Hash :
fa3d7d5c
Author :
Date :
2022-08-05T00:57:40
Make PLS coherent on Vulkan Uses the VK_EXT_fragment_shader_interlock extension to make the shader image implementation of PLS coherent on Vulkan. This extension is supported on AMD, Apple, NVIDIA, and Intel. Bug: angleproject:7279 Change-Id: Ic0253eb20932eb6be0b1f433ba454e48b57be2f5 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/3813816 Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org> Commit-Queue: Chris Dalton <chris@rive.app> Reviewed-by: Geoff Lang <geofflang@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
//
// Copyright 2021 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// BuildSPIRV: Helper for OutputSPIRV to build SPIR-V.
//
#ifndef COMPILER_TRANSLATOR_BUILDSPIRV_H_
#define COMPILER_TRANSLATOR_BUILDSPIRV_H_
#include "common/FixedVector.h"
#include "common/PackedEnums.h"
#include "common/bitset_utils.h"
#include "common/hash_utils.h"
#include "common/spirv/spirv_instruction_builder_autogen.h"
#include "compiler/translator/Compiler.h"
namespace spirv = angle::spirv;
namespace sh
{
// Helper classes to map types to ids
// The same GLSL type may map to multiple SPIR-V types when said GLSL type is used differently in
// the shader source, for example used with |invariant| and without, used in an interface block etc.
// This type contains the pieces of information that differentiate SPIR-V types derived from the
// same GLSL type. This is referred to as "SPIR-V type specialization" henceforth.
struct SpirvType;
class SpirvTypeSpec
{
public:
// Some of the properties that specialize SPIR-V types apply to structs or arrays, but not to
// their fields or basic types. When extracting fields, array elements, columns or basic types
// from a type, the following helpers are used to remove any ineffective (and thus incorrect)
// specialization.
void inferDefaults(const TType &type, TCompiler *compiler);
void onArrayElementSelection(bool isElementTypeBlock, bool isElementTypeArray);
void onBlockFieldSelection(const TType &fieldType);
void onMatrixColumnSelection();
void onVectorComponentSelection();
// If a structure is used in two interface blocks with different layouts, it would have
// to generate two SPIR-V types, as its fields' Offset decorations could be different.
// For non-block types, when used in an interface block as an array, they could generate
// different ArrayStride decorations. As such, the block storage is part of the SPIR-V type
// except for non-block non-array types.
TLayoutBlockStorage blockStorage = EbsUnspecified;
// If a structure is used in two I/O blocks or output varyings with and without the invariant
// qualifier, it would also have to generate two SPIR-V types, as its fields' Invariant
// decorations would be different.
bool isInvariantBlock = false;
// Similarly, a structure containing matrices may be used both with the column_major and
// row_major layout qualifier, generating two SPIR-V types with different decorations on its
// fields.
bool isRowMajorQualifiedBlock = false;
// Arrays when used in an interface block produce a different type which is decorated with an
// ArrayStride. Row-major qualified arrays of matrices can potentially produce a different
// stride from column-major ones.
bool isRowMajorQualifiedArray = false;
// Bool is disallowed in interface blocks in SPIR-V. This type is emulated with uint. This
// property applies to both blocks with bools in them and the bool type inside the block itself.
bool isOrHasBoolInInterfaceBlock = false;
// When |patch| is specified on an I/O block, the members of the type itself are decorated with
// it. This is not recursively applied, and since each I/O block has a unique type, this
// doesn't actually result in duplicated types even if it's specializing the type.
bool isPatchIOBlock = false;
};
struct SpirvType
{
// If struct or interface block, the type is identified by the pointer. Note that both
// TStructure and TInterfaceBlock inherit from TFieldListCollection, and their difference is
// irrelevant as far as SPIR-V type is concerned.
const TFieldListCollection *block = nullptr;
// Otherwise, it's a basic type + column, row and array dimensions, or it's an image
// declaration.
//
// Notes:
//
// - `precision` turns into a RelaxedPrecision decoration on the variable and instructions.
// - `precise` turns into a NoContraction decoration on the instructions.
