Hash :
6ca2b65c
Author :
Date :
2017-02-19T18:05:10
Implement location layout qualifier for uniforms This is a complete implementation of the uniform location layout qualifier. Uniform location set in the shader is plumbed to shader linking, which does several link-time checks for conflicts and recursively applies the location to struct members. Validate that location is consistent as specified in the table in section 9.2.1 of the ESSL 3.10.4 spec. The location set in the shader overrides the one set via the CHROMIUM_bind_uniform_location API. Location conflicts must be checked even if the uniforms are not statically used. Because of this unused uniforms are now recorded during uniform linking. After linking checks are done, unused uniforms are pruned from the program state. Location is validated against the maximum number of uniform locations at compile time as specified in section 4.4.3 of the ESSL 3.10.4 spec. All dEQP uniform location tests don't yet pass due to unrelated bugs. BUG=angleproject:1442 TEST=angle_end2end_tests, dEQP-GLES31.functional.uniform_location.* Change-Id: I1f968e971f521fbc804b01e1a7c2b4d14f24d20f Reviewed-on: https://chromium-review.googlesource.com/447942 Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Geoff Lang <geofflang@chromium.org> Commit-Queue: Olli Etuaho <oetuaho@nvidia.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
//
// Copyright (c) 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Compiler.cpp: implements the gl::Compiler class.
#include "libANGLE/Compiler.h"
#include "common/debug.h"
#include "libANGLE/ContextState.h"
#include "libANGLE/renderer/CompilerImpl.h"
#include "libANGLE/renderer/GLImplFactory.h"
namespace gl
{
namespace
{
// Global count of active shader compiler handles. Needed to know when to call sh::Initialize and
// sh::Finalize.
size_t activeCompilerHandles = 0;
ShShaderSpec SelectShaderSpec(GLint majorVersion, GLint minorVersion, bool isWebGL)
{
if (majorVersion >= 3)
{
if (minorVersion == 1)
{
return isWebGL ? SH_WEBGL3_SPEC : SH_GLES3_1_SPEC;
}
else
{
return isWebGL ? SH_WEBGL2_SPEC : SH_GLES3_SPEC;
}
}
return isWebGL ? SH_WEBGL_SPEC : SH_GLES2_SPEC;
}
} // anonymous namespace
Compiler::Compiler(rx::GLImplFactory *implFactory, const ContextState &state)
: mImplementation(implFactory->createCompiler()),
mSpec(SelectShaderSpec(state.getClientMajorVersion(),
state.getClientMinorVersion(),
state.getExtensions().webglCompatibility)),
mOutputType(mImplementation->getTranslatorOutputType()),
mResources(),
mFragmentCompiler(nullptr),
mVertexCompiler(nullptr),
mComputeCompiler(nullptr)
{
ASSERT(state.getClientMajorVersion() == 2 || state.getClientMajorVersion() == 3);
const gl::Caps &caps = state.getCaps();
const gl::Extensions &extensions = state.getExtensions();
sh::InitBuiltInResources(&mResources);
mResources.MaxVertexAttribs = caps.maxVertexAttributes;
mResources.MaxVertexUniformVectors = caps.maxVertexUniformVectors;
mResources.MaxVaryingVectors = caps.maxVaryingVectors;
mResources.MaxVertexTextureImageUnits = caps.maxVertexTextureImageUnits;
mResources.MaxCombinedTextureImageUnits = caps.maxCombinedTextureImageUnits;
mResources.MaxTextureImageUnits = caps.maxTextureImageUnits;
mResources.MaxFragmentUniformVectors = caps.maxFragmentUniformVectors;
mResources.MaxDrawBuffers = caps.maxDrawBuffers;
mResources.OES_standard_derivatives = extensions.standardDerivatives;
mResources.EXT_draw_buffers = extensions.drawBuffers;
mResources.EXT_shader_texture_lod = extensions.shaderTextureLOD;
mResources.OES_EGL_image_external = extensions.eglImageExternal;
mResources.OES_EGL_image_external_essl3 = extensions.eglImageExternalEssl3;
mResources.NV_EGL_stream_consumer_external = extensions.eglStreamConsumerExternal;
// TODO: use shader precision caps to determine if high precision is supported?
