Hash :
607d398e
Author :
Date :
2022-03-14T16:32:21
Vulkan: Optimize resolve of multisample swapchains * Resolves the multisampled image if the last render pass draws into the default framebuffer. * Added test to check the number of resolves in the optimization subpass (credit: Xinyi He) * Added test to check the number of resolves outside the subpass. * Added disabled test to see if the subpass resolve works. Bug: angleproject:6762 Change-Id: I86a8db3387851ab97d5f7a3d8a0ff26961254c14 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/3523062 Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org> Reviewed-by: Jamie Madill <jmadill@chromium.org> Commit-Queue: Amirali Abdolrashidi <abdolrashidi@google.com>
ANGLE’s Vulkan back-end implementation lives in this folder.
Vulkan is an explicit graphics API. It has a lot in common with other explicit APIs such as Microsoft’s D3D12 and Apple’s Metal. Compared to APIs like OpenGL or D3D11 explicit APIs can offer a number of significant benefits:
The RendererVk class represents an EGLDisplay. RendererVk owns shared global
resources like the VkDevice, VkQueue, the Vulkan format tables
and internal Vulkan shaders. The ContextVk class implements the back-end
of a front-end OpenGL Context. ContextVk processes state changes and handles action commands like
glDrawArrays and glDrawElements.
The back-end records commands into command buffers via the following ContextVk APIs:
beginNewRenderPass: Writes out (aka flushes) prior pending commands into a primary command
buffer, then starts a new render pass. Returns a secondary command buffer inside a render pass
instance. getOutsideRenderPassCommandBuffer: May flush prior command buffers and close the render pass if
necessary, in addition to issuing the appropriate barriers. Returns a secondary command buffer
outside a render pass instance. getStartedRenderPassCommands: Returns a reference to the currently open render pass’ commands
buffer.
The back-end (mostly) records Image and Buffer barriers through additional CommandBufferAccess
APIs, the result of which is passed to getOutsideRenderPassCommandBuffer. Note that the
barriers are not actually recorded until getOutsideRenderPassCommandBuffer is called:
onBufferTransferRead and onBufferComputeShaderRead accumulate VkBuffer read barriers. onBufferTransferWrite and onBufferComputeShaderWrite accumulate VkBuffer write barriers. onBuffferSelfCopy is a special case for VkBuffer self copies. It behaves the same as write. onImageTransferRead and onImageComputerShadeRead accumulate VkImage read barriers. onImageTransferWrite and onImageComputerShadeWrite accumulate VkImage write barriers. onImageRenderPassRead and onImageRenderPassWrite accumulate VkImage barriers inside a
started RenderPass.
After the back-end records commands to the primary buffer and we flush (e.g. on swap) or when we call
ContextVk::finishToSerial, ANGLE submits the primary command buffer to a VkQueue.
See the code for more details.
In this example we’ll be recording a buffer copy command:
// Ensure that ANGLE sets proper read and write barriers for the Buffers.
vk::CommandBufferAccess access;
access.onBufferTransferWrite(dstBuffer);
access.onBufferTransferRead(srcBuffer);
// Get a pointer to a secondary command buffer for command recording.
vk::OutsideRenderPassCommandBuffer *commandBuffer;
ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer));
// Record the copy command into the secondary buffer. We're done!
commandBuffer->copyBuffer(srcBuffer->getBuffer(), dstBuffer->getBuffer(), copyCount, copies);
More implementation details can be found in the doc directory: