Hash :
0a6c6c00
Author :
Date :
2021-06-01T10:59:17
Vulkan: Submit Dispatch commands outside renderpass Compute dispatch commands must be submitted outside a renderpass, but their associated debug event markers were being submitted on the renderpass commandbuffer. The dispatch debug event markers are now handled separately from those for draw calls and are now submitted on the correct commandbuffer. Failure manifested in malformed AGI traces for Ragnarok M: Eternal Love Bug: b/181611786 Change-Id: I768eeccd76be38818fc99d6d56f5899290c8fc5b Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/2930818 Reviewed-by: Ian Elliott <ianelliott@google.com> Reviewed-by: Cody Northrop <cnorthrop@google.com> Commit-Queue: Ian Elliott <ianelliott@google.com>
ANGLE’s Vulkan back-end implementation lives in this folder.
Vulkan is an explicit graphics API. It has a lot in common with other explicit APIs such as Microsoft’s D3D12 and Apple’s Metal. Compared to APIs like OpenGL or D3D11 explicit APIs can offer a number of significant benefits:
The RendererVk class represents an EGLDisplay. RendererVk owns shared global
resources like the VkDevice, VkQueue, the Vulkan format tables
and internal Vulkan shaders. The ContextVk class implements the back-end
of a front-end OpenGL Context. ContextVk processes state changes and handles action commands like
glDrawArrays and glDrawElements.
The back-end records commands into command buffers via the following ContextVk APIs:
beginNewRenderPass: Writes out (aka flushes) prior pending commands into a primary command
buffer, then starts a new render pass. Returns a secondary command buffer inside a render pass
instance. getOutsideRenderPassCommandBuffer: May flush prior command buffers and close the render pass if
necessary, in addition to issuing the appropriate barriers. Returns a secondary command buffer
outside a render pass instance. getStartedRenderPassCommands: Returns a reference to the currently open render pass’ commands
buffer.
The back-end (mostly) records Image and Buffer barriers through additional CommandBufferAccess
APIs, the result of which is passed to getOutsideRenderPassCommandBuffer. Note that the
barriers are not actually recorded until getOutsideRenderPassCommandBuffer is called:
onBufferTransferRead and onBufferComputeShaderRead accumulate VkBuffer read barriers. onBufferTransferWrite and onBufferComputeShaderWrite accumulate VkBuffer write barriers. onBuffferSelfCopy is a special case for VkBuffer self copies. It behaves the same as write. onImageTransferRead and onImageComputerShadeRead accumulate VkImage read barriers. onImageTransferWrite and onImageComputerShadeWrite accumulate VkImage write barriers. onImageRenderPassRead and onImageRenderPassWrite accumulate VkImage barriers inside a
started RenderPass.
After the back-end records commands to the primary buffer and we flush (e.g. on swap) or when we call
ContextVk::finishToSerial, ANGLE submits the primary command buffer to a VkQueue.
See the code for more details.
In this example we’ll be recording a buffer copy command:
// Ensure that ANGLE sets proper read and write barriers for the Buffers.
vk::CommandBufferAccess access;
access.onBufferTransferWrite(destBuffer);
access.onBufferTransferRead(srcBuffer);
// Get a pointer to a secondary command buffer for command recording.
vk::CommandBuffer *commandBuffer;
ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer));
// Record the copy command into the secondary buffer. We're done!
commandBuffer->copyBuffer(srcBuffer->getBuffer(), destBuffer->getBuffer(), copyCount, copies);
More implementation details can be found in the doc directory: