Hash :
4a9cd800
Author :
Date :
2016-09-01T16:51:51
Refactor type_specifier_nonarray parsing to reduce code repetition When type_specifier_nonarray gets parsed the scope gets saved into TType and the code becomes repetitive. Setting of the scope is moved to type_specifier_no_prec as it occurs less times. BUG=angleproject:911 TEST=angle_unittests TEST=angle_end2end_tests Change-Id: I6da5fe7bc2d60ba2996221af71b719b818f5e9b1 Reviewed-on: https://chromium-review.googlesource.com/380535 Commit-Queue: Olli Etuaho <oetuaho@nvidia.com> Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Corentin Wallez <cwallez@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#ifndef COMPILER_TRANSLATOR_SYMBOLTABLE_H_
#define COMPILER_TRANSLATOR_SYMBOLTABLE_H_
//
// Symbol table for parsing. Has these design characteristics:
//
// * Same symbol table can be used to compile many shaders, to preserve
// effort of creating and loading with the large numbers of built-in
// symbols.
//
// * Name mangling will be used to give each function a unique name
// so that symbol table lookups are never ambiguous. This allows
// a simpler symbol table structure.
//
// * Pushing and popping of scope, so symbol table will really be a stack
// of symbol tables. Searched from the top, with new inserts going into
// the top.
//
// * Constants: Compile time constant symbols will keep their values
// in the symbol table. The parser can substitute constants at parse
// time, including doing constant folding and constant propagation.
//
// * No temporaries: Temporaries made from operations (+, --, .xy, etc.)
// are tracked in the intermediate representation, not the symbol table.
//
#include <array>
#include <assert.h>
#include <set>
#include "common/angleutils.h"
#include "compiler/translator/InfoSink.h"
#include "compiler/translator/IntermNode.h"
// Symbol base class. (Can build functions or variables out of these...)
class TSymbol : angle::NonCopyable
{
public:
POOL_ALLOCATOR_NEW_DELETE();
TSymbol(const TString *n)
: uniqueId(0),
name(n)
{
}
virtual ~TSymbol()
{
// don't delete name, it's from the pool
}
const TString &getName() const
{
return *name;
}
virtual const TString &getMangledName() const
{
return getName();
}
virtual bool isFunction() const
{
return false;
}
virtual bool isVariable() const
{
return false;
}
void setUniqueId(int id)
{
uniqueId = id;
}
int getUniqueId() const
{
return uniqueId;
}
void relateToExtension(const TString &ext)
{
extension = ext;
}
const TString &getExtension() const
{
return extension;
}
private:
int uniqueId; // For real comparing during code generation
const TString *name;
TString extension;
};
// Variable class, meaning a symbol that's not a function.
//
// There could be a separate class heirarchy for Constant variables;
// Only one of int, bool, or float, (or none) is correct for
// any particular use, but it's easy to do this way, and doesn't
// seem worth having separate classes, and "getConst" can't simply return
// different values for different types polymorphically, so this is
// just simple and pragmatic.
class TVariable : public TSymbol
{
public:
TVariable(const TString *name, const TType &t, bool uT = false)
: TSymbol(name),
type(t),
userType(uT),
unionArray(0)
{
}
~TVariable() override {}
bool isVariable() const override { return true; }
TType &getType()
{
return type;
}
const TType &getType() const
{
return type;
}
bool isUserType() const
{
return userType;
}
void setQualifier(TQualifier qualifier)
{
type.setQualifier(qualifier);
}
const TConstantUnion *getConstPointer() const { return unionArray; }
void shareConstPointer(const TConstantUnion *constArray) { unionArray = constArray; }
private:
TType type;
bool userType;
// we are assuming that Pool Allocator will free the memory
// allocated to unionArray when this object is destroyed.
const TConstantUnion *unionArray;
};
// Immutable version of TParameter.
struct TConstParameter
{
TConstParameter()
: name(nullptr),
type(nullptr)
{
}
explicit TConstParameter(const TString *n)
: name(n),
type(nullptr)
{
}
explicit TConstParameter(const TType *t)
: name(nullptr),
type(t)
{
}
TConstParameter(const TString *n, const TType *t)
: name(n),
type(t)
{
}
// Both constructor arguments must be const.
TConstParameter(TString *n, TType *t) = delete;
TConstParameter(const TString *n, TType *t) = delete;
TConstParameter(TString *n, const TType *t) = delete;
const TString *name;
const TType *type;
};
// The function sub-class of symbols and the parser will need to
// share this definition of a function parameter.
struct TParameter
{
// Destructively converts to TConstParameter.
// This method resets name and type to nullptrs to make sure
// their content cannot be modified after the call.
TConstParameter turnToConst()
{
const TString *constName = name;
const TType *constType = type;
name = nullptr;
type = nullptr;
return TConstParameter(constName, constType);
}
TString *name;
TType *type;
};
// The function sub-class of a symbol.
class TFunction : public TSymbol
{
public:
TFunction(const TString *name,
const TType *retType,
TOperator tOp = EOpNull,
const char *ext = "")
: TSymbol(name),
returnType(retType),
mangledName(nullptr),
op(tOp),
defined(false),
mHasPrototypeDeclaration(false)
{
relateToExtension(ext);
}
~TFunction() override;
bool isFunction() const override { return true; }
static TString mangleName(const TString &name)
{
return name + '(';
}
static TString unmangleName(const TString &mangledName)
{
return TString(mangledName.c_str(), mangledName.find_first_of('('));
}
void addParameter(const TConstParameter &p)
{
parameters.push_back(p);
mangledName = nullptr;
}
const TString &getMangledName() const override
{
if (mangledName == nullptr)
{
mangledName = buildMangledName();
}
return *mangledName;
}
const TType &getReturnType() const
{
return *returnType;
}
TOperator getBuiltInOp() const
{
return op;
}
void setDefined() { defined = true; }
bool isDefined() { return defined; }
void setHasPrototypeDeclaration() { mHasPrototypeDeclaration = true; }
bool hasPrototypeDeclaration() const { return mHasPrototypeDeclaration; }
size_t getParamCount() const
{
return parameters.size();
}
const TConstParameter &getParam(size_t i) const
{
return parameters[i];
}
private:
const TString *buildMangledName() const;
typedef TVector<TConstParameter> TParamList;
TParamList parameters;
const TType *returnType;
mutable const TString *mangledName;
TOperator op;
bool defined;
bool mHasPrototypeDeclaration;
};
// Interface block name sub-symbol
class TInterfaceBlockName : public TSymbol
{
public:
TInterfaceBlockName(const TString *name)
: TSymbol(name)
{
}
virtual ~TInterfaceBlockName()
{
}
};
class TSymbolTableLevel
{
public:
typedef TMap<TString, TSymbol *> tLevel;
typedef tLevel::const_iterator const_iterator;
typedef const tLevel::value_type tLevelPair;
typedef std::pair<tLevel::iterator, bool> tInsertResult;
TSymbolTableLevel()
: mGlobalInvariant(false)
{
}
~TSymbolTableLevel();
bool insert(TSymbol *symbol);
// Insert a function using its unmangled name as the key.
bool insertUnmangled(TFunction *function);
TSymbol *find(const TString &name) const;
void addInvariantVarying(const std::string &name)
{
mInvariantVaryings.insert(name);
}
bool isVaryingInvariant(const std::string &name)
{
return (mGlobalInvariant || mInvariantVaryings.count(name) > 0);
}
void setGlobalInvariant(bool invariant) { mGlobalInvariant = invariant; }
protected:
tLevel level;
std::set<std::string> mInvariantVaryings;
bool mGlobalInvariant;
};
// Define ESymbolLevel as int rather than an enum since level can go
// above GLOBAL_LEVEL and cause atBuiltInLevel() to fail if the
// compiler optimizes the >= of the last element to ==.
typedef int ESymbolLevel;
const int COMMON_BUILTINS = 0;
const int ESSL1_BUILTINS = 1;
const int ESSL3_BUILTINS = 2;
const int ESSL3_1_BUILTINS = 3;
const int LAST_BUILTIN_LEVEL = ESSL3_1_BUILTINS;
const int GLOBAL_LEVEL = 4;
class TSymbolTable : angle::NonCopyable
{
public:
TSymbolTable()
{
// The symbol table cannot be used until push() is called, but
// the lack of an initial call to push() can be used to detect
// that the symbol table has not been preloaded with built-ins.
}
~TSymbolTable();
// When the symbol table is initialized with the built-ins, there should
// 'push' calls, so that built-ins are at level 0 and the shader
// globals are at level 1.
bool isEmpty() const
{
return table.empty();
}
bool atBuiltInLevel() const
{
return currentLevel() <= LAST_BUILTIN_LEVEL;
}
bool atGlobalLevel() const
{
return currentLevel() == GLOBAL_LEVEL;
}
void push()
{
table.push_back(new TSymbolTableLevel);
precisionStack.push_back(new PrecisionStackLevel);
}
void pop()
{
delete table.back();
table.pop_back();
delete precisionStack.back();
precisionStack.pop_back();
}
bool declare(TSymbol *symbol)
{
return insert(currentLevel(), symbol);
}
bool insert(ESymbolLevel level, TSymbol *symbol)
{
return table[level]->insert(symbol);
}
bool insert(ESymbolLevel level, const char *ext, TSymbol *symbol)
{
symbol->relateToExtension(ext);
return table[level]->insert(symbol);
}
bool insertConstInt(ESymbolLevel level, const char *name, int value, TPrecision precision)
{
TVariable *constant =
new TVariable(NewPoolTString(name), TType(EbtInt, precision, EvqConst, 1));
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray[0].setIConst(value);
constant->shareConstPointer(unionArray);
return insert(level, constant);
}
bool insertConstIntExt(ESymbolLevel level, const char *ext, const char *name, int value)
{
TVariable *constant =
new TVariable(NewPoolTString(name), TType(EbtInt, EbpUndefined, EvqConst, 1));
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray[0].setIConst(value);
constant->shareConstPointer(unionArray);
return insert(level, ext, constant);
}
bool insertConstIvec3(ESymbolLevel level,
const char *name,
const std::array<int, 3> &values,
TPrecision precision)
{
TVariable *constantIvec3 =
new TVariable(NewPoolTString(name), TType(EbtInt, precision, EvqConst, 3));
TConstantUnion *unionArray = new TConstantUnion[3];
for (size_t index = 0u; index < 3u; ++index)
{
unionArray[index].setIConst(values[index]);
}
constantIvec3->shareConstPointer(unionArray);
return insert(level, constantIvec3);
}
void insertBuiltIn(ESymbolLevel level, TOperator op, const char *ext, const TType *rvalue, const char *name,
const TType *ptype1, const TType *ptype2 = 0, const TType *ptype3 = 0, const TType *ptype4 = 0, const TType *ptype5 = 0);
void insertBuiltIn(ESymbolLevel level, const TType *rvalue, const char *name,
const TType *ptype1, const TType *ptype2 = 0, const TType *ptype3 = 0, const TType *ptype4 = 0, const TType *ptype5 = 0)
{
insertUnmangledBuiltIn(name);
insertBuiltIn(level, EOpNull, "", rvalue, name, ptype1, ptype2, ptype3, ptype4, ptype5);
}
void insertBuiltIn(ESymbolLevel level, const char *ext, const TType *rvalue, const char *name,
const TType *ptype1, const TType *ptype2 = 0, const TType *ptype3 = 0, const TType *ptype4 = 0, const TType *ptype5 = 0)
{
insertUnmangledBuiltIn(name);
insertBuiltIn(level, EOpNull, ext, rvalue, name, ptype1, ptype2, ptype3, ptype4, ptype5);
}
void insertBuiltIn(ESymbolLevel level, TOperator op, const TType *rvalue, const char *name,
const TType *ptype1, const TType *ptype2 = 0, const TType *ptype3 = 0, const TType *ptype4 = 0, const TType *ptype5 = 0)
{
insertUnmangledBuiltIn(name);
insertBuiltIn(level, op, "", rvalue, name, ptype1, ptype2, ptype3, ptype4, ptype5);
}
TSymbol *find(const TString &name, int shaderVersion,
bool *builtIn = NULL, bool *sameScope = NULL) const;
TSymbol *findBuiltIn(const TString &name, int shaderVersion) const;
TSymbolTableLevel *getOuterLevel()
{
assert(currentLevel() >= 1);
return table[currentLevel() - 1];
}
void dump(TInfoSink &infoSink) const;
bool setDefaultPrecision(const TPublicType &type, TPrecision prec)
{
if (!SupportsPrecision(type.getBasicType()))
return false;
if (type.getBasicType() == EbtUInt)
return false; // ESSL 3.00.4 section 4.5.4
if (type.isAggregate())
return false; // Not allowed to set for aggregate types
int indexOfLastElement = static_cast<int>(precisionStack.size()) - 1;
// Uses map operator [], overwrites the current value
(*precisionStack[indexOfLastElement])[type.getBasicType()] = prec;
return true;
}
// Searches down the precisionStack for a precision qualifier
// for the specified TBasicType
TPrecision getDefaultPrecision(TBasicType type) const;
// This records invariant varyings declared through
// "invariant varying_name;".
void addInvariantVarying(const std::string &originalName)
{
ASSERT(atGlobalLevel());
table[currentLevel()]->addInvariantVarying(originalName);
}
// If this returns false, the varying could still be invariant
// if it is set as invariant during the varying variable
// declaration - this piece of information is stored in the
// variable's type, not here.
bool isVaryingInvariant(const std::string &originalName) const
{
ASSERT(atGlobalLevel());
return table[currentLevel()]->isVaryingInvariant(originalName);
}
void setGlobalInvariant(bool invariant)
{
ASSERT(atGlobalLevel());
table[currentLevel()]->setGlobalInvariant(invariant);
}
static int nextUniqueId()
{
return ++uniqueIdCounter;
}
bool hasUnmangledBuiltIn(const char *name)
{
return mUnmangledBuiltinNames.count(std::string(name)) > 0;
}
private:
ESymbolLevel currentLevel() const
{
return static_cast<ESymbolLevel>(table.size() - 1);
}
// Used to insert unmangled functions to check redeclaration of built-ins in ESSL 3.00.
void insertUnmangledBuiltIn(const char *name)
{
mUnmangledBuiltinNames.insert(std::string(name));
}
std::vector<TSymbolTableLevel *> table;
typedef TMap<TBasicType, TPrecision> PrecisionStackLevel;
std::vector< PrecisionStackLevel *> precisionStack;
std::set<std::string> mUnmangledBuiltinNames;
static int uniqueIdCounter;
};
#endif // COMPILER_TRANSLATOR_SYMBOLTABLE_H_