// - `readonly`, `writeonly`, `coherent`, `volatile` and `restrict` only apply to memory object
// declarations
// - `invariant` only applies to variable or members of a block
// - `matrixPacking` only applies to members of a struct
TBasicType type = EbtFloat;
uint8_t primarySize = 1;
uint8_t secondarySize = 1;
TSpan<const unsigned int> arraySizes;
// Only useful for image types.
TLayoutImageInternalFormat imageInternalFormat = EiifUnspecified;
// For sampled images (i.e. GLSL samplers), there are two type ids; one is the OpTypeImage that
// declares the image itself, and one OpTypeSampledImage. `isSamplerBaseImage` distinguishes
// between these two types. Note that for the former, the basic type is still Ebt*Sampler* to
// distinguish it from storage images (which have a basic type of Ebt*Image*).
bool isSamplerBaseImage = false;
// Anything that can cause the same GLSL type to produce different SPIR-V types.
SpirvTypeSpec typeSpec;
};
struct SpirvIdAndIdList
{
spirv::IdRef id;
spirv::IdRefList idList;
bool operator==(const SpirvIdAndIdList &other) const
{
return id == other.id && idList == other.idList;
}
};
struct SpirvIdAndStorageClass
{
spirv::IdRef id;
spv::StorageClass storageClass;
bool operator==(const SpirvIdAndStorageClass &other) const
{
return id == other.id && storageClass == other.storageClass;
}
};
struct SpirvTypeHash
{
size_t operator()(const sh::SpirvType &type) const
{
// Block storage must only affect the type if it's a block type or array type (in a block).
ASSERT(type.typeSpec.blockStorage == sh::EbsUnspecified || type.block != nullptr ||
!type.arraySizes.empty());
// Invariant must only affect the type if it's a block type.
ASSERT(!type.typeSpec.isInvariantBlock || type.block != nullptr);
// Row-major block must only affect the type if it's a block type.
ASSERT(!type.typeSpec.isRowMajorQualifiedBlock || type.block != nullptr);
// Patch must only affect the type if it's a block type.
ASSERT(!type.typeSpec.isPatchIOBlock || type.block != nullptr);
// Row-major array must only affect the type if it's an array of non-square matrices in
// an std140 or std430 block.
ASSERT(!type.typeSpec.isRowMajorQualifiedArray ||
(type.block == nullptr && !type.arraySizes.empty() && type.secondarySize > 1 &&
type.primarySize != type.secondarySize &&
type.typeSpec.blockStorage != sh::EbsUnspecified));
size_t result = 0;
if (!type.arraySizes.empty())
{
result = angle::ComputeGenericHash(type.arraySizes.data(),
type.arraySizes.size() * sizeof(type.arraySizes[0]));
}
if (type.block != nullptr)
{
return result ^ angle::ComputeGenericHash(&type.block, sizeof(type.block)) ^
static_cast<size_t>(type.typeSpec.isInvariantBlock) ^
(static_cast<size_t>(type.typeSpec.isRowMajorQualifiedBlock) << 1) ^
(static_cast<size_t>(type.typeSpec.isRowMajorQualifiedArray) << 2) ^
(static_cast<size_t>(type.typeSpec.isPatchIOBlock) << 3) ^
(type.typeSpec.blockStorage << 4);
}
static_assert(sh::EbtLast < 256, "Basic type doesn't fit in uint8_t");
static_assert(sh::EbsLast < 8, "Block storage doesn't fit in 3 bits");
static_assert(sh::EiifLast < 32, "Image format doesn't fit in 5 bits");
ASSERT(type.primarySize > 0 && type.primarySize <= 4);
ASSERT(type.secondarySize > 0 && type.secondarySize <= 4);
const uint8_t properties[4] = {
static_cast<uint8_t>(type.type),
static_cast<uint8_t>((type.primarySize - 1) | (type.secondarySize - 1) << 2 |
type.isSamplerBaseImage << 4),
static_cast<uint8_t>(type.typeSpec.blockStorage | type.imageInternalFormat << 3),
// Padding because ComputeGenericHash expects a key size divisible by 4
};
return result ^ angle::ComputeGenericHash(properties, sizeof(properties));
}
};
struct SpirvIdAndIdListHash
{
size_t operator()(const SpirvIdAndIdList &key) const
{
return angle::ComputeGenericHash(key.idList.data(),
key.idList.size() * sizeof(key.idList[0])) ^
key.id;
}
};
struct SpirvIdAndStorageClassHash
{
size_t operator()(const SpirvIdAndStorageClass &key) const
{
ASSERT(key.storageClass < 16);
return key.storageClass | key.id << 4;
}
};
// Data tracked per SPIR-V type (keyed by SpirvType).
