpr Type GetReplicatedValue(const ElementType value, const Type mask)
{
ASSERT(static_cast<size_t>(value) <= kMaxValueMask);
return (static_cast<size_t>(value) * kReplicator) & mask;
}
// Replace `Bits`-bit value of index `index` in `target` with `value`.
static constexpr void SetValueIndexed(const size_t index,
const ElementType value,
Type *target)
{
ASSERT(static_cast<size_t>(value) <= kMaxValueMask);
ASSERT(index < IMPLEMENTATION_MAX_DRAW_BUFFERS);
// Bitmask with set bits that contain the value of index `index`.
const Type selector = kMaxValueMask << (index * kBits);
// Shift the new `value` to its position in the packed value.
const Type builtValue = static_cast<Type>(value) << (index * kBits);
// Mark differing bits of `target` and `builtValue`, then flip the bits on those
// positions in `target`.
// Taken from https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
*target = *target ^ ((*target ^ builtValue) & selector);
}
// Compare two packed sets of eight 4-bit values and return an 8-bit diff mask.
static constexpr DrawBufferMask GetDiffMask(const uint32_t packedValue1,
const uint32_t packedValue2)
{
uint32_t diff = packedValue1 ^ packedValue2;
// For each 4-bit value that is different between inputs, set the msb to 1 and other
// bits to 0.
diff = (diff | ((diff & 0x77777777) + 0x77777777)) & 0x88888888;
// By this point, `diff` looks like a...b...c...d...e...f...g...h... (dots mean zeros).
// To get DrawBufferMask, we need to compress this 32-bit value to 8 bits, i.e. abcdefgh
// Multiplying the lower half of `diff` by 0x249 (0x200 + 0x40 + 0x8 + 0x1) produces:
// ................e...f...g...h... +
// .............e...f...g...h...... +
// ..........e...f...g...h......... +
// .......e...f...g...h............
// ________________________________ =
// .......e..ef.efgefghfgh.gh..h...
// ^^^^
// Similar operation is applied to the upper word.
// This calculation could be replaced with a single PEXT instruction from BMI2 set.
diff = ((((diff & 0xFFFF0000) * 0x249) >> 24) & 0xF0) | (((diff * 0x249) >> 12) & 0xF);
return DrawBufferMask(static_cast<uint8_t>(diff));
}
// Compare two packed sets of eight 8-bit values and return an 8-bit diff mask.
static constexpr DrawBufferMask GetDiffMask(const uint64_t packedValue1,
const uint64_t packedValue2)
{
uint64_t diff = packedValue1 ^ packedValue2;
// For each 8-bit value that is different between inputs, set the msb to 1 and other
// bits to 0.
diff = (diff | ((diff & 0x7F7F7F7F7F7F7F7F) + 0x7F7F7F7F7F7F7F7F)) & 0x8080808080808080;
// By this point, `diff` looks like (dots mean zeros):
// a.......b.......c.......d.......e.......f.......g.......h.......
// To get DrawBufferMask, we need to compress this 64-bit value to 8 bits, i.e. abcdefgh
// Multiplying `diff` by 0x0002040810204081 produces:
// a.......b.......c.......d.......e.......f.......g.......h....... +
// .b.......c.......d.......e.......f.......g.......h.............. +
// ..c.......d.......e.......f.......g.......h..................... +
// ...d.......e.......f.......g.......h............................ +
// ....e.......f.......g.......h................................... +
// .....f.......g.......h.......................................... +
// ......g.......h................................................. +
// .......h........................................................
// ________________________________________________________________ =
// abcdefghbcdefgh.cdefgh..defgh...efgh....fgh.....gh......h.......
