Hash :
e196bc85
Author :
Date :
2020-01-17T13:11:20
Add driver bug workaround for rewriting row major matrices. Joint work with syoussefi@, who wrote the RewriteRowMajorMatrices pass, and revised it for this CL to not rely on the NameNamelessUniformBuffers pass - which was breaking it on the GL backend. Hook up previously written RewriteRowMajorMatrices transformation, and enable on all GPU types on macOS. It is needed at least for AMD and Intel GPUs. Add a new test which verifies the behavior of dynamically-indexed arrays of row-major matrices. Bug: angleproject:2273 Bug: angleproject:3843 Change-Id: Id582f9cf6b9b1a59091aab1786539174f360b705 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/2008717 Commit-Queue: Kenneth Russell <kbr@chromium.org> Reviewed-by: Geoff Lang <geofflang@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
//
// Copyright 2019 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RewriteRowMajorMatrices: Rewrite row-major matrices as column-major.
//
#include "compiler/translator/tree_ops/RewriteRowMajorMatrices.h"
#include "compiler/translator/Compiler.h"
#include "compiler/translator/ImmutableStringBuilder.h"
#include "compiler/translator/StaticType.h"
#include "compiler/translator/SymbolTable.h"
#include "compiler/translator/tree_util/IntermNode_util.h"
#include "compiler/translator/tree_util/IntermTraverse.h"
#include "compiler/translator/tree_util/ReplaceVariable.h"
namespace sh
{
namespace
{
// Only structs with matrices are tracked. If layout(row_major) is applied to a struct that doesn't
// have matrices, it's silently dropped. This is also used to avoid creating duplicates for inner
// structs that don't have matrices.
struct StructConversionData
{
// The converted struct with every matrix transposed.
TStructure *convertedStruct = nullptr;
// The copy-from and copy-to functions copying from a struct to its converted version and back.
TFunction *copyFromOriginal = nullptr;
TFunction *copyToOriginal = nullptr;
};
bool DoesFieldContainRowMajorMatrix(const TField *field, bool isBlockRowMajor)
{
TLayoutMatrixPacking matrixPacking = field->type()->getLayoutQualifier().matrixPacking;
// The field is row major if either explicitly specified as such, or if it inherits it from the
// block layout qualifier.
if (matrixPacking == EmpColumnMajor || (matrixPacking == EmpUnspecified && !isBlockRowMajor))
{
return false;
}
// The field is qualified with row_major, but if it's not a matrix or a struct containing
// matrices, that's a useless qualifier.
const TType *type = field->type();
return type->isMatrix() || type->isStructureContainingMatrices();
}
TField *DuplicateField(const TField *field)
{
return new TField(new TType(*field->type()), field->name(), field->line(), field->symbolType());
}
void SetColumnMajor(TType *type)
{
TLayoutQualifier layoutQualifier = type->getLayoutQualifier();
layoutQualifier.matrixPacking = EmpColumnMajor;
type->setLayoutQualifier(layoutQualifier);
}
TType *TransposeMatrixType(const TType *type)
{
TType *newType = new TType(*type);
SetColumnMajor(newType);
newType->setPrimarySize(static_cast<unsigned char>(type->getRows()));
newType->setSecondarySize(static_cast<unsigned char>(type->getCols()));
return newType;
}
void CopyArraySizes(const TType *from, TType *to)
{
if (from->isArray())
{
to->makeArrays(from->getArraySizes());
}
}
// Determine if the node is an index node (array index or struct field selection). For the purposes
// of this transformation, swizzle nodes are considered index nodes too.
bool IsIndexNode(TIntermNode *node, TIntermNode *child)
{
if (node->getAsSwizzleNode())
{
return true;
}
TIntermBinary *binaryNode = node->getAsBinaryNode();
if (binaryNode == nullptr || child != binaryNode->getLeft())
{
return false;
}
TOperator op = binaryNode->getOp();
return op == EOpIndexDirect || op == EOpIndexDirectInterfaceBlock ||
op == EOpIndexDirectStruct || op == EOpIndexIndirect;
}
TIntermSymbol *CopyToTempVariable(TSymbolTable *symbolTable,
TIntermTyped *node,
TIntermSequence *prependStatements)
{
TVariable *temp = CreateTempVariable(symbolTable, &node->getType());
TIntermDeclaration *tempDecl = CreateTempInitDeclarationNode(temp, node);
prependStatements->push_back(tempDecl);
return new TIntermSymbol(temp);
}
TIntermAggregate *CreateStructCopyCall(const TFunction *copyFunc, TIntermTyped *expression)
{
return TIntermAggregate::CreateFunctionCall(*copyFunc, new TIntermSequence({expression}));
}
TIntermTyped *CreateTransposeCall(TSymbolTable *symbolTable, TIntermTyped *expression)
{
return CreateBuiltInFunctionCallNode("transpose", new TIntermSequence({expression}),
*symbolTable, 300);
}
TOperator GetIndex(TSymbolTable *symbolTable,
TIntermNode *node,
TIntermSequence *indices,
TIntermSequence *prependStatements)
{
// Swizzle nodes are converted EOpIndexDirect for simplicity, with one index per swizzle
// channel.
TIntermSwizzle *asSwizzle = node->getAsSwizzleNode();
if (asSwizzle)
{
for (int channel : asSwizzle->getSwizzleOffsets())
{
indices->push_back(CreateIndexNode(channel));
}
return EOpIndexDirect;
}
TIntermBinary *binaryNode = node->getAsBinaryNode();
ASSERT(binaryNode);
TOperator op = binaryNode->getOp();
ASSERT(op == EOpIndexDirect || op == EOpIndexDirectInterfaceBlock ||
op == EOpIndexDirectStruct || op == EOpIndexIndirect);
TIntermTyped *rhs = binaryNode->getRight()->deepCopy();
if (rhs->getAsConstantUnion() == nullptr)
{
rhs = CopyToTempVariable(symbolTable, rhs, prependStatements);
}
indices->push_back(rhs);
return op;
}
TIntermTyped *ReplicateIndexNode(TSymbolTable *symbolTable,
TIntermNode *node,
TIntermTyped *lhs,
TIntermSequence *indices)
{
TIntermSwizzle *asSwizzle = node->getAsSwizzleNode();
if (asSwizzle)
{
return new TIntermSwizzle(lhs, asSwizzle->getSwizzleOffsets());
}
TIntermBinary *binaryNode = node->getAsBinaryNode();
ASSERT(binaryNode);
ASSERT(indices->size() == 1);
TIntermTyped *rhs = indices->front()->getAsTyped();
return new TIntermBinary(binaryNode->getOp(), lhs, rhs);
}
TOperator GetIndexOp(TIntermNode *node)
{
return node->getAsConstantUnion() ? EOpIndexDirect : EOpIndexIndirect;
}
bool IsConvertedField(TIntermTyped *indexNode,
const std::unordered_map<const TField *, bool> &convertedFields)
{
TIntermBinary *asBinary = indexNode->getAsBinaryNode();
if (asBinary == nullptr)
{
return false;
}
if (asBinary->getOp() != EOpIndexDirectInterfaceBlock)
{
return false;
}
const TInterfaceBlock *interfaceBlock = asBinary->getLeft()->getType().getInterfaceBlock();
ASSERT(interfaceBlock);
TIntermConstantUnion *fieldIndexNode = asBinary->getRight()->getAsConstantUnion();
ASSERT(fieldIndexNode);
ASSERT(fieldIndexNode->getConstantValue() != nullptr);
int fieldIndex = fieldIndexNode->getConstantValue()->getIConst();
const TField *field = interfaceBlock->fields()[fieldIndex];
return convertedFields.count(field) > 0 && convertedFields.at(field);
}
// A helper class to transform expressions of array type. Iterates over every element of the
// array.