struct SpirvTypeData
{
// The SPIR-V id corresponding to the type.
spirv::IdRef id;
};
// Decorations to be applied to variable or intermediate ids which are not part of the SPIR-V type
// and are not specific enough (like DescriptorSet) to be handled automatically. Currently, these
// are:
//
// RelaxedPrecision: used to implement |lowp| and |mediump|
// NoContraction: used to implement |precise|. TODO: support this. It requires the precise
// property to be promoted through the nodes in the AST, which currently isn't.
// http://anglebug.com/4889
// Invariant: used to implement |invariant|, which is applied to output variables.
// Memory qualifiers: used to implement |coherent, volatile, restrict, readonly, writeonly|,
// which apply to shader storage blocks, variables declared within shader
// storage blocks, and images.
//
// Note that Invariant applies to output variables, NoContraction to arithmetic instructions, and
// memory qualifiers to shader storage and images, so they are mutually exclusive. A maximum of 6
// decorations are possible. FixedVector::push_back will ASSERT if the given size is ever not
// enough.
using SpirvDecorations = angle::FixedVector<spv::Decoration, 6>;
// A block of code. SPIR-V produces forward references to blocks, such as OpBranchConditional
// specifying the id of the if and else blocks, each of those referencing the id of the block after
// the else. Additionally, local variable declarations are accumulated at the top of the first
// block in a function. For these reasons, each block of SPIR-V is generated separately and
// assembled at the end of the function, allowing prior blocks to be modified when necessary.
struct SpirvBlock
{
// Id of the block
spirv::IdRef labelId;
// Local variable declarations. Only the first block of a function is allowed to contain any
// instructions here.
spirv::Blob localVariables;
// Everything *after* OpLabel (which itself is not generated until blocks are assembled) and
// local variables.
spirv::Blob body;
// Whether the block is terminated. Useful for functions without return, asserting that code is
// not added after return/break/continue etc (i.e. dead code, which should really be removed
// earlier by a transformation, but could also be hacked by returning a bogus block to contain
// all the "garbage" to throw away), last switch case without a break, etc.
bool isTerminated = false;
};
// Conditional code, constituting ifs, switches and loops.
struct SpirvConditional
{
// The id of blocks that make up the conditional.
//
// - For if, there are three blocks: the then, else and merge blocks
// - For loops, there are four blocks: the condition, body, continue and merge blocks
// - For switch, there are a number of blocks based on the cases.
//
// In all cases, the merge block is the last block in this list. When the conditional is done
// with, that's the block that will be made "current" and future instructions written to. The
// merge block is also the branch target of "break" instructions.
//
// For loops, the continue target block is the one before last block in this list.
std::vector<spirv::IdRef> blockIds;
// Up to which block is already generated. Used by nextConditionalBlock() to generate a block
// and give it an id pre-determined in blockIds.
size_t nextBlockToWrite = 0;
// Used to determine if continue will affect this (i.e. it's a loop).
bool isContinuable = false;
// Used to determine if break will affect this (i.e. it's a loop or switch).
