Hash :
e2f7d0e1
        
        Author :
  
        
        Date :
2025-09-05T00:26:50
        
      
Fix a type error on 32-bit platforms.
FileStreamSeek was incorrectly typed to always take a 64-bit integer,
but fseeko takes off_t, which is 32 bits on 32 bit platforms.
This results in the following error:
error: implicit conversion loses integer precision:
'long long' to 'off_t' (aka 'long') [-Werror,-Wshorten-64-to-32]
  580 |     return fseeko(stream, offset, whence);
      |            ~~~~~~         ^~~~~~
Bug: chromium:425527533
Change-Id: I2fe2596accd33bf41db2dbed2df9a23c3fcd3871
Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/6918314
Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org>
Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org>
Auto-Submit: Matt Stark <msta@google.com>
Reviewed-by: Cody Northrop <cnorthrop@google.com>
      
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
//
// Copyright 2025 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// frame_capture_binary_data.cpp:
//   Common code for the ANGLE trace replay large trace binary data definition.
//
#ifdef UNSAFE_BUFFERS_BUILD
#    pragma allow_unsafe_buffers
#endif
#define USE_SYSTEM_ZLIB
#include "compression_utils_portable.h"
#include "common/mathutil.h"
#include "frame_capture_binary_data.h"
#include <array>
#include <string>
namespace angle
{
// Return current size of all binary data
size_t FrameCaptureBinaryData::totalSize() const
{
    return ((mBlockCount - 1) * mDataBlockSize) + mCurrentBlockOffset;
}
// Determine if any blocks have been saved to disk, i.e., if we have run out of resident
// blocks
bool FrameCaptureBinaryData::isSwapMode() const
{
    return (mStoredBlocks > 0);
}
void FrameCaptureBinaryData::storeResidentBlocks()
{
    // Write out all resident binary data blocks by calling storeBlock on each, deleting
    // front() from vector
    if (!isSwapMode())
    {
        while (mData.size() > 1)
        {
            storeBlock();
            mData.erase(mData.begin());
        }
    }
    storeBlock();
}
void FrameCaptureBinaryData::updateGetDataCache(size_t blockId)
{
    const ReplayBlockDescription &desc = mReplayBlockDescriptions[blockId];
    mCacheBlockId          = blockId;
    mCacheBlockBeginOffset = desc.beginDataOffset;
    mCacheBlockEndOffset   = desc.endDataOffset;
    mCacheBlockBaseAddress = desc.residentAddress;
    // The location for the swap block differs for load and store.  For store it will ultimately be
    // zero as it's unnecessary to utilize the full BinaryDataSize. For load, it will end up
    // as the last of the resident blocks.
    if (blockId >= mMaxResidentBlockIndex)
    {
        mCurrentTransientLoadedBlockId = blockId;
    }
}
// Resident blocks will have a valid memory address at residentAddress
bool FrameCaptureBinaryData::isBlockResident(size_t blockId) const
{
    return (mReplayBlockDescriptions[blockId].residentAddress != nullptr);
}
void FrameCaptureBinaryData::setBlockResident(size_t blockId, uint8_t *address)
{
    mReplayBlockDescriptions[blockId].residentAddress = address;
}
void FrameCaptureBinaryData::setBlockNonResident(size_t blockId)
{
    mReplayBlockDescriptions[blockId].residentAddress = nullptr;
}
void FrameCaptureBinaryData::setBlockSize(size_t blockSize)
{
    if (!gl::isPow2(blockSize))
    {
        FATAL() << "Binary Data File Blocksize specified is not a power of 2: " << blockSize;
    }
    mDataBlockSize = blockSize;
}
void FrameCaptureBinaryData::setBinaryDataSize(size_t binaryDataSize)
{
    if (!gl::isPow2(binaryDataSize))
    {
        FATAL() << "Binary Data File Binary Data Size specified is not a power of 2: "
                << binaryDataSize;
    }
    mMaxResidentBinarySize = binaryDataSize;
}
std::vector<uint8_t> &FrameCaptureBinaryData::prepareStoreBlock(size_t blockId)
{
    // Ensure mData has enough vectors up to and including the target index
    if (!isSwapMode())
    {
        mData.resize(mData.size() + 1);
    }
    mBlockCount = blockId + 1;
    mData.back().resize(mDataBlockSize);
    mCurrentBlockOffset = 0;
    return mData.back();
}
std::vector<uint8_t> &FrameCaptureBinaryData::prepareLoadBlock(size_t blockId)
{
    size_t destBlockIndex = std::min(blockId, mMaxResidentBlockIndex);
    // Ensure mData has enough vectors up to the target index
    if (destBlockIndex >= mData.size())
    {
        mData.resize(destBlockIndex + 1);
    }
    if (isSwapBlock(destBlockIndex))
    {
        // If not the same block, mark previous block occupying swap slot as non-resident
        if (blockId != mCurrentTransientLoadedBlockId)
        {
            // Since this is the swap block, we aren't actually freeing any memory. But we need
            // a way to indicate whether a transient block is loaded. This way each logical
            // block knows whether it is resident, and where.