// ^^^^^^^^
// This operation could be replaced with a single PEXT instruction from BMI2 set.
diff = 0x0002040810204081 * diff >> 56;
return DrawBufferMask(static_cast<uint8_t>(diff));
}
};
using FactorStorage = StorageType<BlendFactorType, angle::EnumSize<BlendFactorType>()>;
using EquationStorage = StorageType<BlendEquationType, angle::EnumSize<BlendEquationType>()>;
using ColorMaskStorage = StorageType<uint8_t, 16>;
static_assert(std::is_same<FactorStorage::Type, uint64_t>::value &&
std::is_same<EquationStorage::Type, uint64_t>::value,
"Factor and Equation storage must be 64-bit.");
BlendStateExt(const size_t drawBuffers = 1);
BlendStateExt(const BlendStateExt &other);
BlendStateExt &operator=(const BlendStateExt &other);
///////// Blending Toggle /////////
void setEnabled(const bool enabled);
void setEnabledIndexed(const size_t index, const bool enabled);
///////// Color Write Mask /////////
static constexpr size_t PackColorMask(const bool red,
const bool green,
const bool blue,
const bool alpha)
{
return (red ? 1 : 0) | (green ? 2 : 0) | (blue ? 4 : 0) | (alpha ? 8 : 0);
}
static constexpr void UnpackColorMask(const size_t value,
bool *red,
bool *green,
bool *blue,
bool *alpha)
{
*red = static_cast<bool>(value & 1);
*green = static_cast<bool>(value & 2);
*blue = static_cast<bool>(value & 4);
*alpha = static_cast<bool>(value & 8);
}
ColorMaskStorage::Type expandColorMaskValue(const bool red,
const bool green,
const bool blue,
const bool alpha) const;
ColorMaskStorage::Type expandColorMaskIndexed(const size_t index) const;
void setColorMask(const bool red, const bool green, const bool blue, const bool alpha);
void setColorMaskIndexed(const size_t index, const uint8_t value);
void setColorMaskIndexed(const size_t index,
const bool red,
const bool green,
const bool blue,
const bool alpha);
uint8_t getColorMaskIndexed(const size_t index) const;
void getColorMaskIndexed(const size_t index,
bool *red,
bool *green,
bool *blue,
bool *alpha) const;
DrawBufferMask compareColorMask(ColorMaskStorage::Type other) const;
///////// Blend Equation /////////
EquationStorage::Type expandEquationValue(const GLenum mode) const;
EquationStorage::Type expandEquationValue(const gl::BlendEquationType equation) const;
EquationStorage::Type expandEquationColorIndexed(const size_t index) const;
EquationStorage::Type expandEquationAlphaIndexed(const size_t index) const;
void setEquations(const GLenum modeColor, const GLenum modeAlpha);
void setEquationsIndexed(const size_t index, const GLenum modeColor, const GLenum modeAlpha);
void setEquationsIndexed(const size_t index,
const size_t otherIndex,
const BlendStateExt &other);
GLenum getEquationColorIndexed(size_t index) const;
GLenum getEquationAlphaIndexed(size_t index) const;
DrawBufferMask compareEquations(const EquationStorage::Type color,
const EquationStorage::Type alpha) const;
DrawBufferMask compareEquations(const BlendStateExt &other) const
{
return compareEquations(other.mEquationColor, other.mEquationAlpha);
}
///////// Blend Factors /////////
FactorStorage::Type expandFactorValue(const GLenum func) const;
FactorStorage::Type expandSrcColorIndexed(const size_t index) const;
FactorStorage::Type expandDstColorIndexed(const size_t index) const;
FactorStorage::Type expandSrcAlphaIndexed(const size_t index) const;
FactorStorage::Type expandDstAlphaIndexed(const size_t index) const;
void setFactors(const GLenum srcColor,
const GLenum dstColor,
const GLenum srcAlpha,
const GLenum dstAlpha);
void setFactorsIndexed(const size_t index,
const GLenum srcColor,
const GLenum dstColor,
const GLenum srcAlpha,
const GLenum dstAlpha);
void setFactorsIndexed(const size_t index, const size_t otherIndex, const BlendStateExt &other);
GLenum getSrcColorIndexed(size_t index) const;
GLenum getDstColorIndexed(size_t index) const;
GLenum getSrcAlphaIndexed(size_t index) const;
GLenum getDstAlphaIndexed(size_t index) const;
DrawBufferMask compareFactors(const FactorStorage::Type srcColor,
const FactorStorage::Type dstColor,
const FactorStorage::Type srcAlpha,
const FactorStorage::Type dstAlpha) const;
DrawBufferMask compareFactors(const BlendStateExt &other) const
{
return compareFactors(other.mSrcColor, other.mDstColor, other.mSrcAlpha, other.mDstAlpha);
}
constexpr FactorStorage::Type getSrcColorBits() const { return mSrcColor; }
constexpr FactorStorage::Type getSrcAlphaBits() const { return mSrcAlpha; }
constexpr FactorStorage::Type getDstColorBits() const { return mDstColor; }
constexpr FactorStorage::Type getDstAlphaBits() const { return mDstAlpha; }
constexpr EquationStorage::Type getEquationColorBits() const { return mEquationColor; }
constexpr EquationStorage::Type getEquationAlphaBits() const { return mEquationAlpha; }
constexpr ColorMaskStorage::Type getAllColorMaskBits() const { return mAllColorMask; }
constexpr ColorMaskStorage::Type getColorMaskBits() const { return mColorMask; }
constexpr DrawBufferMask getAllEnabledMask() const { return mAllEnabledMask; }
constexpr DrawBufferMask getEnabledMask() const { return mEnabledMask; }
constexpr DrawBufferMask getUsesAdvancedBlendEquationMask() const
{
return mUsesAdvancedBlendEquationMask;
}
constexpr uint8_t getDrawBufferCount() const { return mDrawBufferCount; }
constexpr void setSrcColorBits(const FactorStorage::Type srcColor) { mSrcColor = srcColor; }
constexpr void setSrcAlphaBits(const FactorStorage::Type srcAlpha) { mSrcAlpha = srcAlpha; }
constexpr void setDstColorBits(const FactorStorage::Type dstColor) { mDstColor = dstColor; }
constexpr void setDstAlphaBits(const FactorStorage::Type dstAlpha) { mDstAlpha = dstAlpha; }
constexpr void setEquationColorBits(const EquationStorage::Type equationColor)
{
mEquationColor = equationColor;
}
constexpr void setEquationAlphaBits(const EquationStorage::Type equationAlpha)
{
mEquationAlpha = equationAlpha;
}
constexpr void setColorMaskBits(const ColorMaskStorage::Type colorMask)
{
mColorMask = colorMask;
}
constexpr void setEnabledMask(const DrawBufferMask enabledMask) { mEnabledMask = enabledMask; }
///////// Data Members /////////
private:
uint64_t mParameterMask;
FactorStorage::Type mSrcColor;
FactorStorage::Type mDstColor;
FactorStorage::Type mSrcAlpha;
FactorStorage::Type mDstAlpha;
EquationStorage::Type mEquationColor;
EquationStorage::Type mEquationAlpha;
ColorMaskStorage::Type mAllColorMask;
ColorMaskStorage::Type mColorMask;
DrawBufferMask mAllEnabledMask;
DrawBufferMask mEnabledMask;
// Cache of whether the blend equation for each index is from KHR_blend_equation_advanced.
DrawBufferMask mUsesAdvancedBlendEquationMask;
uint8_t mDrawBufferCount;
ANGLE_MAYBE_UNUSED_PRIVATE_FIELD uint32_t kUnused = 0;
};
static_assert(sizeof(BlendStateExt) == sizeof(uint64_t) +
(sizeof(BlendStateExt::FactorStorage::Type) * 4 +