class TransformArrayHelper
{
public:
TransformArrayHelper(TIntermTyped *baseExpression)
: mBaseExpression(baseExpression),
mBaseExpressionType(baseExpression->getType()),
mArrayIndices(mBaseExpressionType.getArraySizes().size(), 0)
{}
TIntermTyped *getNextElement(TIntermTyped *valueExpression, TIntermTyped **valueElementOut)
{
const TSpan<const unsigned int> &arraySizes = mBaseExpressionType.getArraySizes();
// If the last index overflows, element enumeration is done.
if (mArrayIndices.back() >= arraySizes.back())
{
return nullptr;
}
TIntermTyped *element = getCurrentElement(mBaseExpression);
if (valueExpression)
{
*valueElementOut = getCurrentElement(valueExpression);
}
incrementIndices(arraySizes);
return element;
}
void accumulateForRead(TSymbolTable *symbolTable,
TIntermTyped *transformedElement,
TIntermSequence *prependStatements)
{
TIntermTyped *temp = CopyToTempVariable(symbolTable, transformedElement, prependStatements);
mReadTransformConstructorArgs.push_back(temp);
}
TIntermTyped *constructReadTransformExpression()
{
const TSpan<const unsigned int> &baseTypeArraySizes = mBaseExpressionType.getArraySizes();
TVector<unsigned int> arraySizes(baseTypeArraySizes.begin(), baseTypeArraySizes.end());
TIntermTyped *firstElement = mReadTransformConstructorArgs.front()->getAsTyped();
const TType &baseType = firstElement->getType();
// If N dimensions, acc[0] == size[0] and acc[i] == size[i] * acc[i-1].
// The last value is unused, and is not present.
TVector<unsigned int> accumulatedArraySizes(arraySizes.size() - 1);
accumulatedArraySizes[0] = arraySizes[0];
for (size_t index = 1; index + 1 < arraySizes.size(); ++index)
{
accumulatedArraySizes[index] = accumulatedArraySizes[index - 1] * arraySizes[index];
}
return constructReadTransformExpressionHelper(arraySizes, accumulatedArraySizes, baseType,
0);
}
private:
TIntermTyped *getCurrentElement(TIntermTyped *expression)
{
TIntermTyped *element = expression->deepCopy();
for (auto it = mArrayIndices.rbegin(); it != mArrayIndices.rend(); ++it)
{
unsigned int index = *it;
element = new TIntermBinary(EOpIndexDirect, element, CreateIndexNode(index));
}
return element;
}
void incrementIndices(const TSpan<const unsigned int> &arraySizes)
{
// Assume mArrayIndices is an N digit number, where digit i is in the range
// [0, arraySizes[i]). This function increments this number. Last digit is the most
// significant digit.
for (size_t digitIndex = 0; digitIndex < arraySizes.size(); ++digitIndex)
{
++mArrayIndices[digitIndex];
if (mArrayIndices[digitIndex] < arraySizes[digitIndex])
{
break;
}
if (digitIndex + 1 != arraySizes.size())
{
// This digit has now overflown and is reset to 0, carry will be added to the next
// digit. The most significant digit will keep the overflow though, to make it
// clear we have exhausted the range.
mArrayIndices[digitIndex] = 0;
}
}
}
TIntermTyped *constructReadTransformExpressionHelper(
const TVector<unsigned int> &arraySizes,
const TVector<unsigned int> &accumulatedArraySizes,
const TType &baseType,
size_t elementsOffset)
{
ASSERT(!arraySizes.empty());
TType *transformedType = new TType(baseType);
transformedType->makeArrays(arraySizes);
// If one dimensional, create the constructor with the given elements.
if (arraySizes.size() == 1)
{
ASSERT(accumulatedArraySizes.size() == 0);
auto sliceStart = mReadTransformConstructorArgs.begin() + elementsOffset;
TIntermSequence slice(sliceStart, sliceStart + arraySizes[0]);
return TIntermAggregate::CreateConstructor(*transformedType, &slice);
}
// If not, create constructors for every column recursively.
TVector<unsigned int> subArraySizes(arraySizes.begin(), arraySizes.end() - 1);
TVector<unsigned int> subArrayAccumulatedSizes(accumulatedArraySizes.begin(),
accumulatedArraySizes.end() - 1);
TIntermSequence constructorArgs;
unsigned int colStride = accumulatedArraySizes.back();
for (size_t col = 0; col < arraySizes.back(); ++col)
{
size_t colElementsOffset = elementsOffset + col * colStride;
constructorArgs.push_back(constructReadTransformExpressionHelper(
subArraySizes, subArrayAccumulatedSizes, baseType, colElementsOffset));
}
return TIntermAggregate::CreateConstructor(*transformedType, &constructorArgs);
}
TIntermTyped *mBaseExpression;
const TType &mBaseExpressionType;
TVector<unsigned int> mArrayIndices;
TIntermSequence mReadTransformConstructorArgs;
};
// Traverser that:
//
// 1. Converts |layout(row_major) matCxR M| to |layout(column_major) matRxC Mt|.
// 2. Converts |layout(row_major) S s| to |layout(column_major) St st|, where S is a struct that
// contains matrices, and St is a new struct with the transformation in 1 applied to matrix
// members (recursively).
// 3. When read from, the following transformations are applied:
//
// M -> transpose(Mt)
// M[c] -> gvecN(Mt[0][c], Mt[1][c], ..., Mt[N-1][c])
// M[c][r] -> Mt[r][c]
// M[c].yz -> gvec2(Mt[1][c], Mt[2][c])
// MArr -> MType[D1]..[DN](transpose(MtArr[0]...[0]), ...)
// s -> copy_St_to_S(st)
// sArr -> SType[D1]...[DN](copy_St_to_S(stArr[0]..[0]), ...)
// (matrix reads through struct are transformed similarly to M)
//
// 4. When written to, the following transformations are applied:
//
// M = exp -> Mt = transpose(exp)
// M[c] = exp -> temp = exp
// Mt[0][c] = temp[0]
// Mt[1][c] = temp[1]
// ...