            setBlockNonResident(mCurrentTransientLoadedBlockId);
        }
        // Track which logical block is now in the swap slot
        mCurrentTransientLoadedBlockId = blockId;
    }
    mData.back().resize(mDataBlockSize);
    mCurrentBlockOffset = 0;
    return mData.back();
}
// Write file index entries to the end of compressed binary data files
BinaryFileIndexInfo FrameCaptureBinaryData::appendFileIndex()
{
    BinaryFileIndexInfo indexInfo;
    indexInfo.version      = kLongTraceVersionId;
    indexInfo.blockSize    = mDataBlockSize;
    indexInfo.blockCount   = mBlockCount;
    indexInfo.residentSize = mMaxResidentBinarySize;
    indexInfo.indexOffset  = 0;
    if (mIsBinaryDataCompressed)
    {
        size_t indexDataOffset = mFileStream->getPosition();
        // Copy index entries (index data trailer) to end of compressed data file
        for (auto &entry : mFileIndex)
        {
            mFileStream->write(reinterpret_cast<const uint8_t *>(&entry), sizeof(FileBlockInfo));
        }
        indexInfo.indexOffset = indexDataOffset;
    }
    // Return index information for saving in JSON file
    return indexInfo;
}
// Read in file index data from a compressed file and construct an access index
void FrameCaptureBinaryData::constructBlockDescIndex(size_t indexOffset)
{
    if (mIsBinaryDataCompressed)
    {
        // Move to the beginning of the index data in the compressed file
        mFileStream->seek(indexOffset, kSeekBegin);
        // Populate the replay block description array
        for (size_t i = 0; i < mBlockCount; i++)
        {
            // Read in block's information data
            FileBlockInfo blockInfo;
            mFileStream->read(reinterpret_cast<uint8_t *>(&blockInfo), sizeof(FileBlockInfo));
            // Create and save a block description from the block information
            ReplayBlockDescription blockDesc = {};
            blockDesc.fileOffset             = blockInfo.fileOffset;
            blockDesc.beginDataOffset        = blockInfo.dataOffset;
            blockDesc.endDataOffset          = blockInfo.dataOffset + blockInfo.dataSize - 1;
            blockDesc.dataSize               = blockInfo.dataSize;
            mReplayBlockDescriptions.push_back(blockDesc);
        }
    }
    else
    {
        // Create block descriptions from fixed size calculations
        mFileStream->seek(0, kSeekEnd);
        size_t size = mFileStream->getPosition();
        mFileStream->seek(0, kSeekBegin);
        size_t remaining = size;
        while (remaining > 0)
        {
            // The final block is typically smaller than mDataBlockSize
            size_t dataSize = std::min(remaining, mDataBlockSize);
            size_t offset   = size - remaining;
            // Create and save a block description
            ReplayBlockDescription blockDesc = {};
            blockDesc.fileOffset             = offset;
            blockDesc.beginDataOffset        = offset;
            blockDesc.endDataOffset          = offset + dataSize - 1;
            blockDesc.dataSize               = dataSize;
            mReplayBlockDescriptions.push_back(blockDesc);
            remaining -= dataSize;
        }
    }
}
size_t FrameCaptureBinaryData::append(const void *data, size_t size)
{
    if (mData.empty())
    {
        prepareStoreBlock(0);
        mBlockCount = 1;
    }
    ASSERT(totalSize() % kBinaryAlignment == 0);
    size_t startingOffset       = totalSize();
    const size_t sizeToIncrease = rx::roundUpPow2(size, kBinaryAlignment);
    // If the requested data size will not fit into the current block, allocate
    // a new block
    if (mCurrentBlockOffset + sizeToIncrease > mDataBlockSize)
    {
        size_t newBlockId = (startingOffset + sizeToIncrease) / mDataBlockSize;
        if (!isSwapMode())
        {
            if (newBlockId > mMaxResidentBlockIndex)
            {
                // All resident blocks are full, store them to disk
                storeResidentBlocks();
            }
            else
            {
                // Resident blocks available, no need to store to disk
            }
        }
        else
        {
            // Resident blocks have been saved, write this block to disk
            storeBlock();
        }
