Hash :
bc447ca4
Author :
Date :
2022-09-20T22:38:16
GLES1: Move lighting to vertex shader In the spec, lighting is done as part of vertex processing, and results in a new vertex color. Texturing is applied later. ANGLE however did lighting in the fragment shader. With this change, lighting is moved to the vertex shader. This fixes rendering of lit objects, as interpolation is done linearly or flat between the vertices per spec, instead of done precisely per fragment. While typically this is inferior to per-fragment lighting, it's what the spec mandates. On the dr_driving trace, this reduces the render pass time by ~20% on Pixel 6. Bug: angleproject:6201 Bug: angleproject:6644 Change-Id: I10e37df8c56c22d520a738af8f8630bc6a01ca7f Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/3906394 Reviewed-by: Constantine Shablya <constantine.shablya@collabora.com> Reviewed-by: Cody Northrop <cnorthrop@google.com> Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// LightsTest.cpp: Tests basic usage of glLight*.
#include "test_utils/ANGLETest.h"
#include "test_utils/gl_raii.h"
#include "common/matrix_utils.h"
#include "common/vector_utils.h"
#include "util/random_utils.h"
#include <stdint.h>
#include <vector>
using namespace angle;
class LightsTest : public ANGLETest<>
{
protected:
LightsTest()
{
setWindowWidth(32);
setWindowHeight(32);
setConfigRedBits(8);
setConfigGreenBits(8);
setConfigBlueBits(8);
setConfigAlphaBits(8);
setConfigDepthBits(24);
}
void drawTestQuad();
};
// Check that the initial lighting parameters state is correct,
// including spec minimum for light count.
TEST_P(LightsTest, InitialState)
{
const GLColor32F kAmbientInitial(0.2f, 0.2f, 0.2f, 1.0f);
GLboolean kLightModelTwoSideInitial = GL_FALSE;
GLColor32F lightModelAmbient;
GLboolean lightModelTwoSide;
glGetFloatv(GL_LIGHT_MODEL_AMBIENT, &lightModelAmbient.R);
EXPECT_GL_NO_ERROR();
EXPECT_EQ(kAmbientInitial, lightModelAmbient);
glGetBooleanv(GL_LIGHT_MODEL_TWO_SIDE, &lightModelTwoSide);
EXPECT_GL_NO_ERROR();
EXPECT_EQ(kLightModelTwoSideInitial, lightModelTwoSide);
EXPECT_GL_FALSE(glIsEnabled(GL_LIGHTING));
EXPECT_GL_NO_ERROR();
EXPECT_GL_FALSE(glIsEnabled(GL_NORMALIZE));
EXPECT_GL_NO_ERROR();
EXPECT_GL_FALSE(glIsEnabled(GL_RESCALE_NORMAL));
EXPECT_GL_NO_ERROR();
EXPECT_GL_FALSE(glIsEnabled(GL_COLOR_MATERIAL));
EXPECT_GL_NO_ERROR();
GLint maxLights = 0;
glGetIntegerv(GL_MAX_LIGHTS, &maxLights);
EXPECT_GL_NO_ERROR();
EXPECT_GE(8, maxLights);
const GLColor32F kLightnAmbient(0.0f, 0.0f, 0.0f, 1.0f);
const GLColor32F kLightnDiffuse(0.0f, 0.0f, 0.0f, 1.0f);
const GLColor32F kLightnSpecular(0.0f, 0.0f, 0.0f, 1.0f);
const GLColor32F kLight0Diffuse(1.0f, 1.0f, 1.0f, 1.0f);
const GLColor32F kLight0Specular(1.0f, 1.0f, 1.0f, 1.0f);
