Hash :
249cb200
Author :
Date :
2019-12-03T11:10:06
Translator: Rename TIntermInvariantDeclaration to ..GlobalQualifier.. This is to support the upcoming `precise` keyword. Bug: angleproject:3569 Change-Id: Idbcc8fd6f261757dbbf81b381e7a2dae938d8101 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/1947451 Reviewed-by: Jamie Madill <jmadill@chromium.org> Commit-Queue: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
//
// Copyright 2002 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/tree_util/IntermTraverse.h"
#include "compiler/translator/Compiler.h"
#include "compiler/translator/InfoSink.h"
#include "compiler/translator/SymbolTable.h"
#include "compiler/translator/tree_util/IntermNode_util.h"
namespace sh
{
// Traverse the intermediate representation tree, and call a node type specific visit function for
// each node. Traversal is done recursively through the node member function traverse(). Nodes with
// children can have their whole subtree skipped if preVisit is turned on and the type specific
// function returns false.
template <typename T>
void TIntermTraverser::traverse(T *node)
{
ScopedNodeInTraversalPath addToPath(this, node);
if (!addToPath.isWithinDepthLimit())
return;
bool visit = true;
// Visit the node before children if pre-visiting.
if (preVisit)
visit = node->visit(PreVisit, this);
if (visit)
{
size_t childIndex = 0;
size_t childCount = node->getChildCount();
while (childIndex < childCount && visit)
{
node->getChildNode(childIndex)->traverse(this);
if (inVisit && childIndex != childCount - 1)
{
visit = node->visit(InVisit, this);
}
++childIndex;
}
if (visit && postVisit)
node->visit(PostVisit, this);
}
}
// Instantiate template for RewriteAtomicFunctionExpressions, in case this gets inlined thus not
// exported from the TU.
template void TIntermTraverser::traverse(TIntermNode *);
void TIntermNode::traverse(TIntermTraverser *it)
{
it->traverse(this);
}
void TIntermSymbol::traverse(TIntermTraverser *it)
{
TIntermTraverser::ScopedNodeInTraversalPath addToPath(it, this);
it->visitSymbol(this);
}
void TIntermConstantUnion::traverse(TIntermTraverser *it)
{
TIntermTraverser::ScopedNodeInTraversalPath addToPath(it, this);
it->visitConstantUnion(this);
}
void TIntermFunctionPrototype::traverse(TIntermTraverser *it)
{
TIntermTraverser::ScopedNodeInTraversalPath addToPath(it, this);
it->visitFunctionPrototype(this);
}
void TIntermBinary::traverse(TIntermTraverser *it)
{
it->traverseBinary(this);
}
void TIntermUnary::traverse(TIntermTraverser *it)
{
it->traverseUnary(this);
}
void TIntermFunctionDefinition::traverse(TIntermTraverser *it)
{
it->traverseFunctionDefinition(this);
}
void TIntermBlock::traverse(TIntermTraverser *it)
{
it->traverseBlock(this);
}
void TIntermAggregate::traverse(TIntermTraverser *it)
{
it->traverseAggregate(this);
}
void TIntermLoop::traverse(TIntermTraverser *it)
{
it->traverseLoop(this);
}
void TIntermPreprocessorDirective::traverse(TIntermTraverser *it)
{
it->visitPreprocessorDirective(this);
}
bool TIntermSymbol::visit(Visit visit, TIntermTraverser *it)
{
it->visitSymbol(this);
return false;
}
bool TIntermConstantUnion::visit(Visit visit, TIntermTraverser *it)
{
it->visitConstantUnion(this);
return false;
}
bool TIntermFunctionPrototype::visit(Visit visit, TIntermTraverser *it)
{
it->visitFunctionPrototype(this);
return false;
}
bool TIntermFunctionDefinition::visit(Visit visit, TIntermTraverser *it)
{
return it->visitFunctionDefinition(visit, this);
}
bool TIntermUnary::visit(Visit visit, TIntermTraverser *it)
{
return it->visitUnary(visit, this);
}
bool TIntermSwizzle::visit(Visit visit, TIntermTraverser *it)
{
return it->visitSwizzle(visit, this);
}
bool TIntermBinary::visit(Visit visit, TIntermTraverser *it)
{
return it->visitBinary(visit, this);
}
bool TIntermTernary::visit(Visit visit, TIntermTraverser *it)
{
return it->visitTernary(visit, this);
}
bool TIntermAggregate::visit(Visit visit, TIntermTraverser *it)