bool isBreakable = false;
};
// List of known extensions
enum class SPIRVExtensions
{
// GL_OVR_multiview / SPV_KHR_multiview
MultiviewOVR = 0,
// GL_ARB_fragment_shader_interlock / SPV_EXT_fragment_shader_interlock
FragmentShaderInterlockARB = 1,
InvalidEnum = 2,
EnumCount = 2,
};
// Helper class to construct SPIR-V
class SPIRVBuilder : angle::NonCopyable
{
public:
SPIRVBuilder(TCompiler *compiler,
const ShCompileOptions &compileOptions,
ShHashFunction64 hashFunction,
NameMap &nameMap);
spirv::IdRef getNewId(const SpirvDecorations &decorations);
SpirvType getSpirvType(const TType &type, const SpirvTypeSpec &typeSpec) const;
const SpirvTypeData &getTypeData(const TType &type, const SpirvTypeSpec &typeSpec);
const SpirvTypeData &getTypeDataOverrideTypeSpec(const TType &type,
const SpirvTypeSpec &typeSpec);
const SpirvTypeData &getSpirvTypeData(const SpirvType &type, const TSymbol *block);
spirv::IdRef getBasicTypeId(TBasicType basicType, size_t size);
spirv::IdRef getTypePointerId(spirv::IdRef typeId, spv::StorageClass storageClass);
spirv::IdRef getFunctionTypeId(spirv::IdRef returnTypeId, const spirv::IdRefList ¶mTypeIds);
// Decorations that may apply to intermediate instructions (in addition to variables).
// |precise| is only applicable to arithmetic nodes.
SpirvDecorations getDecorations(const TType &type);
SpirvDecorations getArithmeticDecorations(const TType &type, bool isPrecise, TOperator op);
// Extended instructions
spirv::IdRef getExtInstImportIdStd();
spirv::Blob *getSpirvDebug() { return &mSpirvDebug; }
spirv::Blob *getSpirvDecorations() { return &mSpirvDecorations; }
spirv::Blob *getSpirvTypeAndConstantDecls() { return &mSpirvTypeAndConstantDecls; }
spirv::Blob *getSpirvTypePointerDecls() { return &mSpirvTypePointerDecls; }
spirv::Blob *getSpirvFunctionTypeDecls() { return &mSpirvFunctionTypeDecls; }
spirv::Blob *getSpirvVariableDecls() { return &mSpirvVariableDecls; }
spirv::Blob *getSpirvFunctions() { return &mSpirvFunctions; }
spirv::Blob *getSpirvCurrentFunctionBlock()
{
ASSERT(!mSpirvCurrentFunctionBlocks.empty() &&
!mSpirvCurrentFunctionBlocks.back().isTerminated);
return &mSpirvCurrentFunctionBlocks.back().body;
}
spirv::IdRef getSpirvCurrentFunctionBlockId()
{
ASSERT(!mSpirvCurrentFunctionBlocks.empty() &&
!mSpirvCurrentFunctionBlocks.back().isTerminated);
return mSpirvCurrentFunctionBlocks.back().labelId;
}
bool isCurrentFunctionBlockTerminated() const
{
ASSERT(!mSpirvCurrentFunctionBlocks.empty());
return mSpirvCurrentFunctionBlocks.back().isTerminated;
}
void terminateCurrentFunctionBlock()
{
ASSERT(!mSpirvCurrentFunctionBlocks.empty());
mSpirvCurrentFunctionBlocks.back().isTerminated = true;
}
const SpirvConditional *getCurrentConditional() { return &mConditionalStack.back(); }
bool isInvariantOutput(const TType &type) const;
void addCapability(spv::Capability capability);
void addExecutionMode(spv::ExecutionMode executionMode);
void addExtension(SPIRVExtensions extension);
void setEntryPointId(spirv::IdRef id);
void addEntryPointInterfaceVariableId(spirv::IdRef id);
void writePerVertexBuiltIns(const TType &type, spirv::IdRef typeId);
void writeInterfaceVariableDecorations(const TType &type, spirv::IdRef variableId);
void writeBranchConditional(spirv::IdRef conditionValue,
spirv::IdRef trueBlock,
spirv::IdRef falseBlock,
spirv::IdRef mergeBlock);
void writeBranchConditionalBlockEnd();
void writeLoopHeader(spirv::IdRef branchToBlock,
spirv::IdRef continueBlock,
spirv::IdRef mergeBlock);
void writeLoopConditionEnd(spirv::IdRef conditionValue,
spirv::IdRef branchToBlock,
spirv::IdRef mergeBlock);
void writeLoopContinueEnd(spirv::IdRef headerBlock);
void writeLoopBodyEnd(spirv::IdRef continueBlock);
void writeSwitch(spirv::IdRef conditionValue,
spirv::IdRef defaultBlock,
const spirv::PairLiteralIntegerIdRefList &targetPairList,
spirv::IdRef mergeBlock);
void writeSwitchCaseBlockEnd();
spirv::IdRef getBoolConstant(bool value);
spirv::IdRef getUintConstant(uint32_t value);
spirv::IdRef getIntConstant(int32_t value);
spirv::IdRef getFloatConstant(float value);
spirv::IdRef getUvecConstant(uint32_t value, int size);
spirv::IdRef getIvecConstant(int32_t value, int size);
spirv::IdRef getVecConstant(float value, int size);
spirv::IdRef getCompositeConstant(spirv::IdRef typeId, const spirv::IdRefList &values);
spirv::IdRef getNullConstant(spirv::IdRef typeId);
// Helpers to start and end a function.
void startNewFunction(spirv::IdRef functionId, const TFunction *func);
void assembleSpirvFunctionBlocks();
// Helper to declare a variable. Function-local variables must be placed in the first block of
// the current function.
spirv::IdRef declareVariable(spirv::IdRef typeId,
spv::StorageClass storageClass,
const SpirvDecorations &decorations,
spirv::IdRef *initializerId,
const char *name);
// Helper to declare specialization constants.
spirv::IdRef declareSpecConst(TBasicType type, int id, const char *name);
// Helpers for conditionals.
void startConditional(size_t blockCount, bool isContinuable, bool isBreakable);
void nextConditionalBlock();
void endConditional();
bool isInLoop() const;
spirv::IdRef getBreakTargetId() const;
spirv::IdRef getContinueTargetId() const;
// TODO: remove name hashing once translation through glslang is removed. That is necessary to
// avoid name collision between ANGLE's internal symbols and user-defined ones when compiling
// the generated GLSL, but is irrelevant when generating SPIR-V directly. Currently, the SPIR-V
// transformer relies on the "mapped" names, which should also be changed when this hashing is
// removed.
ImmutableString hashName(const TSymbol *symbol);
ImmutableString hashTypeName(const TType &type);
ImmutableString hashFieldName(const TField *field);
ImmutableString hashFunctionName(const TFunction *func);
spirv::Blob getSpirv();
private:
SpirvTypeData declareType(const SpirvType &type, const TSymbol *block);
uint32_t calculateBaseAlignmentAndSize(const SpirvType &type, uint32_t *sizeInStorageBlockOut);
uint32_t calculateSizeAndWriteOffsetDecorations(const SpirvType &type,
spirv::IdRef typeId,
uint32_t blockBaseAlignment);
void writeMemberDecorations(const SpirvType &type, spirv::IdRef typeId);
void writeInterpolationDecoration(TQualifier qualifier, spirv::IdRef id, uint32_t fieldIndex);
// Helpers for type declaration.
void getImageTypeParameters(TBasicType type,
spirv::IdRef *sampledTypeOut,
spv::Dim *dimOut,
spirv::LiteralInteger *depthOut,
spirv::LiteralInteger *arrayedOut,
spirv::LiteralInteger *multisampledOut,
spirv::LiteralInteger *sampledOut);
spv::ImageFormat getImageFormat(TLayoutImageInternalFormat imageInternalFormat);
spirv::IdRef getBasicConstantHelper(uint32_t value,
TBasicType type,
angle::HashMap<uint32_t, spirv::IdRef> *constants);
spirv::IdRef getNullVectorConstantHelper(TBasicType type, int size);
spirv::IdRef getVectorConstantHelper(spirv::IdRef valueId, TBasicType type, int size);
uint32_t nextUnusedBinding();
uint32_t nextUnusedInputLocation(uint32_t consumedCount);
uint32_t nextUnusedOutputLocation(uint32_t consumedCount);
void writeExecutionModes(spirv::Blob *blob);
void writeExtensions(spirv::Blob *blob);
void writeSourceExtensions(spirv::Blob *blob);
[[maybe_unused]] TCompiler *mCompiler;
const ShCompileOptions &mCompileOptions;
gl::ShaderType mShaderType;
// Capabilities the shader is using. Accumulated as the instructions are generated. The Shader
// capability is unconditionally generated, so it's not tracked.