const angle::Vector4 kLightnPosition(0.0f, 0.0f, 1.0f, 0.0f);
const angle::Vector3 kLightnDirection(0.0f, 0.0f, -1.0f);
const GLfloat kLightnSpotlightExponent = 0.0f;
const GLfloat kLightnSpotlightCutoffAngle = 180.0f;
const GLfloat kLightnAttenuationConst = 1.0f;
const GLfloat kLightnAttenuationLinear = 0.0f;
const GLfloat kLightnAttenuationQuadratic = 0.0f;
for (int i = 0; i < maxLights; i++)
{
EXPECT_GL_FALSE(glIsEnabled(GL_LIGHT0 + i));
EXPECT_GL_NO_ERROR();
GLColor32F actualColor;
angle::Vector4 actualPosition;
angle::Vector3 actualDirection;
GLfloat actualFloatValue;
glGetLightfv(GL_LIGHT0 + i, GL_AMBIENT, &actualColor.R);
EXPECT_GL_NO_ERROR();
EXPECT_EQ(kLightnAmbient, actualColor);
glGetLightfv(GL_LIGHT0 + i, GL_DIFFUSE, &actualColor.R);
EXPECT_GL_NO_ERROR();
EXPECT_EQ(i == 0 ? kLight0Diffuse : kLightnDiffuse, actualColor);
glGetLightfv(GL_LIGHT0 + i, GL_SPECULAR, &actualColor.R);
EXPECT_GL_NO_ERROR();
EXPECT_EQ(i == 0 ? kLight0Specular : kLightnSpecular, actualColor);
glGetLightfv(GL_LIGHT0 + i, GL_POSITION, actualPosition.data());
EXPECT_GL_NO_ERROR();
EXPECT_EQ(kLightnPosition, actualPosition);
glGetLightfv(GL_LIGHT0 + i, GL_SPOT_DIRECTION, actualDirection.data());
EXPECT_GL_NO_ERROR();
EXPECT_EQ(kLightnDirection, actualDirection);
glGetLightfv(GL_LIGHT0 + i, GL_SPOT_EXPONENT, &actualFloatValue);
EXPECT_GL_NO_ERROR();
EXPECT_EQ(kLightnSpotlightExponent, actualFloatValue);
glGetLightfv(GL_LIGHT0 + i, GL_SPOT_CUTOFF, &actualFloatValue);
EXPECT_GL_NO_ERROR();
EXPECT_EQ(kLightnSpotlightCutoffAngle, actualFloatValue);
glGetLightfv(GL_LIGHT0 + i, GL_CONSTANT_ATTENUATION, &actualFloatValue);
EXPECT_GL_NO_ERROR();
EXPECT_EQ(kLightnAttenuationConst, actualFloatValue);
glGetLightfv(GL_LIGHT0 + i, GL_LINEAR_ATTENUATION, &actualFloatValue);
EXPECT_GL_NO_ERROR();
EXPECT_EQ(kLightnAttenuationLinear, actualFloatValue);
glGetLightfv(GL_LIGHT0 + i, GL_QUADRATIC_ATTENUATION, &actualFloatValue);
EXPECT_GL_NO_ERROR();
EXPECT_EQ(kLightnAttenuationQuadratic, actualFloatValue);
}
}
// Negative test for invalid parameter names.
TEST_P(LightsTest, NegativeInvalidEnum)
{
GLint maxLights = 0;
glGetIntegerv(GL_MAX_LIGHTS, &maxLights);
glIsEnabled(GL_LIGHT0 + maxLights);
EXPECT_GL_ERROR(GL_INVALID_ENUM);
glLightfv(GL_LIGHT0 + maxLights, GL_AMBIENT, nullptr);
EXPECT_GL_ERROR(GL_INVALID_ENUM);
glLightModelfv(GL_LIGHT0, nullptr);
EXPECT_GL_ERROR(GL_INVALID_ENUM);
glLightModelf(GL_LIGHT0, 0.0f);
EXPECT_GL_ERROR(GL_INVALID_ENUM);
for (int i = 0; i < maxLights; i++)
{
glLightf(GL_LIGHT0 + i, GL_TEXTURE_2D, 0.0f);
EXPECT_GL_ERROR(GL_INVALID_ENUM);
glLightfv(GL_LIGHT0 + i, GL_TEXTURE_2D, nullptr);
EXPECT_GL_ERROR(GL_INVALID_ENUM);
}
}
// Negative test for invalid parameter values.