// Mt[N-1][c] = temp[N-1]
// M[c][r] = exp -> Mt[r][c] = exp
// M[c].yz = exp -> temp = exp
// Mt[1][c] = temp[0]
// Mt[2][c] = temp[1]
// MArr = exp -> temp = exp
// Mt = MtType[D1]..[DN](temp([0]...[0]), ...)
// s = exp -> st = copy_S_to_St(exp)
// sArr = exp -> temp = exp
// St = StType[D1]...[DN](copy_S_to_St(temp[0]..[0]), ...)
// (matrix writes through struct are transformed similarly to M)
//
// 5. If any of the above is passed to an `inout` parameter, both transformations are applied:
//
// f(M[c]) -> temp = gvecN(Mt[0][c], Mt[1][c], ..., Mt[N-1][c])
// f(temp)
// Mt[0][c] = temp[0]
// Mt[1][c] = temp[1]
// ...
// Mt[N-1][c] = temp[N-1]
//
// f(s) -> temp = copy_St_to_S(st)
// f(temp)
// st = copy_S_to_St(temp)
//
// If passed to an `out` parameter, the `temp` parameter is simply not initialized.
//
// 6. If the expression leading to the matrix or struct has array subscripts, temp values are
// created for them to avoid duplicating side effects.
//
class RewriteRowMajorMatricesTraverser : public TIntermTraverser
{
public:
RewriteRowMajorMatricesTraverser(TCompiler *compiler, TSymbolTable *symbolTable)
: TIntermTraverser(true, true, true, symbolTable),
mCompiler(compiler),
mStructMapOut(&mOuterPass.structMap),
mInterfaceBlockMap(&mOuterPass.interfaceBlockMap),
mInterfaceBlockFieldConvertedIn(mOuterPass.interfaceBlockFieldConverted),
mCopyFunctionDefinitionsOut(&mOuterPass.copyFunctionDefinitions),
mOuterTraverser(nullptr),
mInnerPassRoot(nullptr),
mIsProcessingInnerPassSubtree(false)
{}
bool visitDeclaration(Visit visit, TIntermDeclaration *node) override
{
// No need to process declarations in inner passes.
if (mInnerPassRoot != nullptr)
{
return true;
}
if (visit != PreVisit)
{
return true;
}
const TIntermSequence &sequence = *(node->getSequence());
TIntermTyped *variable = sequence.front()->getAsTyped();
const TType &type = variable->getType();
// If it's a struct declaration that has matrices, remember it. If a row-major instance
// of it is created, it will have to be converted.
if (type.isStructSpecifier() && type.isStructureContainingMatrices())
{
const TStructure *structure = type.getStruct();
ASSERT(structure);
ASSERT(mOuterPass.structMap.count(structure) == 0);
StructConversionData structData;
mOuterPass.structMap[structure] = structData;
return false;
}
// If it's an interface block, it may have to be converted if it contains any row-major
// fields.
if (type.isInterfaceBlock() && type.getInterfaceBlock()->containsMatrices())
{
const TInterfaceBlock *block = type.getInterfaceBlock();
ASSERT(block);
bool isBlockRowMajor = type.getLayoutQualifier().matrixPacking == EmpRowMajor;
const TFieldList &fields = block->fields();
bool anyRowMajor = isBlockRowMajor;
for (const TField *field : fields)
{
if (DoesFieldContainRowMajorMatrix(field, isBlockRowMajor))
{
anyRowMajor = true;
break;
}
}
if (anyRowMajor)
{
convertInterfaceBlock(node);
}
return false;
}
return true;
}
void visitSymbol(TIntermSymbol *symbol) override
{
// If in inner pass, only process if the symbol is under that root.
if (mInnerPassRoot != nullptr && !mIsProcessingInnerPassSubtree)
{
return;
}
const TVariable *variable = &symbol->variable();
bool needsRewrite = mInterfaceBlockMap->count(variable) != 0;
// If it's a field of a nameless interface block, it may still need conversion.
if (!needsRewrite)
{
// Nameless interface block field symbols have the interface block pointer set, but are
// not interface blocks.
if (symbol->getType().getInterfaceBlock() && !variable->getType().isInterfaceBlock())
{
needsRewrite = convertNamelessInterfaceBlockField(symbol);
}
}
if (needsRewrite)
{
transformExpression(symbol);
}
}
bool visitBinary(Visit visit, TIntermBinary *node) override
{
if (node == mInnerPassRoot)
{
// We only want to process the right-hand side of an assignment in inner passes. When
// visit is InVisit, the left-hand side is already processed, and the right-hand side is
// next. Set a flag to mark this duration.
mIsProcessingInnerPassSubtree = visit == InVisit;
}
return true;
}
TIntermSequence *getStructCopyFunctions() { return &mOuterPass.copyFunctionDefinitions; }
private:
typedef std::unordered_map<const TStructure *, StructConversionData> StructMap;
typedef std::unordered_map<const TVariable *, TVariable *> InterfaceBlockMap;
typedef std::unordered_map<const TField *, bool> InterfaceBlockFieldConverted;
RewriteRowMajorMatricesTraverser(
TSymbolTable *symbolTable,
RewriteRowMajorMatricesTraverser *outerTraverser,
InterfaceBlockMap *interfaceBlockMap,
const InterfaceBlockFieldConverted &interfaceBlockFieldConverted,
StructMap *structMap,
TIntermSequence *copyFunctionDefinitions,
TIntermBinary *innerPassRoot)
: TIntermTraverser(true, true, true, symbolTable),
mStructMapOut(structMap),
mInterfaceBlockMap(interfaceBlockMap),
mInterfaceBlockFieldConvertedIn(interfaceBlockFieldConverted),
mCopyFunctionDefinitionsOut(copyFunctionDefinitions),
mOuterTraverser(outerTraverser),
mInnerPassRoot(innerPassRoot),
mIsProcessingInnerPassSubtree(false)
{}
void convertInterfaceBlock(TIntermDeclaration *node)
{
ASSERT(mInnerPassRoot == nullptr);
const TIntermSequence &sequence = *(node->getSequence());
TIntermTyped *variableNode = sequence.front()->getAsTyped();
const TType &type = variableNode->getType();
const TInterfaceBlock *block = type.getInterfaceBlock();
ASSERT(block);
bool isBlockRowMajor = type.getLayoutQualifier().matrixPacking == EmpRowMajor;
// Recreate the struct with its row-major fields converted to column-major equivalents.
TIntermSequence newDeclarations;
TFieldList *newFields = new TFieldList;
for (const TField *field : block->fields())
{
TField *newField = nullptr;
if (DoesFieldContainRowMajorMatrix(field, isBlockRowMajor))
{
newField = convertField(field, &newDeclarations);
// Remember that this field was converted.
mOuterPass.interfaceBlockFieldConverted[field] = true;
}
else
{
newField = DuplicateField(field);
}
newFields->push_back(newField);
}
// Create a new interface block with these fields.
TLayoutQualifier blockLayoutQualifier = type.getLayoutQualifier();
blockLayoutQualifier.matrixPacking = EmpColumnMajor;
TInterfaceBlock *newInterfaceBlock =
new TInterfaceBlock(mSymbolTable, block->name(), newFields, blockLayoutQualifier,
block->symbolType(), block->extension());
// Create a new declaration with the new type. Declarations are separated at this point,
// so there should be only one variable here.
ASSERT(sequence.size() == 1);
TType *newInterfaceBlockType =
new TType(newInterfaceBlock, type.getQualifier(), blockLayoutQualifier);
TIntermDeclaration *newDeclaration = new TIntermDeclaration;
const TVariable *variable = &variableNode->getAsSymbolNode()->variable();
const TType *newType = newInterfaceBlockType;
if (type.isArray())
{
TType *newArrayType = new TType(*newType);
CopyArraySizes(&type, newArrayType);
newType = newArrayType;
}
// If the interface block variable itself is temp, use an empty name.
bool variableIsTemp = variable->symbolType() == SymbolType::Empty;
const ImmutableString &variableName =
variableIsTemp ? kEmptyImmutableString : variable->name();
TVariable *newVariable = new TVariable(mSymbolTable, variableName, newType,
variable->symbolType(), variable->extension());
newDeclaration->appendDeclarator(new TIntermSymbol(newVariable));
mOuterPass.interfaceBlockMap[variable] = newVariable;
newDeclarations.push_back(newDeclaration);
// Replace the interface block definition with the new one, prepending any new struct
// definitions.
mMultiReplacements.emplace_back(getParentNode()->getAsBlock(), node, newDeclarations);
}
bool convertNamelessInterfaceBlockField(TIntermSymbol *symbol)
{
const TVariable *variable = &symbol->variable();
const TInterfaceBlock *interfaceBlock = symbol->getType().getInterfaceBlock();
// Find the variable corresponding to this interface block. If the interface block
// is not rewritten, or this refers to a field that is not rewritten, there's
// nothing to do.
for (auto iter : *mInterfaceBlockMap)
{
// Skip other rewritten nameless interface block fields.
if (!iter.first->getType().isInterfaceBlock())
{
continue;
}
// Skip if this is not a field of this rewritten interface block.
if (iter.first->getType().getInterfaceBlock() != interfaceBlock)
{
continue;
}
const ImmutableString symbolName = symbol->getName();
// Find which field it is
const TVector<TField *> fields = interfaceBlock->fields();
for (size_t fieldIndex = 0; fieldIndex < fields.size(); ++fieldIndex)
{
const TField *field = fields[fieldIndex];
if (field->name() != symbolName)
{
continue;
}
// If this field doesn't need a rewrite, there's nothing to do.
if (mInterfaceBlockFieldConvertedIn.count(field) == 0 ||
!mInterfaceBlockFieldConvertedIn.at(field))
{
break;
}
// Create a new variable that references the replaced interface block.
TType *newType = new TType(variable->getType());
newType->setInterfaceBlock(iter.second->getType().getInterfaceBlock());
TVariable *newVariable =
new TVariable(mSymbolTable, variable->name(), newType, variable->symbolType(),
variable->extension());
(*mInterfaceBlockMap)[variable] = newVariable;
return true;
}
break;
}
return false;
}
void convertStruct(const TStructure *structure, TIntermSequence *newDeclarations)
{
ASSERT(mInnerPassRoot == nullptr);
ASSERT(mOuterPass.structMap.count(structure) != 0);
StructConversionData *structData = &mOuterPass.structMap[structure];
if (structData->convertedStruct)
{
return;
}
TFieldList *newFields = new TFieldList;
for (const TField *field : structure->fields())
{
newFields->push_back(convertField(field, newDeclarations));
}
// Create unique names for the converted structs. We can't leave them nameless and have
// a name autogenerated similar to temp variables, as nameless structs exist. A fake
// variable is created for the sole purpose of generating a temp name.
TVariable *newStructTypeName =
new TVariable(mSymbolTable, kEmptyImmutableString, StaticType::GetBasic<EbtUInt>(),
SymbolType::Empty);
TStructure *newStruct = new TStructure(mSymbolTable, newStructTypeName->name(), newFields,
SymbolType::AngleInternal);
TType *newType = new TType(newStruct, true);
TVariable *newStructVar =
new TVariable(mSymbolTable, kEmptyImmutableString, newType, SymbolType::Empty);
TIntermDeclaration *structDecl = new TIntermDeclaration;
structDecl->appendDeclarator(new TIntermSymbol(newStructVar));
newDeclarations->push_back(structDecl);
structData->convertedStruct = newStruct;
}
TField *convertField(const TField *field, TIntermSequence *newDeclarations)
{
ASSERT(mInnerPassRoot == nullptr);
TField *newField = nullptr;
const TType *fieldType = field->type();
TType *newType = nullptr;
if (fieldType->isStructureContainingMatrices())
{
// If the field is a struct instance, convert the struct and replace the field
// with an instance of the new struct.
const TStructure *fieldTypeStruct = fieldType->getStruct();
convertStruct(fieldTypeStruct, newDeclarations);
StructConversionData &structData = mOuterPass.structMap[fieldTypeStruct];
newType = new TType(structData.convertedStruct, false);
SetColumnMajor(newType);
CopyArraySizes(fieldType, newType);
}
else if (fieldType->isMatrix())
{
// If the field is a matrix, transpose the matrix and replace the field with
// that, removing the matrix packing qualifier.
newType = TransposeMatrixType(fieldType);
}
if (newType)
{
newField = new TField(newType, field->name(), field->line(), field->symbolType());
}
else
{
newField = DuplicateField(field);
}
return newField;
}
void determineAccess(TIntermNode *expression,
TIntermNode *accessor,
bool *isReadOut,
bool *isWriteOut)
{
// If passing to a function, look at whether the parameter is in, out or inout.
TIntermAggregate *functionCall = accessor->getAsAggregate();
if (functionCall)
{
TIntermSequence *arguments = functionCall->getSequence();
for (size_t argIndex = 0; argIndex < arguments->size(); ++argIndex)
{
if ((*arguments)[argIndex] == expression)
{
TQualifier qualifier = EvqIn;
// If the aggregate is not a function call, it's a constructor, and so every
// argument is an input.
const TFunction *function = functionCall->getFunction();
if (function)
{
const TVariable *param = function->getParam(argIndex);
qualifier = param->getType().getQualifier();
}
*isReadOut = qualifier != EvqOut;
*isWriteOut = qualifier == EvqOut || qualifier == EvqInOut;
break;
}
}
return;
}
TIntermBinary *assignment = accessor->getAsBinaryNode();
if (assignment && IsAssignment(assignment->getOp()))
{
// If expression is on the right of assignment, it's being read from.
*isReadOut = assignment->getRight() == expression;
// If it's on the left of assignment, it's being written to.
*isWriteOut = assignment->getLeft() == expression;
return;
}
// Any other usage is a read.
*isReadOut = true;
*isWriteOut = false;
}
void transformExpression(TIntermSymbol *symbol)
{
// Walk up the parent chain while the nodes are EOpIndex* (whether array indexing or struct
// field selection) or swizzle and construct the replacement expression. This traversal can
// lead to one of the following possibilities:
//
// - a.b[N].etc.s (struct, or struct array): copy function should be declared and used,
// - a.b[N].etc.M (matrix or matrix array): transpose() should be used,
// - a.b[N].etc.M[c] (a column): each element in column needs to be handled separately,
// - a.b[N].etc.M[c].yz (multiple elements): similar to whole column, but a subset of
// elements,
// - a.b[N].etc.M[c][r] (an element): single element to handle.
// - a.b[N].etc.x (not struct or matrix): not modified
//
// primaryIndex will contain c, if any. secondaryIndices will contain {0, ..., R-1}
// (if no [r] or swizzle), {r} (if [r]), or {1, 2} (corresponding to .yz) if any.
//
// In all cases, the base symbol is replaced. |baseExpression| will contain everything up
// to (and not including) the last index/swizzle operations, i.e. a.b[N].etc.s/M/x. Any
// non constant array subscript is assigned to a temp variable to avoid duplicating side
// effects.
//
// ---
//
// NOTE that due to the use of insertStatementsInParentBlock, cases like this will be
// mistranslated, and this bug is likely present in most transformations that use this
// feature:
//
// if (x == 1 && a.b[x = 2].etc.M = value)
//
// which will translate to:
//
// temp = (x = 2)
// if (x == 1 && a.b[temp].etc.M = transpose(value))
//
// See http://anglebug.com/3829.
//
TIntermTyped *baseExpression =
new TIntermSymbol(mInterfaceBlockMap->at(&symbol->variable()));
const TStructure *structure = nullptr;
TIntermNode *primaryIndex = nullptr;
TIntermSequence secondaryIndices;
// In some cases, it is necessary to prepend or append statements. Those are captured in
// |prependStatements| and |appendStatements|.
TIntermSequence prependStatements;
TIntermSequence appendStatements;
// If the expression is neither a struct or matrix, no modification is necessary.
// If it's a struct that doesn't have matrices, again there's no transformation necessary.
// If it's an interface block matrix field that didn't need to be transposed, no
// transpformation is necessary.
//
// In all these cases, |baseExpression| contains all of the original expression.
//
// If the starting symbol itself is a field of a nameless interface block, it needs
// conversion if we reach here.
bool requiresTransformation = !symbol->getType().isInterfaceBlock();
uint32_t accessorIndex = 0;
TIntermTyped *previousAncestor = symbol;
while (IsIndexNode(getAncestorNode(accessorIndex), previousAncestor))
{
TIntermTyped *ancestor = getAncestorNode(accessorIndex)->getAsTyped();
ASSERT(ancestor);
const TType &previousAncestorType = previousAncestor->getType();
TIntermSequence indices;
TOperator op = GetIndex(mSymbolTable, ancestor, &indices, &prependStatements);
bool opIsIndex = op == EOpIndexDirect || op == EOpIndexIndirect;
bool isArrayIndex = opIsIndex && previousAncestorType.isArray();
bool isMatrixIndex = opIsIndex && previousAncestorType.isMatrix();
// If it's a direct index in a matrix, it's the primary index.
bool isMatrixPrimarySubscript = isMatrixIndex && !isArrayIndex;
ASSERT(!isMatrixPrimarySubscript ||
(primaryIndex == nullptr && secondaryIndices.empty()));
// If primary index is seen and the ancestor is still an index, it must be a direct
// index as the secondary one. Note that if primaryIndex is set, there can only ever be
// one more parent of interest, and that's subscripting the second dimension.
bool isMatrixSecondarySubscript = primaryIndex != nullptr;
ASSERT(!isMatrixSecondarySubscript || (opIsIndex && !isArrayIndex));
if (requiresTransformation && isMatrixPrimarySubscript)
{
ASSERT(indices.size() == 1);
primaryIndex = indices.front();
// Default the secondary indices to include every row. If there's a secondary
// subscript provided, it will override this.
int rows = previousAncestorType.getRows();
for (int r = 0; r < rows; ++r)
{
secondaryIndices.push_back(CreateIndexNode(r));
}
}
else if (isMatrixSecondarySubscript)
{
ASSERT(requiresTransformation);
secondaryIndices = indices;
// Indices after this point are not interesting. There can't actually be any other
// index nodes other than desktop GLSL's swizzles on scalars, like M[1][2].yyy.
++accessorIndex;
break;
}
else
{
// Replicate the expression otherwise.
baseExpression =
ReplicateIndexNode(mSymbolTable, ancestor, baseExpression, &indices);
const TType &ancestorType = ancestor->getType();
structure = ancestorType.getStruct();
requiresTransformation =
requiresTransformation ||
IsConvertedField(ancestor, mInterfaceBlockFieldConvertedIn);
// If we reach a point where the expression is neither a matrix-containing struct
// nor a matrix, there's no transformation required. This can happen if we decend
// through a struct marked with row-major but arrive at a member that doesn't
// include a matrix.
if (!ancestorType.isMatrix() && !ancestorType.isStructureContainingMatrices())
{
requiresTransformation = false;
}
}
previousAncestor = ancestor;
++accessorIndex;
}
TIntermNode *originalExpression =
accessorIndex == 0 ? symbol : getAncestorNode(accessorIndex - 1);
TIntermNode *accessor = getAncestorNode(accessorIndex);
// if accessor is EOpArrayLength, we don't need to perform any transformations either.
// Note that this only applies to unsized arrays, as the RemoveArrayLengthMethod()
// transformation would have removed this operation otherwise.
TIntermUnary *accessorAsUnary = accessor->getAsUnaryNode();
if (requiresTransformation && accessorAsUnary && accessorAsUnary->getOp() == EOpArrayLength)
{
ASSERT(accessorAsUnary->getOperand() == originalExpression);
ASSERT(accessorAsUnary->getOperand()->getType().isUnsizedArray());
requiresTransformation = false;
// We need to replace the whole expression including the EOpArrayLength, to avoid
// confusing the replacement code as the original and new expressions don't have the
// same type (one is the transpose of the other). This doesn't affect the .length()
// operation, so this replacement is ok, though it's not worth special-casing this in
// the node replacement algorithm.
//
// Note: the |if (!requiresTransformation)| immediately below will be entered after
// this.
originalExpression = accessor;
accessor = getAncestorNode(accessorIndex + 1);
baseExpression = new TIntermUnary(EOpArrayLength, baseExpression, nullptr);
}
if (!requiresTransformation)
{
ASSERT(primaryIndex == nullptr);
queueReplacementWithParent(accessor, originalExpression, baseExpression,
OriginalNode::IS_DROPPED);
RewriteRowMajorMatricesTraverser *traverser = mOuterTraverser ? mOuterTraverser : this;
traverser->insertStatementsInParentBlock(prependStatements, appendStatements);
return;
}
ASSERT(structure == nullptr || primaryIndex == nullptr);
ASSERT(structure != nullptr || baseExpression->getType().isMatrix());
// At the end, we can determine if the expression is being read from or written to (or both,
// if sent as an inout parameter to a function). For the sake of the transformation, the
// left-hand side of operations like += can be treated as "written to", without necessarily
// "read from".
bool isRead = false;
bool isWrite = false;
determineAccess(originalExpression, accessor, &isRead, &isWrite);
ASSERT(isRead || isWrite);
TIntermTyped *readExpression = nullptr;
if (isRead)
{
readExpression = transformReadExpression(
baseExpression, primaryIndex, &secondaryIndices, structure, &prependStatements);
// If both read from and written to (i.e. passed to inout parameter), store the
// expression in a temp variable and pass that to the function.
if (isWrite)
{
readExpression =
CopyToTempVariable(mSymbolTable, readExpression, &prependStatements);
}
// Replace the original expression with the transformed one. Read transformations
// always generate a single expression that can be used in place of the original (as
// oppposed to write transformations that can generate multiple statements).
queueReplacementWithParent(accessor, originalExpression, readExpression,
OriginalNode::IS_DROPPED);
}
TIntermSequence postTransformPrependStatements;
TIntermSequence *writeStatements = &appendStatements;
TOperator assignmentOperator = EOpAssign;
if (isWrite)
{
TIntermTyped *valueExpression = readExpression;
if (!valueExpression)
{
// If there's already a read expression, this was an inout parameter and
// |valueExpression| will contain the temp variable that was passed to the function
// instead.
//
// If not, then the modification is either through being passed as an out parameter
// to a function, or an assignment. In the former case, create a temp variable to
// be passed to the function. In the latter case, create a temp variable that holds
// the right hand side expression.
//
// In either case, use that temp value as the value to assign to |baseExpression|.
TVariable *temp =
CreateTempVariable(mSymbolTable, &originalExpression->getAsTyped()->getType());
TIntermDeclaration *tempDecl = nullptr;
valueExpression = new TIntermSymbol(temp);
TIntermBinary *assignment = accessor->getAsBinaryNode();
if (assignment)
{
assignmentOperator = assignment->getOp();
ASSERT(IsAssignment(assignmentOperator));
// We are converting the assignment to the left-hand side of an expression in
// the form M=exp. A subexpression of exp itself could require a
// transformation. This complicates things as there would be two replacements:
//
// - Replace M=exp with temp (because the return value of the assignment could
// be used)
// - Replace exp with exp2, where parent is M=exp
//
// The second replacement however is ineffective as the whole of M=exp is
// already transformed. What's worse, M=exp is transformed without taking exp's
// transformations into account. To address this issue, this same traverser is
// called on the right-hand side expression, with a special flag such that it
// only processes that expression.
//
RewriteRowMajorMatricesTraverser *outerTraverser =
mOuterTraverser ? mOuterTraverser : this;
RewriteRowMajorMatricesTraverser rhsTraverser(
mSymbolTable, outerTraverser, mInterfaceBlockMap,
mInterfaceBlockFieldConvertedIn, mStructMapOut, mCopyFunctionDefinitionsOut,
assignment);
getRootNode()->traverse(&rhsTraverser);
bool valid = rhsTraverser.updateTree(mCompiler, getRootNode());
ASSERT(valid);
tempDecl = CreateTempInitDeclarationNode(temp, assignment->getRight());
// Replace the whole assignment expression with the right-hand side as a read
// expression, in case the result of the assignment is used. For example, this
// transforms:
//
// if ((M += exp) == X)
// {
// // use M
// }
//
// to:
//
// temp = exp;
// M += transform(temp);
// if (transform(M) == X)
// {
// // use M
// }
//
// Note that in this case the assignment to M must be prepended in the parent
// block. In contrast, when sent to a function, the assignment to M should be
// done after the current function call is done.
//
// If the read from M itself (to replace assigmnet) needs to generate extra
// statements, they should be appended after the statements that write to M.
// These statements are stored in postTransformPrependStatements and appended to
// prependStatements in the end.
//
writeStatements = &prependStatements;
TIntermTyped *assignmentResultExpression = transformReadExpression(
baseExpression->deepCopy(), primaryIndex, &secondaryIndices, structure,
&postTransformPrependStatements);
// Replace the whole assignment, instead of just the right hand side.
TIntermNode *accessorParent = getAncestorNode(accessorIndex + 1);
queueReplacementWithParent(accessorParent, accessor, assignmentResultExpression,
OriginalNode::IS_DROPPED);
}
else
{
tempDecl = CreateTempDeclarationNode(temp);
// Replace the write expression (a function call argument) with the temp
// variable.
queueReplacementWithParent(accessor, originalExpression, valueExpression,
OriginalNode::IS_DROPPED);
}
prependStatements.push_back(tempDecl);
}
if (isRead)
{
baseExpression = baseExpression->deepCopy();
}
transformWriteExpression(baseExpression, primaryIndex, &secondaryIndices, structure,
valueExpression, assignmentOperator, writeStatements);
}
prependStatements.insert(prependStatements.end(), postTransformPrependStatements.begin(),
postTransformPrependStatements.end());
RewriteRowMajorMatricesTraverser *traverser = mOuterTraverser ? mOuterTraverser : this;
traverser->insertStatementsInParentBlock(prependStatements, appendStatements);
}
TIntermTyped *transformReadExpression(TIntermTyped *baseExpression,
TIntermNode *primaryIndex,
TIntermSequence *secondaryIndices,
const TStructure *structure,
TIntermSequence *prependStatements)
{
const TType &baseExpressionType = baseExpression->getType();
if (structure)
{
ASSERT(primaryIndex == nullptr && secondaryIndices->empty());
ASSERT(mStructMapOut->count(structure) != 0);
ASSERT((*mStructMapOut)[structure].convertedStruct != nullptr);
// Declare copy-from-converted-to-original-struct function (if not already).
declareStructCopyToOriginal(structure);
const TFunction *copyToOriginal = (*mStructMapOut)[structure].copyToOriginal;
if (baseExpressionType.isArray())
{
// If base expression is an array, transform every element.
TransformArrayHelper transformHelper(baseExpression);
TIntermTyped *element = nullptr;
while ((element = transformHelper.getNextElement(nullptr, nullptr)) != nullptr)
{
TIntermTyped *transformedElement =
CreateStructCopyCall(copyToOriginal, element);
transformHelper.accumulateForRead(mSymbolTable, transformedElement,
prependStatements);
}
return transformHelper.constructReadTransformExpression();
}
else
{
// If not reading an array, the result is simply a call to this function with the
// base expression.
return CreateStructCopyCall(copyToOriginal, baseExpression);
}
}
// If not indexed, the result is transpose(exp)
if (primaryIndex == nullptr)
{
ASSERT(secondaryIndices->empty());
if (baseExpressionType.isArray())
{
// If array, transpose every element.
TransformArrayHelper transformHelper(baseExpression);
TIntermTyped *element = nullptr;
while ((element = transformHelper.getNextElement(nullptr, nullptr)) != nullptr)
{
TIntermTyped *transformedElement = CreateTransposeCall(mSymbolTable, element);
transformHelper.accumulateForRead(mSymbolTable, transformedElement,
prependStatements);
}
return transformHelper.constructReadTransformExpression();
}
else
{
return CreateTransposeCall(mSymbolTable, baseExpression);
}
}
// If indexed the result is a vector (or just one element) where the primary and secondary
// indices are swapped.
ASSERT(!secondaryIndices->empty());
TOperator primaryIndexOp = GetIndexOp(primaryIndex);
TIntermTyped *primaryIndexAsTyped = primaryIndex->getAsTyped();
TIntermSequence transposedColumn;
for (TIntermNode *secondaryIndex : *secondaryIndices)
{
TOperator secondaryIndexOp = GetIndexOp(secondaryIndex);
TIntermTyped *secondaryIndexAsTyped = secondaryIndex->getAsTyped();
TIntermBinary *colIndexed = new TIntermBinary(
secondaryIndexOp, baseExpression->deepCopy(), secondaryIndexAsTyped->deepCopy());
TIntermBinary *colRowIndexed =
new TIntermBinary(primaryIndexOp, colIndexed, primaryIndexAsTyped->deepCopy());
transposedColumn.push_back(colRowIndexed);
}
if (secondaryIndices->size() == 1)
{
// If only one element, return that directly.
return transposedColumn.front()->getAsTyped();
}
// Otherwise create a constructor with the appropriate dimension.
TType *vecType = new TType(baseExpressionType.getBasicType(), secondaryIndices->size());
return TIntermAggregate::CreateConstructor(*vecType, &transposedColumn);
}
void transformWriteExpression(TIntermTyped *baseExpression,
TIntermNode *primaryIndex,
TIntermSequence *secondaryIndices,
const TStructure *structure,
TIntermTyped *valueExpression,
TOperator assignmentOperator,
TIntermSequence *writeStatements)
{
const TType &baseExpressionType = baseExpression->getType();
if (structure)
{
ASSERT(primaryIndex == nullptr && secondaryIndices->empty());
ASSERT(mStructMapOut->count(structure) != 0);
ASSERT((*mStructMapOut)[structure].convertedStruct != nullptr);
// Declare copy-to-converted-from-original-struct function (if not already).
declareStructCopyFromOriginal(structure);
// The result is call to this function with the value expression assigned to base
// expression.
const TFunction *copyFromOriginal = (*mStructMapOut)[structure].copyFromOriginal;
if (baseExpressionType.isArray())
{
// If array, assign every element.
TransformArrayHelper transformHelper(baseExpression);
TIntermTyped *element = nullptr;
TIntermTyped *valueElement = nullptr;
while ((element = transformHelper.getNextElement(valueExpression, &valueElement)) !=
nullptr)
{
TIntermTyped *functionCall =
CreateStructCopyCall(copyFromOriginal, valueElement);
writeStatements->push_back(new TIntermBinary(EOpAssign, element, functionCall));
}
}
else
{
TIntermTyped *functionCall =
CreateStructCopyCall(copyFromOriginal, valueExpression->deepCopy());
writeStatements->push_back(
new TIntermBinary(EOpAssign, baseExpression, functionCall));
}
return;
}
// If not indexed, the result is transpose(exp)
if (primaryIndex == nullptr)
{
ASSERT(secondaryIndices->empty());
if (baseExpressionType.isArray())
{
// If array, assign every element.
TransformArrayHelper transformHelper(baseExpression);
TIntermTyped *element = nullptr;
TIntermTyped *valueElement = nullptr;
while ((element = transformHelper.getNextElement(valueExpression, &valueElement)) !=
nullptr)
{
TIntermTyped *valueTransposed = CreateTransposeCall(mSymbolTable, valueElement);
writeStatements->push_back(
new TIntermBinary(EOpAssign, element, valueTransposed));
}
}
else
{
TIntermTyped *valueTransposed =
CreateTransposeCall(mSymbolTable, valueExpression->deepCopy());
writeStatements->push_back(
new TIntermBinary(assignmentOperator, baseExpression, valueTransposed));
}
return;
}
// If indexed, create one assignment per secondary index. If the right-hand side is a
// scalar, it's used with every assignment. If it's a vector, the assignment is
// per-component. The right-hand side cannot be a matrix as that would imply left-hand
// side being a matrix too, which is covered above where |primaryIndex == nullptr|.
ASSERT(!secondaryIndices->empty());
bool isValueExpressionScalar = valueExpression->getType().getNominalSize() == 1;
ASSERT(isValueExpressionScalar || valueExpression->getType().getNominalSize() ==
static_cast<int>(secondaryIndices->size()));
TOperator primaryIndexOp = GetIndexOp(primaryIndex);
TIntermTyped *primaryIndexAsTyped = primaryIndex->getAsTyped();
for (TIntermNode *secondaryIndex : *secondaryIndices)
{
TOperator secondaryIndexOp = GetIndexOp(secondaryIndex);
TIntermTyped *secondaryIndexAsTyped = secondaryIndex->getAsTyped();
TIntermBinary *colIndexed = new TIntermBinary(
secondaryIndexOp, baseExpression->deepCopy(), secondaryIndexAsTyped->deepCopy());
TIntermBinary *colRowIndexed =
new TIntermBinary(primaryIndexOp, colIndexed, primaryIndexAsTyped->deepCopy());
TIntermTyped *valueExpressionIndexed = valueExpression->deepCopy();
if (!isValueExpressionScalar)
{
valueExpressionIndexed = new TIntermBinary(secondaryIndexOp, valueExpressionIndexed,
secondaryIndexAsTyped->deepCopy());
}
writeStatements->push_back(
new TIntermBinary(assignmentOperator, colRowIndexed, valueExpressionIndexed));
}
}
const TFunction *getCopyStructFieldFunction(const TType *fromFieldType,
const TType *toFieldType,
bool isCopyToOriginal)
{
ASSERT(fromFieldType->getStruct());
ASSERT(toFieldType->getStruct());
// If copying from or to the original struct, the "to" field struct could require
// conversion to or from the "from" field struct. |isCopyToOriginal| tells us if we
// should expect to find toField or fromField in mStructMapOut, if true or false
// respectively.
const TFunction *fieldCopyFunction = nullptr;
if (isCopyToOriginal)
{
const TStructure *toFieldStruct = toFieldType->getStruct();
auto iter = mStructMapOut->find(toFieldStruct);
if (iter != mStructMapOut->end())
{
declareStructCopyToOriginal(toFieldStruct);
fieldCopyFunction = iter->second.copyToOriginal;
}
}
else
{
const TStructure *fromFieldStruct = fromFieldType->getStruct();
auto iter = mStructMapOut->find(fromFieldStruct);
if (iter != mStructMapOut->end())
{
declareStructCopyFromOriginal(fromFieldStruct);
fieldCopyFunction = iter->second.copyFromOriginal;
}
}
return fieldCopyFunction;
}
void addFieldCopy(TIntermBlock *body,
TIntermTyped *to,
TIntermTyped *from,
bool isCopyToOriginal)
{
const TType &fromType = from->getType();
const TType &toType = to->getType();
TIntermTyped *rhs = from;
if (fromType.getStruct())
{
const TFunction *fieldCopyFunction =
getCopyStructFieldFunction(&fromType, &toType, isCopyToOriginal);
if (fieldCopyFunction)
{
rhs = CreateStructCopyCall(fieldCopyFunction, from);
}
}
else if (fromType.isMatrix())
{
rhs = CreateTransposeCall(mSymbolTable, from);
}
body->appendStatement(new TIntermBinary(EOpAssign, to, rhs));
}
TFunction *declareStructCopy(const TStructure *from,
const TStructure *to,
bool isCopyToOriginal)
{
TType *fromType = new TType(from, true);
TType *toType = new TType(to, true);
// Create the parameter and return value variables.
TVariable *fromVar = new TVariable(mSymbolTable, ImmutableString("from"), fromType,
SymbolType::AngleInternal);
TVariable *toVar =
new TVariable(mSymbolTable, ImmutableString("to"), toType, SymbolType::AngleInternal);
TIntermSymbol *fromSymbol = new TIntermSymbol(fromVar);
TIntermSymbol *toSymbol = new TIntermSymbol(toVar);
// Create the function body as statements are generated.
TIntermBlock *body = new TIntermBlock;
// Declare the result variable.
TIntermDeclaration *toDecl = new TIntermDeclaration();
toDecl->appendDeclarator(toSymbol);
body->appendStatement(toDecl);
// Iterate over fields of the struct and copy one by one, transposing the matrices. If a
// struct is encountered that requires a transformation, this function is recursively
// called. As a result, it is important that the copy functions are placed in the code in
// order.
const TFieldList &fromFields = from->fields();
const TFieldList &toFields = to->fields();
ASSERT(fromFields.size() == toFields.size());
for (size_t fieldIndex = 0; fieldIndex < fromFields.size(); ++fieldIndex)
{
TIntermTyped *fieldIndexNode = CreateIndexNode(static_cast<int>(fieldIndex));
TIntermTyped *fromField =
new TIntermBinary(EOpIndexDirectStruct, fromSymbol->deepCopy(), fieldIndexNode);
TIntermTyped *toField = new TIntermBinary(EOpIndexDirectStruct, toSymbol->deepCopy(),
fieldIndexNode->deepCopy());
const TType *fromFieldType = fromFields[fieldIndex]->type();
bool isStructOrMatrix = fromFieldType->getStruct() || fromFieldType->isMatrix();
if (fromFieldType->isArray() && isStructOrMatrix)
{
// If struct or matrix array, we need to copy element by element.
TransformArrayHelper transformHelper(toField);
TIntermTyped *toElement = nullptr;
TIntermTyped *fromElement = nullptr;
while ((toElement = transformHelper.getNextElement(fromField, &fromElement)) !=
nullptr)
{
addFieldCopy(body, toElement, fromElement, isCopyToOriginal);
}
}
else
{
addFieldCopy(body, toField, fromField, isCopyToOriginal);
}
}
// Add return statement.
body->appendStatement(new TIntermBranch(EOpReturn, toSymbol->deepCopy()));
// Declare the function
TFunction *copyFunction = new TFunction(mSymbolTable, kEmptyImmutableString,
SymbolType::AngleInternal, toType, true);
copyFunction->addParameter(fromVar);
TIntermFunctionDefinition *functionDef =
CreateInternalFunctionDefinitionNode(*copyFunction, body);
mCopyFunctionDefinitionsOut->push_back(functionDef);
return copyFunction;
}
void declareStructCopyFromOriginal(const TStructure *structure)
{
StructConversionData *structData = &(*mStructMapOut)[structure];
if (structData->copyFromOriginal)
{
return;
}
structData->copyFromOriginal =
declareStructCopy(structure, structData->convertedStruct, false);
}
void declareStructCopyToOriginal(const TStructure *structure)
{
StructConversionData *structData = &(*mStructMapOut)[structure];
if (structData->copyToOriginal)
{
return;
}
structData->copyToOriginal =
declareStructCopy(structData->convertedStruct, structure, true);
}
TCompiler *mCompiler;
// This traverser can call itself to transform a subexpression before moving on. However, it
// needs to accumulate conversion functions in inner passes. The fields below marked with Out
// or In are inherited from the outer pass (for inner passes), or point to storage fields in
// mOuterPass (for the outer pass). The latter should not be used by the inner passes as they
// would be empty, so they are placed inside a struct to make them explicit.
struct
{
StructMap structMap;
InterfaceBlockMap interfaceBlockMap;
InterfaceBlockFieldConverted interfaceBlockFieldConverted;
TIntermSequence copyFunctionDefinitions;
} mOuterPass;
// A map from structures with matrices to their converted version.
StructMap *mStructMapOut;
// A map from interface block instances with row-major matrices to their converted variable. If
// an interface block is nameless, its fields are placed in this map instead. When a variable
// in this map is encountered, it signals the start of an expression that my need conversion,
// which is either "interfaceBlock.field..." or "field..." if nameless.
InterfaceBlockMap *mInterfaceBlockMap;
// A map from interface block fields to whether they need to be converted. If a field was
// already column-major, it shouldn't be transposed.
const InterfaceBlockFieldConverted &mInterfaceBlockFieldConvertedIn;
TIntermSequence *mCopyFunctionDefinitionsOut;
// If set, it's an inner pass and this will point to the outer pass traverser. All statement
// insertions are stored in the outer traverser and applied at once in the end. This prevents
// the inner passes from adding statements which invalidates the outer traverser's statement
// position tracking.
RewriteRowMajorMatricesTraverser *mOuterTraverser;
// If set, it's an inner pass that should only process the right-hand side of this particular
// node.
TIntermBinary *mInnerPassRoot;
bool mIsProcessingInnerPassSubtree;
};
} // anonymous namespace
bool RewriteRowMajorMatrices(TCompiler *compiler, TIntermBlock *root, TSymbolTable *symbolTable)
{
RewriteRowMajorMatricesTraverser traverser(compiler, symbolTable);
root->traverse(&traverser);
if (!traverser.updateTree(compiler, root))
{
return false;
}
size_t firstFunctionIndex = FindFirstFunctionDefinitionIndex(root);
root->insertChildNodes(firstFunctionIndex, *traverser.getStructCopyFunctions());
return compiler->validateAST(root);
}
} // namespace sh