Hash :
3402d523
Author :
Date :
2018-10-30T15:14:52
Try to reduce variance in angle_perftests. This change does a few things: - make perf test runner script print % variation instead of stddev This makes it a bit more clear how much variance there is. - stabilize CPU in the render perf tests Setting a thread affinity and priority should stop from switching cores during the run. Hopefully can prevent background noise from changing the test results. - warm up the benchmark with a few iterations This should hopefully make the test results a bit more stable. - output a new normalized perf result value The new result is normalized against the number of iterations. So it should hopefully be stable even if the number of iterations is changed. - increases the iteration count in the draw call perf tests. These tests were completely dominated by SwapBuffers time. Increasing the iterations per step means we actually are bottlenecked on CPU time instead. Bug: angleproject:2923 Change-Id: I5ee347cf93df239ac33b83dc5effe4c21e066736 Reviewed-on: https://chromium-review.googlesource.com/c/1303679 Commit-Queue: Jamie Madill <jmadill@chromium.org> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org> Reviewed-by: Yuly Novikov <ynovikov@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
//
// Copyright (c) 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// TextureSamplingBenchmark:
// Performance test for texture sampling. The test generates a texture containing random data
// and then blurs it in a fragment shader using nearest neighbor sampling. The test is
// specifically designed to test overhead of GLSL's builtin texture*() functions that may result
// from how ANGLE translates them on each backend.
//
#include "ANGLEPerfTest.h"
#include <iostream>
#include <random>
#include <sstream>
#include "shader_utils.h"
using namespace angle;
namespace
{
constexpr unsigned int kIterationsPerStep = 4;
struct TextureSamplingParams final : public RenderTestParams
{
TextureSamplingParams()
{
iterationsPerStep = kIterationsPerStep;
// Common default params
majorVersion = 2;
minorVersion = 0;
windowWidth = 720;
windowHeight = 720;
numSamplers = 2;
textureSize = 32;
kernelSize = 3;
}
std::string suffix() const override;
unsigned int numSamplers;
unsigned int textureSize;
unsigned int kernelSize;
};
std::ostream &operator<<(std::ostream &os, const TextureSamplingParams ¶ms)
{
os << params.suffix().substr(1);
return os;
}
std::string TextureSamplingParams::suffix() const
{
std::stringstream strstr;
strstr << RenderTestParams::suffix() << "_" << numSamplers << "samplers";
return strstr.str();
}
class TextureSamplingBenchmark : public ANGLERenderTest,
public ::testing::WithParamInterface<TextureSamplingParams>
{
public:
TextureSamplingBenchmark();
void initializeBenchmark() override;
void destroyBenchmark() override;
void drawBenchmark() override;
private:
void initShaders();
void initVertexBuffer();
void initTextures();
GLuint mProgram;
GLuint mBuffer;
std::vector<GLuint> mTextures;
};
TextureSamplingBenchmark::TextureSamplingBenchmark()
: ANGLERenderTest("TextureSampling", GetParam()), mProgram(0u), mBuffer(0u)
{
}
void TextureSamplingBenchmark::initializeBenchmark()
{
const auto ¶ms = GetParam();
// Verify "numSamplers" is within MAX_TEXTURE_IMAGE_UNITS limit
GLint maxTextureImageUnits;
glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &maxTextureImageUnits);
if (params.numSamplers > static_cast<unsigned int>(maxTextureImageUnits))
{
FAIL() << "Sampler count (" << params.numSamplers << ")"
<< " exceeds maximum texture count: " << maxTextureImageUnits << std::endl;
}
initShaders();
initVertexBuffer();
initTextures();
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glViewport(0, 0, getWindow()->getWidth(), getWindow()->getHeight());
ASSERT_GL_NO_ERROR();
}
void TextureSamplingBenchmark::initShaders()
{
const auto ¶ms = GetParam();
std::stringstream vstrstr;
vstrstr << "attribute vec2 aPosition;\n"
"varying vec2 vTextureCoordinates;\n"
"void main()\n"
"{\n"
" vTextureCoordinates = (aPosition + vec2(1.0)) * 0.5;\n"