{
return it->visitAggregate(visit, this);
}
bool TIntermDeclaration::visit(Visit visit, TIntermTraverser *it)
{
return it->visitDeclaration(visit, this);
}
bool TIntermGlobalQualifierDeclaration::visit(Visit visit, TIntermTraverser *it)
{
return it->visitGlobalQualifierDeclaration(visit, this);
}
bool TIntermBlock::visit(Visit visit, TIntermTraverser *it)
{
return it->visitBlock(visit, this);
}
bool TIntermIfElse::visit(Visit visit, TIntermTraverser *it)
{
return it->visitIfElse(visit, this);
}
bool TIntermLoop::visit(Visit visit, TIntermTraverser *it)
{
return it->visitLoop(visit, this);
}
bool TIntermBranch::visit(Visit visit, TIntermTraverser *it)
{
return it->visitBranch(visit, this);
}
bool TIntermSwitch::visit(Visit visit, TIntermTraverser *it)
{
return it->visitSwitch(visit, this);
}
bool TIntermCase::visit(Visit visit, TIntermTraverser *it)
{
return it->visitCase(visit, this);
}
bool TIntermPreprocessorDirective::visit(Visit visit, TIntermTraverser *it)
{
it->visitPreprocessorDirective(this);
return false;
}
TIntermTraverser::TIntermTraverser(bool preVisit,
bool inVisit,
bool postVisit,
TSymbolTable *symbolTable)
: preVisit(preVisit),
inVisit(inVisit),
postVisit(postVisit),
mMaxDepth(0),
mMaxAllowedDepth(std::numeric_limits<int>::max()),
mInGlobalScope(true),
mSymbolTable(symbolTable)
{
// Only enabling inVisit is not supported.
ASSERT(!(inVisit && !preVisit && !postVisit));
}
TIntermTraverser::~TIntermTraverser() {}
void TIntermTraverser::setMaxAllowedDepth(int depth)
{
mMaxAllowedDepth = depth;
}
const TIntermBlock *TIntermTraverser::getParentBlock() const
{
if (!mParentBlockStack.empty())
{
return mParentBlockStack.back().node;
}
return nullptr;
}
void TIntermTraverser::pushParentBlock(TIntermBlock *node)
{
mParentBlockStack.push_back(ParentBlock(node, 0));
}
void TIntermTraverser::incrementParentBlockPos()
{
++mParentBlockStack.back().pos;
}
void TIntermTraverser::popParentBlock()
{
ASSERT(!mParentBlockStack.empty());
mParentBlockStack.pop_back();
}
void TIntermTraverser::insertStatementsInParentBlock(const TIntermSequence &insertions)
{
TIntermSequence emptyInsertionsAfter;
insertStatementsInParentBlock(insertions, emptyInsertionsAfter);
}
void TIntermTraverser::insertStatementsInParentBlock(const TIntermSequence &insertionsBefore,
const TIntermSequence &insertionsAfter)
{
ASSERT(!mParentBlockStack.empty());
ParentBlock &parentBlock = mParentBlockStack.back();
if (mPath.back() == parentBlock.node)
{
ASSERT(mParentBlockStack.size() >= 2u);
// The current node is a block node, so the parent block is not the topmost one in the block
// stack, but the one below that.
parentBlock = mParentBlockStack.at(mParentBlockStack.size() - 2u);
}
NodeInsertMultipleEntry insert(parentBlock.node, parentBlock.pos, insertionsBefore,
insertionsAfter);
mInsertions.push_back(insert);
}
void TIntermTraverser::insertStatementInParentBlock(TIntermNode *statement)
{
TIntermSequence insertions;
insertions.push_back(statement);
insertStatementsInParentBlock(insertions);
}
void TIntermTraverser::insertStatementsInBlockAtPosition(TIntermBlock *parent,
size_t position,
const TIntermSequence &insertionsBefore,
const TIntermSequence &insertionsAfter)
{
ASSERT(parent);
ASSERT(position >= 0);
ASSERT(position < parent->getChildCount());
mInsertions.emplace_back(parent, position, insertionsBefore, insertionsAfter);
}
void TLValueTrackingTraverser::setInFunctionCallOutParameter(bool inOutParameter)
{
mInFunctionCallOutParameter = inOutParameter;
}
bool TLValueTrackingTraverser::isInFunctionCallOutParameter() const
{
return mInFunctionCallOutParameter;
}
void TIntermTraverser::traverseBinary(TIntermBinary *node)
{
traverse(node);
}
void TLValueTrackingTraverser::traverseBinary(TIntermBinary *node)
{
ScopedNodeInTraversalPath addToPath(this, node);
if (!addToPath.isWithinDepthLimit())
return;
bool visit = true;
// visit the node before children if pre-visiting.
