Hash :
ac1a377d
Author :
Date :
2018-06-26T15:05:38
Vulkan: Split tree ops into separate files. This makes the design consistent. Added new files for NameEmbeddedStructs and RewriteStructSamplers. Bug: angleproject:2665 Bug: angleproject:2494 Change-Id: If7d22a6ce9a86d51d38f68787006b7a28957861e Reviewed-on: https://chromium-review.googlesource.com/1108086 Reviewed-by: Jamie Madill <jmadill@chromium.org> Commit-Queue: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
//
// Copyright (c) 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// TranslatorVulkan:
// A GLSL-based translator that outputs shaders that fit GL_KHR_vulkan_glsl.
// The shaders are then fed into glslang to spit out SPIR-V (libANGLE-side).
// See: https://www.khronos.org/registry/vulkan/specs/misc/GL_KHR_vulkan_glsl.txt
//
#include "compiler/translator/TranslatorVulkan.h"
#include "angle_gl.h"
#include "common/utilities.h"
#include "compiler/translator/ImmutableStringBuilder.h"
#include "compiler/translator/OutputVulkanGLSL.h"
#include "compiler/translator/StaticType.h"
#include "compiler/translator/tree_ops/NameEmbeddedUniformStructs.h"
#include "compiler/translator/tree_ops/RewriteStructSamplers.h"
#include "compiler/translator/tree_util/BuiltIn_autogen.h"
#include "compiler/translator/tree_util/FindMain.h"
#include "compiler/translator/tree_util/IntermNode_util.h"
#include "compiler/translator/tree_util/ReplaceVariable.h"
#include "compiler/translator/tree_util/RunAtTheEndOfShader.h"
#include "compiler/translator/util.h"
namespace sh
{
namespace
{
// This traverses nodes, find the struct ones and add their declarations to the sink. It also
// removes the nodes from the tree as it processes them.
class DeclareStructTypesTraverser : public TIntermTraverser
{
public:
explicit DeclareStructTypesTraverser(TOutputVulkanGLSL *outputVulkanGLSL)
: TIntermTraverser(true, false, false), mOutputVulkanGLSL(outputVulkanGLSL)
{
}
bool visitDeclaration(Visit visit, TIntermDeclaration *node) override
{
ASSERT(visit == PreVisit);
if (!mInGlobalScope)
{
return false;
}
const TIntermSequence &sequence = *(node->getSequence());
TIntermTyped *declarator = sequence.front()->getAsTyped();
const TType &type = declarator->getType();
if (type.isStructSpecifier())
{
const TStructure *structure = type.getStruct();
// Embedded structs should be parsed away by now.
ASSERT(structure->symbolType() != SymbolType::Empty);
mOutputVulkanGLSL->writeStructType(structure);
TIntermSymbol *symbolNode = declarator->getAsSymbolNode();
if (symbolNode && symbolNode->variable().symbolType() == SymbolType::Empty)
{
// Remove the struct specifier declaration from the tree so it isn't parsed again.
TIntermSequence emptyReplacement;
mMultiReplacements.emplace_back(getParentNode()->getAsBlock(), node,
emptyReplacement);
}
}
return false;
}
private:
TOutputVulkanGLSL *mOutputVulkanGLSL;
};
class DeclareDefaultUniformsTraverser : public TIntermTraverser
{
public:
DeclareDefaultUniformsTraverser(TInfoSinkBase *sink,
ShHashFunction64 hashFunction,
NameMap *nameMap)
: TIntermTraverser(true, true, true),
mSink(sink),
mHashFunction(hashFunction),
mNameMap(nameMap),
mInDefaultUniform(false)
{
}
bool visitDeclaration(Visit visit, TIntermDeclaration *node) override
{
const TIntermSequence &sequence = *(node->getSequence());
// TODO(jmadill): Compound declarations.
ASSERT(sequence.size() == 1);
TIntermTyped *variable = sequence.front()->getAsTyped();
const TType &type = variable->getType();
bool isUniform = (type.getQualifier() == EvqUniform) && !IsOpaqueType(type.getBasicType());
if (visit == PreVisit)
{
if (isUniform)
{
(*mSink) << " " << GetTypeName(type, mHashFunction, mNameMap) << " ";
mInDefaultUniform = true;
}
}
else if (visit == InVisit)
{
mInDefaultUniform = isUniform;
}
else if (visit == PostVisit)
{
if (isUniform)
{
(*mSink) << ";\n";
// Remove the uniform declaration from the tree so it isn't parsed again.