std::set<spv::Capability> mCapabilities;
// Execution modes the shader is using. Most execution modes are automatically derived from
// shader metadata, but some are only discovered while traversing the tree. Only the latter
// execution modes are stored here.
std::set<spv::ExecutionMode> mExecutionModes;
// Extensions used by the shader.
angle::PackedEnumBitSet<SPIRVExtensions> mExtensions;
// The list of interface variables and the id of main() populated as the instructions are
// generated. Used for the OpEntryPoint instruction.
spirv::IdRefList mEntryPointInterfaceList;
spirv::IdRef mEntryPointId;
// Id of imported instructions, if used.
spirv::IdRef mExtInstImportIdStd;
// Current ID bound, used to allocate new ids.
spirv::IdRef mNextAvailableId;
// A map from the AST type to the corresponding SPIR-V ID and associated data. Note that TType
// includes a lot of information that pertains to the variable that has the type, not the type
// itself. SpirvType instead contains only information that can identify the type itself.
angle::HashMap<SpirvType, SpirvTypeData, SpirvTypeHash> mTypeMap;
// Various sections of SPIR-V. Each section grows as SPIR-V is generated, and the final result
// is obtained by stitching the sections together. This puts the instructions in the order
// required by the spec.
spirv::Blob mSpirvDebug;
spirv::Blob mSpirvDecorations;
spirv::Blob mSpirvTypeAndConstantDecls;
spirv::Blob mSpirvTypePointerDecls;
spirv::Blob mSpirvFunctionTypeDecls;
spirv::Blob mSpirvVariableDecls;
spirv::Blob mSpirvFunctions;
// A list of blocks created for the current function. These are assembled by
// assembleSpirvFunctionBlocks() when the function is entirely visited. Local variables need to
// be inserted at the beginning of the first function block, so the entire SPIR-V of the
// function cannot be obtained until it's fully visited.
//
// The last block in this list is the one currently being written to.
std::vector<SpirvBlock> mSpirvCurrentFunctionBlocks;
// List of constants that are already defined (for reuse).
spirv::IdRef mBoolConstants[2];
angle::HashMap<uint32_t, spirv::IdRef> mUintConstants;
angle::HashMap<uint32_t, spirv::IdRef> mIntConstants;
angle::HashMap<uint32_t, spirv::IdRef> mFloatConstants;
angle::HashMap<SpirvIdAndIdList, spirv::IdRef, SpirvIdAndIdListHash> mCompositeConstants;
// Keyed by typeId, returns the null constant corresponding to that type.
std::vector<spirv::IdRef> mNullConstants;
// List of type pointers that are already defined.
// TODO: if all users call getTypeData(), move to SpirvTypeData. http://anglebug.com/4889
angle::HashMap<SpirvIdAndStorageClass, spirv::IdRef, SpirvIdAndStorageClassHash>
mTypePointerIdMap;
// List of function types that are already defined.
angle::HashMap<SpirvIdAndIdList, spirv::IdRef, SpirvIdAndIdListHash> mFunctionTypeIdMap;
// Stack of conditionals. When an if, loop or switch is visited, a new conditional scope is
// added. When the conditional construct is entirely visited, it's popped. As the blocks of
// the conditional constructs are visited, ids are consumed from the top of the stack. When
// break or continue is visited, the stack is traversed backwards until a loop or switch is
// found.
std::vector<SpirvConditional> mConditionalStack;
// name hashing.
ShHashFunction64 mHashFunction;
NameMap &mNameMap;
// Every resource that requires set & binding layout qualifiers is assigned set 0 and an
// arbitrary binding. Every input/output that requires a location layout qualifier is assigned
// an arbitrary location as well.
//
// The link-time SPIR-V transformer modifies set, binding and location decorations in SPIR-V
// directly.
uint32_t mNextUnusedBinding;
uint32_t mNextUnusedInputLocation;
uint32_t mNextUnusedOutputLocation;
};
} // namespace sh
#endif // COMPILER_TRANSLATOR_BUILDSPIRV_H_