        prepareStoreBlock(newBlockId);
        startingOffset = totalSize();
    }
    memcpy(mData.back().data() + mCurrentBlockOffset, data, size);
    mCurrentBlockOffset += sizeToIncrease;
    return startingOffset;
}
const uint8_t *FrameCaptureBinaryData::getData(size_t offset)
{
    // This is the fastpath for this function, misses should be negligible
    if (offset >= mCacheBlockBeginOffset && offset < mCacheBlockEndOffset)
    {
        return (mCacheBlockBaseAddress + (offset - mCacheBlockBeginOffset));
    }
    // Calculate new block id for binary data to be loaded
    size_t newBlockId = offset / mDataBlockSize;
    // Swap block into memory if it is nonresident
    if (!isBlockResident(newBlockId))
    {
        loadBlock(newBlockId);
    }
    // Update the fastpath cache variables
    updateGetDataCache(newBlockId);
    return (mCacheBlockBaseAddress + (offset - mCacheBlockBeginOffset));
}
void FrameCaptureBinaryData::clear()
{
    mCurrentBlockOffset = 0;
    mFileIndex.clear();
    mReplayBlockDescriptions.clear();
    mData.clear();
}
// Helper class for compression/decompression operations
class ZLibHelper
{
    // See the following file for details on these variables and helpers:
    // https://chromium.googlesource.com/chromium/src/+/master/third_party/zlib/google/compression_utils_portable.cc
    static constexpr int kZlibMemoryLevel           = 8;
    static constexpr int kWindowBitsToGetGzipHeader = 16;
  public:
    ZLibHelper(FrameCaptureBinaryData::Mode mode) : mMode(mode), mStream(), mInitialized(false)
    {
        int ret          = 0;
        mStream.zalloc   = Z_NULL;
        mStream.zfree    = Z_NULL;
        mStream.opaque   = Z_NULL;
        mStream.avail_in = 0;
        mStream.next_in  = Z_NULL;
        if (mMode == FrameCaptureBinaryData::Mode::Load)
        {
            ret = inflateInit2(&mStream, MAX_WBITS + kWindowBitsToGetGzipHeader);
        }
        else if (mMode == FrameCaptureBinaryData::Mode::Store)
        {
            ret = deflateInit2(&mStream, Z_DEFAULT_COMPRESSION, Z_DEFLATED,
                               MAX_WBITS + kWindowBitsToGetGzipHeader, kZlibMemoryLevel,
                               Z_DEFAULT_STRATEGY);
        }
        else
        {
            FATAL() << "Invalid Mode Enum in ZLibHelper";
        }
        if (ret != Z_OK)
        {
            FATAL() << "Zlib helper initialization failed: " << ret;
        }
        mInitialized = true;
    }
    ~ZLibHelper()
    {
        if (mInitialized)
        {
            if (mMode == FrameCaptureBinaryData::Mode::Load)
            {
                inflateEnd(&mStream);
            }
            else if (mMode == FrameCaptureBinaryData::Mode::Store)
            {
                deflateEnd(&mStream);
            }
            else
            {
                FATAL() << "Invalid Mode Enum in ZLibHelper";
            }
        }
    }
    z_stream *getStream() { return &mStream; }
    ZLibHelper(const ZLibHelper &)            = delete;
    ZLibHelper &operator=(const ZLibHelper &) = delete;
    ZLibHelper(ZLibHelper &&)                 = delete;
    ZLibHelper &operator=(ZLibHelper &&)      = delete;
  private:
    FrameCaptureBinaryData::Mode mMode;
    z_stream mStream;
    bool mInitialized;
};
// Configure binary data output parameters and prepare file for writing
void FrameCaptureBinaryData::initializeBinaryDataStore(bool compression,
                                                       const std::string &outDir,
                                                       const std::string &fileName)
{
    std::string binaryDataFileName = outDir + fileName;
    mStoredBlocks                  = 0;
    mIsBinaryDataCompressed        = compression;
    if ((mMaxResidentBinarySize / mDataBlockSize) <= 1)
    {
        FATAL() << "Error,insufficient resident memory specified or available";
    }
    mMaxResidentBlockIndex = (mMaxResidentBinarySize / mDataBlockSize) - 1;
    mFileStream = new FileStream(binaryDataFileName, Mode::Store);
}
// Optionally compress and then write a single data block to disk
void FrameCaptureBinaryData::storeBlock()
{
    std::vector<uint8_t> &storeBlock = mData.front();
    // The last block to be saved will be resized to fit used data
    if (mCaptureComplete && mData.size() == 1)
    {
        storeBlock.resize(mCurrentBlockOffset);
    }
    if (mIsBinaryDataCompressed)
    {
        // Use zlib library, based on example/doc here: https://zlib.net/zlib_how.html
        ZLibHelper compressor(Mode::Store);
        z_stream *zStream = compressor.getStream();
        int deflateStatus = 0;
        using ZlibBuffer  = std::array<unsigned char, kZlibBufferSize>;
        std::unique_ptr<ZlibBuffer> compressBuffer(new ZlibBuffer());
        FileBlockInfo fileIndexEntry;
        fileIndexEntry.fileOffset = mFileStream->getPosition();      // CompressedFileOffset
        fileIndexEntry.dataOffset = mStoredBlocks * mDataBlockSize;  // UncompressedOffset
        fileIndexEntry.dataSize   = storeBlock.size();               // Size of block
        // Save file index data
        mFileIndex.push_back(fileIndexEntry);
        const unsigned char *uncompressedDataPtr = storeBlock.data();
        size_t remainingBytesToCompress          = storeBlock.size();
        while (remainingBytesToCompress > 0)
        {
            size_t bytesToCompress =
                std::min(remainingBytesToCompress, static_cast<size_t>(kZlibBufferSize));
            zStream->avail_in = static_cast<uInt>(bytesToCompress);
            zStream->next_in  = const_cast<unsigned char *>(uncompressedDataPtr);
            do
            {
                zStream->avail_out = kZlibBufferSize;
                zStream->next_out  = compressBuffer->data();
                int flushMode = Z_NO_FLUSH;
                if (remainingBytesToCompress <= kZlibBufferSize)
                {
                    flushMode = Z_FINISH;
                }
                deflateStatus = deflate(zStream, flushMode);
                if (deflateStatus == Z_STREAM_ERROR)
                {
                    FATAL() << "Error during deflate: Z_STREAM_ERROR";
                }
                // This is the compressed data size about to be written
                unsigned bytesCompressed = kZlibBufferSize - zStream->avail_out;
                mFileStream->write(compressBuffer->data(), bytesCompressed);
            } while (zStream->avail_out == 0);
            uncompressedDataPtr += bytesToCompress;
            remainingBytesToCompress -= bytesToCompress;
        }
    }
    else
    {
        mFileStream->write(storeBlock.data(), storeBlock.size());
    }
    mStoredBlocks++;
}
BinaryFileIndexInfo FrameCaptureBinaryData::closeBinaryDataStore()
{
    mCaptureComplete = true;
    storeResidentBlocks();
    BinaryFileIndexInfo indexInfo;
    indexInfo = appendFileIndex();
    clear();
    return indexInfo;
}
// Sets up binary data loader with config data from the trace fixture
void FrameCaptureBinaryData::configureBinaryDataLoader(bool compression,
                                                       size_t blockCount,
                                                       size_t blockSize,
                                                       size_t residentSize,
                                                       size_t indexOffset,
                                                       const std::string &fileName)
{
    mIsBinaryDataCompressed        = compression;
    mFileName                      = fileName;
    mMaxResidentBinarySize         = residentSize;
    mDataBlockSize                 = blockSize;
    mBlockCount                    = blockCount;
    mMaxResidentBlockIndex         = (mMaxResidentBinarySize / mDataBlockSize) - 1;
    mCurrentTransientLoadedBlockId = mMaxResidentBlockIndex;
    mIndexOffset                   = indexOffset;
}
// Setup binary data file access, init index and preload data blocks up to limit
void FrameCaptureBinaryData::initializeBinaryDataLoader()
{
    // Create file stream manager
    mFileStream = new FileStream(mFileName.c_str(), Mode::Load);
    // Assemble binary data file/cache index
    constructBlockDescIndex(mIndexOffset);
    // Preload binary data blocks up to limit
    size_t blocksToPreload =
        std::min(mReplayBlockDescriptions.size(), (mMaxResidentBlockIndex + 1));
    for (size_t i = 0; i < blocksToPreload; i++)
    {
        loadBlock(i);
    }
    // Initialize getData cache
    updateGetDataCache(0);