TEST_P(LightsTest, NegativeInvalidValue)
{
GLint maxLights = 0;
glGetIntegerv(GL_MAX_LIGHTS, &maxLights);
std::vector<GLenum> attenuationParams = {
GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION,
GL_QUADRATIC_ATTENUATION,
};
for (int i = 0; i < maxLights; i++)
{
glLightf(GL_LIGHT0 + i, GL_SPOT_EXPONENT, -1.0f);
EXPECT_GL_ERROR(GL_INVALID_VALUE);
GLfloat previousVal = -1.0f;
glGetLightfv(GL_LIGHT0 + i, GL_SPOT_EXPONENT, &previousVal);
EXPECT_NE(-1.0f, previousVal);
glLightf(GL_LIGHT0 + i, GL_SPOT_EXPONENT, 128.1f);
EXPECT_GL_ERROR(GL_INVALID_VALUE);
previousVal = 128.1f;
glGetLightfv(GL_LIGHT0 + i, GL_SPOT_EXPONENT, &previousVal);
EXPECT_NE(128.1f, previousVal);
glLightf(GL_LIGHT0 + i, GL_SPOT_CUTOFF, -1.0f);
EXPECT_GL_ERROR(GL_INVALID_VALUE);
previousVal = -1.0f;
glGetLightfv(GL_LIGHT0 + i, GL_SPOT_CUTOFF, &previousVal);
EXPECT_NE(-1.0f, previousVal);
glLightf(GL_LIGHT0 + i, GL_SPOT_CUTOFF, 90.1f);
EXPECT_GL_ERROR(GL_INVALID_VALUE);
previousVal = 90.1f;
glGetLightfv(GL_LIGHT0 + i, GL_SPOT_CUTOFF, &previousVal);
EXPECT_NE(90.1f, previousVal);
for (GLenum pname : attenuationParams)
{
glLightf(GL_LIGHT0 + i, pname, -1.0f);
EXPECT_GL_ERROR(GL_INVALID_VALUE);
previousVal = -1.0f;
glGetLightfv(GL_LIGHT0 + i, pname, &previousVal);
EXPECT_NE(-1.0f, previousVal);
}
}
}
// Test to see if we can set and retrieve the light parameters.
TEST_P(LightsTest, Set)
{
angle::RNG rng(0);
GLint maxLights = 0;
glGetIntegerv(GL_MAX_LIGHTS, &maxLights);
constexpr int kNumTrials = 100;
GLColor32F actualColor;
angle::Vector4 actualPosition;
angle::Vector3 actualDirection;
GLfloat actualFloatValue;
GLboolean actualBooleanValue;
for (int k = 0; k < kNumTrials; ++k)
{
const GLColor32F lightModelAmbient(rng.randomFloat(), rng.randomFloat(), rng.randomFloat(),
rng.randomFloat());
const GLfloat lightModelTwoSide = rng.randomBool() ? 1.0f : 0.0f;
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, &lightModelAmbient.R);
EXPECT_GL_NO_ERROR();
glGetFloatv(GL_LIGHT_MODEL_AMBIENT, &actualColor.R);
EXPECT_EQ(lightModelAmbient, actualColor);
glLightModelf(GL_LIGHT_MODEL_TWO_SIDE, lightModelTwoSide);
EXPECT_GL_NO_ERROR();
glGetFloatv(GL_LIGHT_MODEL_TWO_SIDE, &actualFloatValue);
EXPECT_EQ(lightModelTwoSide, actualFloatValue);
glGetBooleanv(GL_LIGHT_MODEL_TWO_SIDE, &actualBooleanValue);
EXPECT_EQ(lightModelTwoSide == 1.0f ? GL_TRUE : GL_FALSE, actualBooleanValue);
for (int i = 0; i < maxLights; i++)
{
const GLColor32F ambient(rng.randomFloat(), rng.randomFloat(), rng.randomFloat(),
rng.randomFloat());
const GLColor32F diffuse(rng.randomFloat(), rng.randomFloat(), rng.randomFloat(),
rng.randomFloat());
const GLColor32F specular(rng.randomFloat(), rng.randomFloat(), rng.randomFloat(),
rng.randomFloat());
const angle::Vector4 position(rng.randomFloat(), rng.randomFloat(), rng.randomFloat(),
rng.randomFloat());
const angle::Vector3 direction(rng.randomFloat(), rng.randomFloat(), rng.randomFloat());
const GLfloat spotlightExponent = rng.randomFloatBetween(0.0f, 128.0f);
const GLfloat spotlightCutoffAngle =
rng.randomBool() ? rng.randomFloatBetween(0.0f, 90.0f) : 180.0f;
const GLfloat attenuationConst = rng.randomFloatNonnegative();