sizeof(BlendStateExt::EquationStorage::Type) * 2 +
sizeof(BlendStateExt::ColorMaskStorage::Type) * 2 +
sizeof(DrawBufferMask) * 3 + sizeof(uint8_t)) +
sizeof(uint32_t),
"The BlendStateExt class must not contain gaps.");
// Used in StateCache
using StorageBuffersMask = angle::BitSet<IMPLEMENTATION_MAX_SHADER_STORAGE_BUFFER_BINDINGS>;
template <typename T>
using SampleMaskArray = std::array<T, IMPLEMENTATION_MAX_SAMPLE_MASK_WORDS>;
template <typename T>
using TexLevelArray = std::array<T, IMPLEMENTATION_MAX_TEXTURE_LEVELS>;
using TexLevelMask = angle::BitSet<IMPLEMENTATION_MAX_TEXTURE_LEVELS>;
enum class ComponentType
{
Float = 0,
Int = 1,
UnsignedInt = 2,
NoType = 3,
EnumCount = 4,
InvalidEnum = 4,
};
constexpr ComponentType GLenumToComponentType(GLenum componentType)
{
switch (componentType)
{
case GL_FLOAT:
return ComponentType::Float;
case GL_INT:
return ComponentType::Int;
case GL_UNSIGNED_INT:
return ComponentType::UnsignedInt;
case GL_NONE:
return ComponentType::NoType;
default:
return ComponentType::InvalidEnum;
}
}
constexpr angle::PackedEnumMap<ComponentType, uint32_t> kComponentMasks = {{
{ComponentType::Float, 0x10001},
{ComponentType::Int, 0x00001},
{ComponentType::UnsignedInt, 0x10000},
}};
constexpr size_t kMaxComponentTypeMaskIndex = 16;
using ComponentTypeMask = angle::BitSet<kMaxComponentTypeMaskIndex * 2>;
ANGLE_INLINE void SetComponentTypeMask(ComponentType type, size_t index, ComponentTypeMask *mask)
{
ASSERT(index <= kMaxComponentTypeMaskIndex);
*mask &= ~(0x10001 << index);
*mask |= kComponentMasks[type] << index;
}
ANGLE_INLINE ComponentType GetComponentTypeMask(ComponentTypeMask mask, size_t index)
{
ASSERT(index <= kMaxComponentTypeMaskIndex);
uint32_t mask_bits = mask.bits() >> index & 0x10001;
switch (mask_bits)
{
case 0x10001:
return ComponentType::Float;
case 0x00001:
return ComponentType::Int;
case 0x10000:
return ComponentType::UnsignedInt;
default:
return ComponentType::InvalidEnum;
}
}
ANGLE_INLINE ComponentTypeMask GetActiveComponentTypeMask(gl::AttributesMask activeAttribLocations)
{
const uint32_t activeAttribs = static_cast<uint32_t>(activeAttribLocations.bits());
// Ever attrib index takes one bit from the lower 16-bits and another bit from the upper
// 16-bits at the same index.
return ComponentTypeMask(activeAttribs << kMaxComponentTypeMaskIndex | activeAttribs);
}
bool ValidateComponentTypeMasks(unsigned long outputTypes,
unsigned long inputTypes,
unsigned long outputMask,
unsigned long inputMask);
enum class RenderToTextureImageIndex
{
// The default image of the texture, where data is expected to be.
Default = 0,
// Intermediate multisampled images for EXT_multisampled_render_to_texture.
// These values must match log2(SampleCount).
IntermediateImage2xMultisampled = 1,
IntermediateImage4xMultisampled = 2,
IntermediateImage8xMultisampled = 3,
IntermediateImage16xMultisampled = 4,
// We currently only support up to 16xMSAA in backends that use this enum.
InvalidEnum = 5,
EnumCount = 5,
};
template <typename T>
using RenderToTextureImageMap = angle::PackedEnumMap<RenderToTextureImageIndex, T>;
constexpr size_t kCubeFaceCount = 6;
template <typename T>
using TextureTypeMap = angle::PackedEnumMap<TextureType, T>;
using TextureMap = TextureTypeMap<BindingPointer<Texture>>;
// ShaderVector can contain one item per shader. It differs from ShaderMap in that the values are
// not indexed by ShaderType.
template <typename T>
using ShaderVector = angle::FixedVector<T, static_cast<size_t>(ShaderType::EnumCount)>;
template <typename T>
using AttachmentArray = std::array<T, IMPLEMENTATION_MAX_FRAMEBUFFER_ATTACHMENTS>;
template <typename T>
using AttachmentVector = angle::FixedVector<T, IMPLEMENTATION_MAX_FRAMEBUFFER_ATTACHMENTS>;
using AttachmentsMask = angle::BitSet<IMPLEMENTATION_MAX_FRAMEBUFFER_ATTACHMENTS>;
template <typename T>
using DrawBuffersArray = std::array<T, IMPLEMENTATION_MAX_DRAW_BUFFERS>;
template <typename T>
using DrawBuffersVector = angle::FixedVector<T, IMPLEMENTATION_MAX_DRAW_BUFFERS>;
template <typename T>
using AttribArray = std::array<T, MAX_VERTEX_ATTRIBS>;
using ActiveTextureMask = angle::BitSet<IMPLEMENTATION_MAX_ACTIVE_TEXTURES>;
template <typename T>
using ActiveTextureArray = std::array<T, IMPLEMENTATION_MAX_ACTIVE_TEXTURES>;
using ActiveTextureTypeArray = ActiveTextureArray<TextureType>;
template <typename T>
using UniformBuffersArray = std::array<T, IMPLEMENTATION_MAX_UNIFORM_BUFFER_BINDINGS>;
template <typename T>
using StorageBuffersArray = std::array<T, IMPLEMENTATION_MAX_SHADER_STORAGE_BUFFER_BINDINGS>;
template <typename T>
using AtomicCounterBuffersArray = std::array<T, IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS>;
using AtomicCounterBufferMask = angle::BitSet<IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS>;
template <typename T>
using ImagesArray = std::array<T, IMPLEMENTATION_MAX_IMAGE_UNITS>;
using ImageUnitMask = angle::BitSet<IMPLEMENTATION_MAX_IMAGE_UNITS>;
using SupportedSampleSet = std::set<GLuint>;
template <typename T>
using TransformFeedbackBuffersArray =
std::array<T, gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS>;
template <typename T>
using QueryTypeMap = angle::PackedEnumMap<QueryType, T>;
constexpr size_t kBarrierVectorDefaultSize = 16;
template <typename T>
using BarrierVector = angle::FastVector<T, kBarrierVectorDefaultSize>;
using BufferBarrierVector = BarrierVector<Buffer *>;
using SamplerBindingVector = std::vector<BindingPointer<Sampler>>;
using BufferVector = std::vector<OffsetBindingPointer<Buffer>>;
struct TextureAndLayout
{
Texture *texture;
GLenum layout;
};
using TextureBarrierVector = BarrierVector<TextureAndLayout>;
// OffsetBindingPointer.getSize() returns the size specified by the user, which may be larger than
// the size of the bound buffer. This function reduces the returned size to fit the bound buffer if
// necessary. Returns 0 if no buffer is bound or if integer overflow occurs.
GLsizeiptr GetBoundBufferAvailableSize(const OffsetBindingPointer<Buffer> &binding);
// A texture level index.
template <typename T>
class LevelIndexWrapper
{
public:
LevelIndexWrapper() = default;
explicit constexpr LevelIndexWrapper(T levelIndex) : mLevelIndex(levelIndex) {}
constexpr LevelIndexWrapper(const LevelIndexWrapper &other) = default;
constexpr LevelIndexWrapper &operator=(const LevelIndexWrapper &other) = default;
constexpr T get() const { return mLevelIndex; }
LevelIndexWrapper &operator++()
{
++mLevelIndex;
return *this;
}
constexpr bool operator<(const LevelIndexWrapper &other) const
{
return mLevelIndex < other.mLevelIndex;
}
constexpr bool operator<=(const LevelIndexWrapper &other) const
{
return mLevelIndex <= other.mLevelIndex;
}
constexpr bool operator>(const LevelIndexWrapper &other) const
{
return mLevelIndex > other.mLevelIndex;
}
constexpr bool operator>=(const LevelIndexWrapper &other) const
{
return mLevelIndex >= other.mLevelIndex;
}
constexpr bool operator==(const LevelIndexWrapper &other) const
{
return mLevelIndex == other.mLevelIndex;
}
constexpr bool operator!=(const LevelIndexWrapper &other) const
{
return mLevelIndex != other.mLevelIndex;
}
constexpr LevelIndexWrapper operator+(T other) const
{
return LevelIndexWrapper(mLevelIndex + other);
}
constexpr LevelIndexWrapper operator-(T other) const
{
return LevelIndexWrapper(mLevelIndex - other);
}
constexpr T operator-(LevelIndexWrapper other) const { return mLevelIndex - other.mLevelIndex; }
private:
T mLevelIndex;
};
// A GL texture level index.
using LevelIndex = LevelIndexWrapper<GLint>;
enum class MultisamplingMode
{
// Regular multisampling
Regular = 0,
// GL_EXT_multisampled_render_to_texture renderbuffer/texture attachments which perform implicit
// resolve of multisampled data.