if (preVisit)
visit = node->visit(PreVisit, this);
// Visit the children, in the right order.
if (visit)
{
if (node->isAssignment())
{
ASSERT(!isLValueRequiredHere());
setOperatorRequiresLValue(true);
}
node->getLeft()->traverse(this);
if (node->isAssignment())
setOperatorRequiresLValue(false);
if (inVisit)
visit = node->visit(InVisit, this);
if (visit)
{
// Some binary operations like indexing can be inside an expression which must be an
// l-value.
bool parentOperatorRequiresLValue = operatorRequiresLValue();
bool parentInFunctionCallOutParameter = isInFunctionCallOutParameter();
// Index is not required to be an l-value even when the surrounding expression is
// required to be an l-value.
TOperator op = node->getOp();
if (op == EOpIndexDirect || op == EOpIndexDirectInterfaceBlock ||
op == EOpIndexDirectStruct || op == EOpIndexIndirect)
{
setOperatorRequiresLValue(false);
setInFunctionCallOutParameter(false);
}
node->getRight()->traverse(this);
setOperatorRequiresLValue(parentOperatorRequiresLValue);
setInFunctionCallOutParameter(parentInFunctionCallOutParameter);
// Visit the node after the children, if requested and the traversal
// hasn't been cancelled yet.
if (postVisit)
visit = node->visit(PostVisit, this);
}
}
}
void TIntermTraverser::traverseUnary(TIntermUnary *node)
{
traverse(node);
}
void TLValueTrackingTraverser::traverseUnary(TIntermUnary *node)
{
ScopedNodeInTraversalPath addToPath(this, node);
if (!addToPath.isWithinDepthLimit())
return;
bool visit = true;
if (preVisit)
visit = node->visit(PreVisit, this);
if (visit)
{
ASSERT(!operatorRequiresLValue());
switch (node->getOp())
{
case EOpPostIncrement:
case EOpPostDecrement:
case EOpPreIncrement:
case EOpPreDecrement:
setOperatorRequiresLValue(true);
break;
default:
break;
}
node->getOperand()->traverse(this);
setOperatorRequiresLValue(false);
if (postVisit)
visit = node->visit(PostVisit, this);
}
}
// Traverse a function definition node. This keeps track of global scope.
void TIntermTraverser::traverseFunctionDefinition(TIntermFunctionDefinition *node)
{
ScopedNodeInTraversalPath addToPath(this, node);
if (!addToPath.isWithinDepthLimit())
return;
bool visit = true;
if (preVisit)
visit = node->visit(PreVisit, this);
if (visit)
{
node->getFunctionPrototype()->traverse(this);
if (inVisit)
visit = node->visit(InVisit, this);
if (visit)
{
mInGlobalScope = false;
node->getBody()->traverse(this);
mInGlobalScope = true;
if (postVisit)
visit = node->visit(PostVisit, this);
}
}
}
// Traverse a block node. This keeps track of the position of traversed child nodes within the block
// so that nodes may be inserted before or after them.
void TIntermTraverser::traverseBlock(TIntermBlock *node)
{
ScopedNodeInTraversalPath addToPath(this, node);
if (!addToPath.isWithinDepthLimit())
return;
pushParentBlock(node);
bool visit = true;
TIntermSequence *sequence = node->getSequence();
if (preVisit)
visit = node->visit(PreVisit, this);
if (visit)
{
for (auto *child : *sequence)
{
if (visit)
{
child->traverse(this);
if (inVisit)
{
if (child != sequence->back())
visit = node->visit(InVisit, this);
}
incrementParentBlockPos();
}
}
if (visit && postVisit)
visit = node->visit(PostVisit, this);
}
popParentBlock();
}
void TIntermTraverser::traverseAggregate(TIntermAggregate *node)
{
traverse(node);
}
bool TIntermTraverser::CompareInsertion(const NodeInsertMultipleEntry &a,
const NodeInsertMultipleEntry &b)
{
if (a.parent != b.parent)
{
return a.parent < b.parent;
}
return a.position < b.position;
}
bool TIntermTraverser::updateTree(TCompiler *compiler, TIntermNode *node)
{
// Sort the insertions so that insertion position is increasing and same position insertions are
// not reordered. The insertions are processed in reverse order so that multiple insertions to
// the same parent node are handled correctly.
std::stable_sort(mInsertions.begin(), mInsertions.end(), CompareInsertion);
for (size_t ii = 0; ii < mInsertions.size(); ++ii)
{
// If two insertions are to the same position, insert them in the order they were specified.
// The std::stable_sort call above will automatically guarantee this.
const NodeInsertMultipleEntry &insertion = mInsertions[mInsertions.size() - ii - 1];
ASSERT(insertion.parent);
if (!insertion.insertionsAfter.empty())
{
bool inserted = insertion.parent->insertChildNodes(insertion.position + 1,
insertion.insertionsAfter);
ASSERT(inserted);
}
if (!insertion.insertionsBefore.empty())
{
bool inserted =
insertion.parent->insertChildNodes(insertion.position, insertion.insertionsBefore);
ASSERT(inserted);
}
}
for (size_t ii = 0; ii < mReplacements.size(); ++ii)
{
const NodeUpdateEntry &replacement = mReplacements[ii];
ASSERT(replacement.parent);
bool replaced =
replacement.parent->replaceChildNode(replacement.original, replacement.replacement);
ASSERT(replaced);
if (!replacement.originalBecomesChildOfReplacement)
{
// In AST traversing, a parent is visited before its children.
// After we replace a node, if its immediate child is to
// be replaced, we need to make sure we don't update the replaced
// node; instead, we update the replacement node.
for (size_t jj = ii + 1; jj < mReplacements.size(); ++jj)
{
NodeUpdateEntry &replacement2 = mReplacements[jj];
if (replacement2.parent == replacement.original)
replacement2.parent = replacement.replacement;
}
}
}
for (size_t ii = 0; ii < mMultiReplacements.size(); ++ii)
{
const NodeReplaceWithMultipleEntry &replacement = mMultiReplacements[ii];
ASSERT(replacement.parent);
bool replaced = replacement.parent->replaceChildNodeWithMultiple(replacement.original,
replacement.replacements);
ASSERT(replaced);
}
clearReplacementQueue();
return compiler->validateAST(node);
}
void TIntermTraverser::clearReplacementQueue()
{
mReplacements.clear();
mMultiReplacements.clear();
mInsertions.clear();
}
void TIntermTraverser::queueReplacement(TIntermNode *replacement, OriginalNode originalStatus)
{
queueReplacementWithParent(getParentNode(), mPath.back(), replacement, originalStatus);
}
void TIntermTraverser::queueReplacementWithParent(TIntermNode *parent,
TIntermNode *original,
TIntermNode *replacement,
OriginalNode originalStatus)
{
bool originalBecomesChild = (originalStatus == OriginalNode::BECOMES_CHILD);
mReplacements.push_back(NodeUpdateEntry(parent, original, replacement, originalBecomesChild));
}
TLValueTrackingTraverser::TLValueTrackingTraverser(bool preVisitIn,
bool inVisitIn,
bool postVisitIn,
TSymbolTable *symbolTable)
: TIntermTraverser(preVisitIn, inVisitIn, postVisitIn, symbolTable),
mOperatorRequiresLValue(false),
mInFunctionCallOutParameter(false)
{
ASSERT(symbolTable);
}
void TLValueTrackingTraverser::traverseAggregate(TIntermAggregate *node)
{
ScopedNodeInTraversalPath addToPath(this, node);
if (!addToPath.isWithinDepthLimit())
return;
bool visit = true;
TIntermSequence *sequence = node->getSequence();
if (preVisit)
visit = node->visit(PreVisit, this);
if (visit)
{
size_t paramIndex = 0u;
for (auto *child : *sequence)
{
if (visit)
{
if (node->getFunction())
{
// Both built-ins and user defined functions should have the function symbol
// set.
ASSERT(paramIndex < node->getFunction()->getParamCount());
TQualifier qualifier =
node->getFunction()->getParam(paramIndex)->getType().getQualifier();
setInFunctionCallOutParameter(qualifier == EvqOut || qualifier == EvqInOut);
++paramIndex;
}
else
{
ASSERT(node->isConstructor());
}
child->traverse(this);
if (inVisit)
{
if (child != sequence->back())
visit = node->visit(InVisit, this);
}
}
}
setInFunctionCallOutParameter(false);
if (visit && postVisit)
visit = node->visit(PostVisit, this);
}
}
void TIntermTraverser::traverseLoop(TIntermLoop *node)
{
traverse(node);
}
} // namespace sh