const GLfloat attenuationLinear = rng.randomFloatNonnegative();
const GLfloat attenuationQuadratic = rng.randomFloatNonnegative();
glLightfv(GL_LIGHT0 + i, GL_AMBIENT, &ambient.R);
EXPECT_GL_NO_ERROR();
glGetLightfv(GL_LIGHT0 + i, GL_AMBIENT, &actualColor.R);
EXPECT_EQ(ambient, actualColor);
glLightfv(GL_LIGHT0 + i, GL_DIFFUSE, &diffuse.R);
EXPECT_GL_NO_ERROR();
glGetLightfv(GL_LIGHT0 + i, GL_DIFFUSE, &actualColor.R);
EXPECT_EQ(diffuse, actualColor);
glLightfv(GL_LIGHT0 + i, GL_SPECULAR, &specular.R);
EXPECT_GL_NO_ERROR();
glGetLightfv(GL_LIGHT0 + i, GL_SPECULAR, &actualColor.R);
EXPECT_EQ(specular, actualColor);
glLightfv(GL_LIGHT0 + i, GL_POSITION, position.data());
EXPECT_GL_NO_ERROR();
glGetLightfv(GL_LIGHT0 + i, GL_POSITION, actualPosition.data());
EXPECT_EQ(position, actualPosition);
glLightfv(GL_LIGHT0 + i, GL_SPOT_DIRECTION, direction.data());
EXPECT_GL_NO_ERROR();
glGetLightfv(GL_LIGHT0 + i, GL_SPOT_DIRECTION, actualDirection.data());
EXPECT_EQ(direction, actualDirection);
glLightfv(GL_LIGHT0 + i, GL_SPOT_EXPONENT, &spotlightExponent);
EXPECT_GL_NO_ERROR();
glGetLightfv(GL_LIGHT0 + i, GL_SPOT_EXPONENT, &actualFloatValue);
EXPECT_EQ(spotlightExponent, actualFloatValue);
glLightfv(GL_LIGHT0 + i, GL_SPOT_CUTOFF, &spotlightCutoffAngle);
EXPECT_GL_NO_ERROR();
glGetLightfv(GL_LIGHT0 + i, GL_SPOT_CUTOFF, &actualFloatValue);
EXPECT_EQ(spotlightCutoffAngle, actualFloatValue);
glLightfv(GL_LIGHT0 + i, GL_CONSTANT_ATTENUATION, &attenuationConst);
EXPECT_GL_NO_ERROR();
glGetLightfv(GL_LIGHT0 + i, GL_CONSTANT_ATTENUATION, &actualFloatValue);
EXPECT_EQ(attenuationConst, actualFloatValue);
glLightfv(GL_LIGHT0 + i, GL_LINEAR_ATTENUATION, &attenuationLinear);
EXPECT_GL_NO_ERROR();
glGetLightfv(GL_LIGHT0 + i, GL_LINEAR_ATTENUATION, &actualFloatValue);
EXPECT_EQ(attenuationLinear, actualFloatValue);
glLightfv(GL_LIGHT0 + i, GL_LINEAR_ATTENUATION, &attenuationQuadratic);
EXPECT_GL_NO_ERROR();
glGetLightfv(GL_LIGHT0 + i, GL_LINEAR_ATTENUATION, &actualFloatValue);
EXPECT_EQ(attenuationQuadratic, actualFloatValue);
}
}
}
// Check a case that approximates the one caught in the wild
TEST_P(LightsTest, DiffuseGradient)
{
GLTexture texture;
glBindTexture(GL_TEXTURE_2D, texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
std::vector<GLColor> colors;
for (uint32_t x = 0; x < 1024; x++)
{
for (uint32_t y = 0; y < 1024; y++)
{
float x_ratio = (float)x / 1024.0f;
GLubyte v = (GLubyte)(255u * x_ratio);
GLColor color = {v, v, v, 255u};
colors.push_back(color);
}
}
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1024, 1024, 0, GL_RGBA, GL_UNSIGNED_BYTE,
colors.data());
glMatrixMode(GL_PROJECTION);
const GLfloat projectionMatrix[16] = {
0.615385, 0, 0, 0, 0, 1.333333, 0, 0, 0, 0, 1, 1, 0, 0, -2, 0,
};
glLoadMatrixf(projectionMatrix);
glEnable(GL_LIGHT0);
glEnable(GL_TEXTURE_2D);
glEnable(GL_LIGHTING);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glClearColor(1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0.0f, 0.0f, 32.0f, 32.0f);
const GLfloat ambient[4] = {2.0f, 2.0f, 2.0f, 1.0f};
const GLfloat diffuse[4] = {1.0f, 1.0f, 1.0f, 1.0f};