MultisampledRenderToTexture,
};
} // namespace gl
namespace rx
{
// A macro that determines whether an object has a given runtime type.
#if defined(__clang__)
# if __has_feature(cxx_rtti)
# define ANGLE_HAS_DYNAMIC_CAST 1
# endif
#elif !defined(NDEBUG) && (!defined(_MSC_VER) || defined(_CPPRTTI)) && \
(!defined(__GNUC__) || __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 3) || \
defined(__GXX_RTTI))
# define ANGLE_HAS_DYNAMIC_CAST 1
#endif
#ifdef ANGLE_HAS_DYNAMIC_CAST
# define ANGLE_HAS_DYNAMIC_TYPE(type, obj) (dynamic_cast<type>(obj) != nullptr)
# undef ANGLE_HAS_DYNAMIC_CAST
#else
# define ANGLE_HAS_DYNAMIC_TYPE(type, obj) (obj != nullptr)
#endif
// Downcast a base implementation object (EG TextureImpl to TextureD3D)
template <typename DestT, typename SrcT>
inline DestT *GetAs(SrcT *src)
{
ASSERT(ANGLE_HAS_DYNAMIC_TYPE(DestT *, src));
return static_cast<DestT *>(src);
}
template <typename DestT, typename SrcT>
inline const DestT *GetAs(const SrcT *src)
{
ASSERT(ANGLE_HAS_DYNAMIC_TYPE(const DestT *, src));
return static_cast<const DestT *>(src);
}
#undef ANGLE_HAS_DYNAMIC_TYPE
// Downcast a GL object to an Impl (EG gl::Texture to rx::TextureD3D)
template <typename DestT, typename SrcT>
inline DestT *GetImplAs(SrcT *src)
{
return GetAs<DestT>(src->getImplementation());
}
template <typename DestT, typename SrcT>
inline DestT *SafeGetImplAs(SrcT *src)
{
return src != nullptr ? GetAs<DestT>(src->getImplementation()) : nullptr;
}
} // namespace rx
#include "angletypes.inc"
namespace angle
{
// Zero-based for better array indexing
enum FramebufferBinding
{
FramebufferBindingRead = 0,
FramebufferBindingDraw,
FramebufferBindingSingletonMax,
FramebufferBindingBoth = FramebufferBindingSingletonMax,
FramebufferBindingMax,
FramebufferBindingUnknown = FramebufferBindingMax,
};
inline FramebufferBinding EnumToFramebufferBinding(GLenum enumValue)
{
switch (enumValue)
{
case GL_READ_FRAMEBUFFER:
return FramebufferBindingRead;
case GL_DRAW_FRAMEBUFFER:
return FramebufferBindingDraw;
case GL_FRAMEBUFFER:
return FramebufferBindingBoth;
default:
UNREACHABLE();
return FramebufferBindingUnknown;
}
}
inline GLenum FramebufferBindingToEnum(FramebufferBinding binding)
{
switch (binding)
{
case FramebufferBindingRead:
return GL_READ_FRAMEBUFFER;
case FramebufferBindingDraw:
return GL_DRAW_FRAMEBUFFER;
case FramebufferBindingBoth:
return GL_FRAMEBUFFER;
default:
UNREACHABLE();
return GL_NONE;
}
}
template <typename ObjT, typename ContextT>
class DestroyThenDelete
{
public:
DestroyThenDelete() = default;
DestroyThenDelete(const ContextT *context) : mContext(context) {}
void operator()(ObjT *obj)
{
(void)(obj->onDestroy(mContext));
delete obj;
}
private:
const ContextT *mContext = nullptr;
};
template <typename ObjT, typename ContextT>
using UniqueObjectPointer = std::unique_ptr<ObjT, DestroyThenDelete<ObjT, ContextT>>;
} // namespace angle
namespace gl
{
class State;
} // namespace gl
#endif // LIBANGLE_ANGLETYPES_H_