TIntermSequence emptyReplacement;
mMultiReplacements.emplace_back(getParentNode()->getAsBlock(), node,
emptyReplacement);
}
mInDefaultUniform = false;
}
return true;
}
void visitSymbol(TIntermSymbol *symbol) override
{
if (mInDefaultUniform)
{
const ImmutableString &name = symbol->variable().name();
ASSERT(!name.beginsWith("gl_"));
(*mSink) << HashName(name, mHashFunction, mNameMap) << ArrayString(symbol->getType());
}
}
private:
TInfoSinkBase *mSink;
ShHashFunction64 mHashFunction;
NameMap *mNameMap;
bool mInDefaultUniform;
};
constexpr ImmutableString kFlippedPointCoordName = ImmutableString("flippedPointCoord");
// Declares a new variable to replace gl_PointCoord with a version that is flipping the Y
// coordinate.
void FlipGLPointCoord(TIntermBlock *root, TSymbolTable *symbolTable)
{
// Create a symbol reference to "gl_PointCoord"
const TVariable *pointCoord = BuiltInVariable::gl_PointCoord();
TIntermSymbol *pointCoordRef = new TIntermSymbol(pointCoord);
// Create a swizzle to "gl_PointCoord.x"
TVector<int> swizzleOffsetX;
swizzleOffsetX.push_back(0);
TIntermSwizzle *pointCoordX = new TIntermSwizzle(pointCoordRef, swizzleOffsetX);
// Create a swizzle to "gl_PointCoord.y"
TVector<int> swizzleOffsetY;
swizzleOffsetY.push_back(1);
TIntermSwizzle *pointCoordY = new TIntermSwizzle(pointCoordRef, swizzleOffsetY);
// Create a symbol reference to our new variable that will hold the modified gl_PointCoord.
TVariable *replacementVar =
new TVariable(symbolTable, kFlippedPointCoordName,
StaticType::Helpers::GetForVecMatHelper<EbtFloat, EbpMedium, EvqGlobal, 1>(2),
SymbolType::UserDefined);
DeclareGlobalVariable(root, replacementVar);
TIntermSymbol *flippedPointCoordsRef = new TIntermSymbol(replacementVar);
// Create a constant "-1.0"
const TType *constantType = StaticType::GetBasic<EbtFloat>();
TConstantUnion *constantValueMinusOne = new TConstantUnion();
constantValueMinusOne->setFConst(-1.0f);
TIntermConstantUnion *minusOne = new TIntermConstantUnion(constantValueMinusOne, *constantType);
// Create a constant "1.0"
TConstantUnion *constantValueOne = new TConstantUnion();
constantValueOne->setFConst(1.0f);
TIntermConstantUnion *one = new TIntermConstantUnion(constantValueOne, *constantType);
// Create the expression "gl_PointCoord.y * -1.0 + 1.0"
TIntermBinary *inverseY = new TIntermBinary(EOpMul, pointCoordY, minusOne);
TIntermBinary *plusOne = new TIntermBinary(EOpAdd, inverseY, one);
// Create the new vec2 using the modified Y
TIntermSequence *sequence = new TIntermSequence();
sequence->push_back(pointCoordX);
sequence->push_back(plusOne);
TIntermAggregate *aggregate =
TIntermAggregate::CreateConstructor(BuiltInVariable::gl_PointCoord()->getType(), sequence);
// Use this new variable instead of gl_PointCoord everywhere.
ReplaceVariable(root, pointCoord, replacementVar);
// Assign this new value to flippedPointCoord
TIntermBinary *assignment = new TIntermBinary(EOpInitialize, flippedPointCoordsRef, aggregate);
// Add this assigment at the beginning of the main function
TIntermFunctionDefinition *main = FindMain(root);
TIntermSequence *mainSequence = main->getBody()->getSequence();
mainSequence->insert(mainSequence->begin(), assignment);
}
// This operation performs the viewport depth translation needed by Vulkan. In GL the viewport
// transformation is slightly different - see the GL 2.0 spec section "2.12.1 Controlling the
// Viewport". In Vulkan the corresponding spec section is currently "23.4. Coordinate
// Transformations".
// The equations reduce to an expression:
//
// z_vk = w_gl * (0.5 * z_gl + 0.5)
//
// where z_vk is the depth output of a Vulkan vertex shader and z_gl is the same for GL.
void AppendVertexShaderDepthCorrectionToMain(TIntermBlock *root, TSymbolTable *symbolTable)
{
// Create a symbol reference to "gl_Position"
const TVariable *position = BuiltInVariable::gl_Position();
TIntermSymbol *positionRef = new TIntermSymbol(position);
// Create a swizzle to "gl_Position.z"
TVector<int> swizzleOffsetZ;
swizzleOffsetZ.push_back(2);
TIntermSwizzle *positionZ = new TIntermSwizzle(positionRef, swizzleOffsetZ);
// Create a constant "0.5"
const TType *constantType = StaticType::GetBasic<TBasicType::EbtFloat>();
TConstantUnion *constantValue = new TConstantUnion();
constantValue->setFConst(0.5f);
TIntermConstantUnion *oneHalf = new TIntermConstantUnion(constantValue, *constantType);
// Create the expression "gl_Position.z * 0.5 + 0.5"
TIntermBinary *halfZ = new TIntermBinary(TOperator::EOpMul, positionZ, oneHalf);
TIntermBinary *halfZPlusHalf = new TIntermBinary(TOperator::EOpAdd, halfZ, oneHalf->deepCopy());
// Create a swizzle to "gl_Position.w"
TVector<int> swizzleOffsetW;
swizzleOffsetW.push_back(3);
TIntermSwizzle *positionW = new TIntermSwizzle(positionRef->deepCopy(), swizzleOffsetW);
// Create the expression "gl_Position.w * (gl_Position.z * 0.5 + 0.5)"
TIntermBinary *vulkanZ = new TIntermBinary(TOperator::EOpMul, positionW, halfZPlusHalf);
// Create the assignment "gl_Position.z = gl_Position.w * (gl_Position.z * 0.5 + 0.5)"
TIntermTyped *positionZLHS = positionZ->deepCopy();
TIntermBinary *assignment = new TIntermBinary(TOperator::EOpAssign, positionZLHS, vulkanZ);
// Append the assignment as a statement at the end of the shader.
RunAtTheEndOfShader(root, assignment, symbolTable);
}
} // anonymous namespace
TranslatorVulkan::TranslatorVulkan(sh::GLenum type, ShShaderSpec spec)
: TCompiler(type, spec, SH_GLSL_450_CORE_OUTPUT)
{
}
void TranslatorVulkan::translate(TIntermBlock *root,
ShCompileOptions compileOptions,
PerformanceDiagnostics * /*perfDiagnostics*/)
{
TInfoSinkBase &sink = getInfoSink().obj;
TOutputVulkanGLSL outputGLSL(sink, getArrayIndexClampingStrategy(), getHashFunction(),
getNameMap(), &getSymbolTable(), getShaderType(),
getShaderVersion(), getOutputType(), compileOptions);
sink << "#version 450 core\n";
// Write out default uniforms into a uniform block assigned to a specific set/binding.
int defaultUniformCount = 0;
int structTypesUsedForUniforms = 0;
for (const auto &uniform : getUniforms())
{
if (!uniform.isBuiltIn() && uniform.staticUse && !gl::IsOpaqueType(uniform.type))
{
++defaultUniformCount;
}
if (uniform.isStruct())
{
++structTypesUsedForUniforms;
}
}
// TODO(lucferron): Refactor this function to do less tree traversals.
// http://anglebug.com/2461
if (structTypesUsedForUniforms > 0)
{
NameEmbeddedStructUniforms(root, &getSymbolTable());
defaultUniformCount -= RewriteStructSamplers(root, &getSymbolTable());
// We must declare the struct types before using them.
DeclareStructTypesTraverser structTypesTraverser(&outputGLSL);
root->traverse(&structTypesTraverser);
structTypesTraverser.updateTree();
}
if (defaultUniformCount > 0)
{
sink << "\nlayout(@@ DEFAULT-UNIFORMS-SET-BINDING @@) uniform defaultUniforms\n{\n";
DeclareDefaultUniformsTraverser defaultTraverser(&sink, getHashFunction(), &getNameMap());
root->traverse(&defaultTraverser);
defaultTraverser.updateTree();
sink << "};\n";
}
// Declare gl_FragColor and glFragData as webgl_FragColor and webgl_FragData
// if it's core profile shaders and they are used.
if (getShaderType() == GL_FRAGMENT_SHADER)
{
bool hasGLFragColor = false;
bool hasGLFragData = false;
for (const OutputVariable &outputVar : outputVariables)
{
if (outputVar.name == "gl_FragColor")
{
ASSERT(!hasGLFragColor);
hasGLFragColor = true;
continue;
}
else if (outputVar.name == "gl_FragData")
{
ASSERT(!hasGLFragData);
hasGLFragData = true;
continue;
}
}
ASSERT(!(hasGLFragColor && hasGLFragData));
if (hasGLFragColor)
{
sink << "layout(location = 0) out vec4 webgl_FragColor;\n";
}
if (hasGLFragData)
{
sink << "layout(location = 0) out vec4 webgl_FragData[gl_MaxDrawBuffers];\n";
}
// Search for the gl_PointCoord usage, if its used, we need to flip the y coordinate.
for (const Varying &inputVarying : inputVaryings)
{
if (!inputVarying.isBuiltIn())
{
continue;
}
if (inputVarying.name == "gl_PointCoord")
{
FlipGLPointCoord(root, &getSymbolTable());
break;
}
}
}
else
{
ASSERT(getShaderType() == GL_VERTEX_SHADER);
// Append depth range translation to main.
AppendVertexShaderDepthCorrectionToMain(root, &getSymbolTable());
}
// Write translated shader.
root->traverse(&outputGLSL);
}
bool TranslatorVulkan::shouldFlattenPragmaStdglInvariantAll()
{
// Not necessary.
return false;
}
} // namespace sh