const GLfloat position[4] = {0.0f, 0.0f, 0.0f, 1.0f};
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHT0, GL_POSITION, position);
glMatrixMode(GL_MODELVIEW);
const GLfloat modelMatrix[16] = {
0.976656, 0.000000, -0.214807, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000,
0.214807, 0.000000, 0.976656, 0.000000, -96.007507, 0.000000, 200.000000, 1.000000,
};
glLoadMatrixf(modelMatrix);
glBindTexture(GL_TEXTURE_2D, texture);
std::vector<float> positions = {
-64.0f, -89.0f, 1.0f, -64.0f, 89.0f, 1.0f, 64.0f, -89.0f, 1.0f, 64.0f, 89.0f, 1.0f,
};
std::vector<float> uvs = {
0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
};
std::vector<float> normals = {
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
};
glVertexPointer(3, GL_FLOAT, 0, positions.data());
glTexCoordPointer(2, GL_FLOAT, 0, uvs.data());
glNormalPointer(GL_FLOAT, 0, normals.data());
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
EXPECT_GL_NO_ERROR();
EXPECT_PIXEL_COLOR_NEAR(11, 11, GLColor(29, 29, 29, 255), 1);
}
void LightsTest::drawTestQuad()
{
struct Vertex
{
GLfloat position[3];
GLfloat normal[3];
};
glClearColor(0.4f, 0.4f, 0.4f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustumf(-1, 1, -1, 1, 5.0, 60.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, -8.0f);
glRotatef(150, 0, 1, 0);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
{
GLfloat ambientAndDiffuse[4] = {1.0f, 0.0f, 0.0f, 1.0f};
GLfloat specular[4] = {0.0f, 0.0f, 10.0f, 1.0f};
GLfloat shininess = 2.0f;
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, ambientAndDiffuse);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specular);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, shininess);
}
std::vector<Vertex> vertices = {
{{-1.0f, -1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}},
{{-1.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}},
{{1.0f, -1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}},
{{1.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}},
};
glVertexPointer(3, GL_FLOAT, sizeof vertices[0], &vertices[0].position);
glNormalPointer(GL_FLOAT, sizeof vertices[0], &vertices[0].normal);
glDrawArrays(GL_TRIANGLE_STRIP, 0, vertices.size());
EXPECT_GL_NO_ERROR();
}
// Check smooth lighting
TEST_P(LightsTest, SmoothLitMesh)
{
{
GLfloat position[4] = {0.0f, 0.0f, -20.0f, 1.0f};
GLfloat diffuse[4] = {0.7f, 0.7f, 0.7f, 1.0f};
GLfloat specular[4] = {0.1f, 0.1f, 1.0f, 1.0f};
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightfv(GL_LIGHT0, GL_POSITION, position);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
}
drawTestQuad();
EXPECT_PIXEL_COLOR_NEAR(16, 16, GLColor(205, 0, 92, 255), 1);
}
// Check flat lighting
TEST_P(LightsTest, FlatLitMesh)
{
{
GLfloat position[4] = {0.0f, 0.0f, -20.0f, 1.0f};
GLfloat diffuse[4] = {0.7f, 0.7f, 0.7f, 1.0f};
GLfloat specular[4] = {0.1f, 0.1f, 1.0f, 1.0f};
glEnable(GL_LIGHTING);
glShadeModel(GL_FLAT);
glEnable(GL_LIGHT0);
glLightfv(GL_LIGHT0, GL_POSITION, position);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
}
drawTestQuad();
EXPECT_PIXEL_COLOR_NEAR(16, 16, GLColor(211, 0, 196, 255), 1);
}
ANGLE_INSTANTIATE_TEST_ES1(LightsTest);