" gl_Position = vec4(aPosition, 0, 1.0);\n"
"}";
std::stringstream fstrstr;
fstrstr << "precision mediump float;\n"
"varying vec2 vTextureCoordinates;\n";
for (unsigned int count = 0; count < params.numSamplers; count++)
{
fstrstr << "uniform sampler2D uSampler" << count << ";\n";
}
fstrstr << "void main()\n"
"{\n"
" const float inverseTextureSize = 1.0 / "
<< params.textureSize << ".0;\n"
" vec4 colorOut = vec4(0.0, 0.0, 0.0, 1.0);\n";
for (unsigned int count = 0; count < params.numSamplers; count++)
{
fstrstr << " for (int x = 0; x < " << params.kernelSize << "; ++x)\n"
" {\n"
" for (int y = 0; y < " << params.kernelSize << "; ++y)\n"
" {\n"
" colorOut += texture2D(uSampler" << count
<< ", vTextureCoordinates + vec2(x, y) * inverseTextureSize) * 0.1;\n"
" }\n"
" }\n";
}
fstrstr << " gl_FragColor = colorOut;\n"
"}\n";
mProgram = CompileProgram(vstrstr.str(), fstrstr.str());
ASSERT_NE(0u, mProgram);
// Use the program object
glUseProgram(mProgram);
}
void TextureSamplingBenchmark::initVertexBuffer()
{
std::vector<float> vertexPositions(12);
{
// Bottom left triangle
vertexPositions[0] = -1.0f;
vertexPositions[1] = -1.0f;
vertexPositions[2] = 1.0f;
vertexPositions[3] = -1.0f;
vertexPositions[4] = -1.0f;
vertexPositions[5] = 1.0f;
// Top right triangle
vertexPositions[6] = -1.0f;
vertexPositions[7] = 1.0f;
vertexPositions[8] = 1.0f;
vertexPositions[9] = -1.0f;
vertexPositions[10] = 1.0f;
vertexPositions[11] = 1.0f;
}
glGenBuffers(1, &mBuffer);
glBindBuffer(GL_ARRAY_BUFFER, mBuffer);
glBufferData(GL_ARRAY_BUFFER, vertexPositions.size() * sizeof(float), &vertexPositions[0],
GL_STATIC_DRAW);
GLint positionLocation = glGetAttribLocation(mProgram, "aPosition");
ASSERT_NE(-1, positionLocation);
glVertexAttribPointer(positionLocation, 2, GL_FLOAT, GL_FALSE, 0, nullptr);
glEnableVertexAttribArray(positionLocation);
}
void TextureSamplingBenchmark::initTextures()
{
const auto ¶ms = GetParam();
unsigned int dataSize = params.textureSize * params.textureSize;
std::vector<unsigned int> randomTextureData;
randomTextureData.resize(dataSize);
unsigned int pseudoRandom = 1u;
for (unsigned int i = 0; i < dataSize; ++i)
{
pseudoRandom = pseudoRandom * 1664525u + 1013904223u;
randomTextureData[i] = pseudoRandom;
}
mTextures.resize(params.numSamplers);
glGenTextures(params.numSamplers, mTextures.data());
for (unsigned int i = 0; i < params.numSamplers; ++i)
{
glActiveTexture(GL_TEXTURE0 + i);
glBindTexture(GL_TEXTURE_2D, mTextures[i]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, params.textureSize, params.textureSize, 0, GL_RGBA,
GL_UNSIGNED_BYTE, randomTextureData.data());
}
for (unsigned int count = 0; count < params.numSamplers; count++)
{
std::stringstream samplerstrstr;
samplerstrstr << "uSampler" << count;
GLint samplerLocation = glGetUniformLocation(mProgram, samplerstrstr.str().c_str());
ASSERT_NE(-1, samplerLocation);
glUniform1i(samplerLocation, count);
}
}
void TextureSamplingBenchmark::destroyBenchmark()
{
const auto ¶ms = GetParam();
glDeleteProgram(mProgram);
glDeleteBuffers(1, &mBuffer);
if (!mTextures.empty())
{
glDeleteTextures(params.numSamplers, mTextures.data());
}
}
void TextureSamplingBenchmark::drawBenchmark()
{
glClear(GL_COLOR_BUFFER_BIT);
const auto ¶ms = GetParam();
for (unsigned int it = 0; it < params.iterationsPerStep; ++it)
{
glDrawArrays(GL_TRIANGLES, 0, 6);
}
ASSERT_GL_NO_ERROR();
}
TextureSamplingParams D3D11Params()
{
TextureSamplingParams params;
params.eglParameters = egl_platform::D3D11();
return params;
}
TextureSamplingParams D3D9Params()
{
TextureSamplingParams params;
params.eglParameters = egl_platform::D3D9();
return params;
}
TextureSamplingParams OpenGLOrGLESParams()
{
TextureSamplingParams params;
params.eglParameters = egl_platform::OPENGL_OR_GLES(false);
return params;
}
TextureSamplingParams VulkanParams()
{
TextureSamplingParams params;
params.eglParameters = egl_platform::VULKAN();
return params;
}
} // anonymous namespace
TEST_P(TextureSamplingBenchmark, Run)
{
run();
}
ANGLE_INSTANTIATE_TEST(TextureSamplingBenchmark,
D3D11Params(),
D3D9Params(),
OpenGLOrGLESParams(),
VulkanParams());