Hash :
b980c563
Author :
Date :
2018-11-27T11:34:27
Reformat all cpp and h files. This applies git cl format --full to all ANGLE sources. Bug: angleproject:2986 Change-Id: Ib504e618c1589332a37e97696cdc3515d739308f Reviewed-on: https://chromium-review.googlesource.com/c/1351367 Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef ANGLEBASE_NUMERICS_SAFE_CONVERSIONS_H_
#define ANGLEBASE_NUMERICS_SAFE_CONVERSIONS_H_
#include <stddef.h>
#include <limits>
#include <type_traits>
#include "anglebase/logging.h"
#include "anglebase/numerics/safe_conversions_impl.h"
namespace angle
{
namespace base
{
// Convenience function that returns true if the supplied value is in range
// for the destination type.
template <typename Dst, typename Src>
constexpr bool IsValueInRangeForNumericType(Src value)
{
return internal::DstRangeRelationToSrcRange<Dst>(value) == internal::RANGE_VALID;
}
// Convenience function for determining if a numeric value is negative without
// throwing compiler warnings on: unsigned(value) < 0.
template <typename T>
constexpr typename std::enable_if<std::numeric_limits<T>::is_signed, bool>::type IsValueNegative(
T value)
{
static_assert(std::numeric_limits<T>::is_specialized, "Argument must be numeric.");
return value < 0;
}
template <typename T>
constexpr typename std::enable_if<!std::numeric_limits<T>::is_signed, bool>::type IsValueNegative(T)
{
static_assert(std::numeric_limits<T>::is_specialized, "Argument must be numeric.");
return false;
}
// checked_cast<> is analogous to static_cast<> for numeric types,
// except that it CHECKs that the specified numeric conversion will not
// overflow or underflow. NaN source will always trigger a CHECK.
template <typename Dst, typename Src>
inline Dst checked_cast(Src value)
{
CHECK(IsValueInRangeForNumericType<Dst>(value));
return static_cast<Dst>(value);
}
// HandleNaN will cause this class to CHECK(false).
struct SaturatedCastNaNBehaviorCheck
{
template <typename T>
static T HandleNaN()
{
CHECK(false);
return T();
}
};
// HandleNaN will return 0 in this case.
struct SaturatedCastNaNBehaviorReturnZero
{
template <typename T>
static constexpr T HandleNaN()
{
return T();
}
};
namespace internal
{
// This wrapper is used for C++11 constexpr support by avoiding the declaration
// of local variables in the saturated_cast template function.
template <typename Dst, class NaNHandler, typename Src>
constexpr Dst saturated_cast_impl(const Src value, const RangeConstraint constraint)
{
return constraint == RANGE_VALID
? static_cast<Dst>(value)
: (constraint == RANGE_UNDERFLOW
? std::numeric_limits<Dst>::min()
: (constraint == RANGE_OVERFLOW
? std::numeric_limits<Dst>::max()
: (constraint == RANGE_INVALID
? NaNHandler::template HandleNaN<Dst>()
: (NOTREACHED(), static_cast<Dst>(value)))));
}
} // namespace internal
// saturated_cast<> is analogous to static_cast<> for numeric types, except
// that the specified numeric conversion will saturate rather than overflow or
// underflow. NaN assignment to an integral will defer the behavior to a
// specified class. By default, it will return 0.
template <typename Dst, class NaNHandler = SaturatedCastNaNBehaviorReturnZero, typename Src>
constexpr Dst saturated_cast(Src value)
{
return std::numeric_limits<Dst>::is_iec559
? static_cast<Dst>(value) // Floating point optimization.
: internal::saturated_cast_impl<Dst, NaNHandler>(
value, internal::DstRangeRelationToSrcRange<Dst>(value));
}
// strict_cast<> is analogous to static_cast<> for numeric types, except that
// it will cause a compile failure if the destination type is not large enough
// to contain any value in the source type. It performs no runtime checking.
template <typename Dst, typename Src>
constexpr Dst strict_cast(Src value)
{
static_assert(std::numeric_limits<Src>::is_specialized, "Argument must be numeric.");
static_assert(std::numeric_limits<Dst>::is_specialized, "Result must be numeric.");
static_assert((internal::StaticDstRangeRelationToSrcRange<Dst, Src>::value ==
internal::NUMERIC_RANGE_CONTAINED),
"The numeric conversion is out of range for this type. You "
"should probably use one of the following conversion "
"mechanisms on the value you want to pass:\n"
"- base::checked_cast\n"
"- base::saturated_cast\n"
"- base::CheckedNumeric");
return static_cast<Dst>(value);
}
// StrictNumeric implements compile time range checking between numeric types by
// wrapping assignment operations in a strict_cast. This class is intended to be
// used for function arguments and return types, to ensure the destination type
// can always contain the source type. This is essentially the same as enforcing
// -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied
// incrementally at API boundaries, making it easier to convert code so that it
// compiles cleanly with truncation warnings enabled.
// This template should introduce no runtime overhead, but it also provides no
// runtime checking of any of the associated mathematical operations. Use
// CheckedNumeric for runtime range checks of the actual value being assigned.
template <typename T>
class StrictNumeric
{
public:
typedef T type;
constexpr StrictNumeric() : value_(0) {}
// Copy constructor.
template <typename Src>
constexpr StrictNumeric(const StrictNumeric<Src> &rhs) : value_(strict_cast<T>(rhs.value_))
{}
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to StrictNumerics to make them easier to use.
template <typename Src>
constexpr StrictNumeric(Src value) : value_(strict_cast<T>(value))
{}
// The numeric cast operator basically handles all the magic.
template <typename Dst>
constexpr operator Dst() const
{
return strict_cast<Dst>(value_);
}
private:
const T value_;
};
// Explicitly make a shorter size_t typedef for convenience.
typedef StrictNumeric<size_t> SizeT;
} // namespace base
} // namespace angle
#endif // ANGLEBASE_NUMERICS_SAFE_CONVERSIONS_H_