}
// Load a single data block into memory
void FrameCaptureBinaryData::loadBlock(size_t blockId)
{
    std::vector<uint8_t> &uncompressedDataBlock = prepareLoadBlock(blockId);
    // Move to start of this data block in the data file
    mFileStream->seek(mReplayBlockDescriptions[blockId].fileOffset, kSeekBegin);
    if (mIsBinaryDataCompressed)
    {
        // Use zlib library, based on example/doc here: https://zlib.net/zlib_how.html
        ZLibHelper decompressor(Mode::Load);
        z_stream *zStream        = decompressor.getStream();
        int inflateStatus        = 0;
        size_t bytesDecompressed = 0;
        using ZlibBuffer = std::array<unsigned char, kZlibBufferSize>;
        std::unique_ptr<ZlibBuffer> compressedDataBuffer(new ZlibBuffer());
        zStream->avail_out = static_cast<uInt>(mDataBlockSize);
        zStream->next_out  = uncompressedDataBlock.data();
        do
        {
            if (zStream->avail_in == 0)
            {
                zStream->avail_in = static_cast<uInt>(
                    mFileStream->read(compressedDataBuffer->data(), kZlibBufferSize));
                zStream->next_in = compressedDataBuffer->data();
            }
            do
            {
                int availableOutputSpace = static_cast<int>(mDataBlockSize - mCurrentBlockOffset);
                zStream->avail_out       = availableOutputSpace;
                zStream->next_out        = uncompressedDataBlock.data() + mCurrentBlockOffset;
                inflateStatus            = inflate(zStream, Z_NO_FLUSH);
                ASSERT(inflateStatus != Z_STREAM_ERROR);
                if (inflateStatus == Z_NEED_DICT || inflateStatus == Z_DATA_ERROR ||
                    inflateStatus == Z_MEM_ERROR)
                {
                    FATAL() << "Zlib inflate failed: " << inflateStatus;
                }
                bytesDecompressed = availableOutputSpace - zStream->avail_out;
                mCurrentBlockOffset += bytesDecompressed;
            } while (zStream->avail_out == 0 && mCurrentBlockOffset < mDataBlockSize);
        } while (inflateStatus != Z_STREAM_END && mCurrentBlockOffset != mDataBlockSize);
    }
    else
    {
        mCurrentBlockOffset = mFileStream->read(uncompressedDataBlock.data(), mDataBlockSize);
    }
    // Except for the last block this resize will be a no-op
    uncompressedDataBlock.resize(mCurrentBlockOffset);
    // Indicate that this block is now loaded
    setBlockResident(blockId, uncompressedDataBlock.data());
}
void FrameCaptureBinaryData::closeBinaryDataLoader()
{
    clear();
}
int FileStreamSeek(FILE *stream, long long offset, int whence)
{
#if defined(ANGLE_PLATFORM_WINDOWS)
    return _fseeki64(stream, offset, whence);
#else
    return fseeko(stream, static_cast<off_t>(offset), whence);
#endif
}
long long FileStreamTell(FILE *stream)
{
#if defined(ANGLE_PLATFORM_WINDOWS)
    return _ftelli64(stream);
#else
    return ftello(stream);
#endif
}
void FileStream::write(const uint8_t *data, size_t size)
{
    if (fwrite(data, 1, size, mFile) != size)
    {
        if (ferror(mFile))
        {
            FATAL() << "Error writing " << size << " bytes to binary data file.";
        }
    }
    if (fflush(mFile) != 0)
    {
        FATAL() << "Error flushing data to binary data file.";
    }
}
size_t FileStream::read(uint8_t *buffer, size_t size)
{
    size_t readBytes = fread(buffer, 1, size, mFile);
    if (readBytes < size && ferror(mFile))
    {
        FATAL() << "Error reading from binary data file.";
    }
    return readBytes;
}
void FileStream::seek(long long offset, int whence)
{
    if (FileStreamSeek(mFile, offset, whence) != 0)
    {
        FATAL() << "Error seeking in binary data file with offset " << offset << " and whence "
                << whence;
    }
}
size_t FileStream::getPosition()
{
    long long offset = FileStreamTell(mFile);
    if (offset == -1)
    {
        FATAL() << "Error getting position in binary data file " << mFilePath;
    }
    angle::CheckedNumeric<size_t> checkedOffset(offset);
    size_t safeOffset = 0;
    if (!checkedOffset.AssignIfValid(&safeOffset))
    {
        FATAL() << "ANGLE file seek position offset out of range";
    }
    return safeOffset;
}
}  // namespace angle