mResources.FragmentPrecisionHigh = 1;
mResources.EXT_frag_depth = extensions.fragDepth;
// GLSL ES 3.0 constants
mResources.MaxVertexOutputVectors = caps.maxVertexOutputComponents / 4;
mResources.MaxFragmentInputVectors = caps.maxFragmentInputComponents / 4;
mResources.MinProgramTexelOffset = caps.minProgramTexelOffset;
mResources.MaxProgramTexelOffset = caps.maxProgramTexelOffset;
// GLSL ES 3.1 constants
mResources.MaxImageUnits = caps.maxImageUnits;
mResources.MaxVertexImageUniforms = caps.maxVertexImageUniforms;
mResources.MaxFragmentImageUniforms = caps.maxFragmentImageUniforms;
mResources.MaxComputeImageUniforms = caps.maxComputeImageUniforms;
mResources.MaxCombinedImageUniforms = caps.maxCombinedImageUniforms;
mResources.MaxCombinedShaderOutputResources = caps.maxCombinedShaderOutputResources;
mResources.MaxUniformLocations = caps.maxUniformLocations;
for (size_t index = 0u; index < 3u; ++index)
{
mResources.MaxComputeWorkGroupCount[index] = caps.maxComputeWorkGroupCount[index];
mResources.MaxComputeWorkGroupSize[index] = caps.maxComputeWorkGroupSize[index];
}
mResources.MaxComputeUniformComponents = caps.maxComputeUniformComponents;
mResources.MaxComputeTextureImageUnits = caps.maxComputeTextureImageUnits;
mResources.MaxComputeAtomicCounters = caps.maxComputeAtomicCounters;
mResources.MaxComputeAtomicCounterBuffers = caps.maxComputeAtomicCounterBuffers;
mResources.MaxVertexAtomicCounters = caps.maxVertexAtomicCounters;
mResources.MaxFragmentAtomicCounters = caps.maxFragmentAtomicCounters;
mResources.MaxCombinedAtomicCounters = caps.maxCombinedAtomicCounters;
mResources.MaxAtomicCounterBindings = caps.maxAtomicCounterBufferBindings;
mResources.MaxVertexAtomicCounterBuffers = caps.maxVertexAtomicCounterBuffers;
mResources.MaxFragmentAtomicCounterBuffers = caps.maxFragmentAtomicCounterBuffers;
mResources.MaxCombinedAtomicCounterBuffers = caps.maxCombinedAtomicCounterBuffers;
mResources.MaxAtomicCounterBufferSize = caps.maxAtomicCounterBufferSize;
if (state.getClientMajorVersion() == 2 && !extensions.drawBuffers)
{
mResources.MaxDrawBuffers = 1;
}
}
Compiler::~Compiler()
{
release();
SafeDelete(mImplementation);
}
Error Compiler::release()
{
if (mFragmentCompiler)
{
sh::Destruct(mFragmentCompiler);
mFragmentCompiler = nullptr;
ASSERT(activeCompilerHandles > 0);
activeCompilerHandles--;
}
if (mVertexCompiler)
{
sh::Destruct(mVertexCompiler);
mVertexCompiler = nullptr;
ASSERT(activeCompilerHandles > 0);
activeCompilerHandles--;
}
if (mComputeCompiler)
{
sh::Destruct(mComputeCompiler);
mComputeCompiler = nullptr;
ASSERT(activeCompilerHandles > 0);
activeCompilerHandles--;
}
if (activeCompilerHandles == 0)
{
sh::Finalize();
}
mImplementation->release();
return gl::NoError();
}
ShHandle Compiler::getCompilerHandle(GLenum type)
{
ShHandle *compiler = nullptr;
switch (type)
{
case GL_VERTEX_SHADER:
compiler = &mVertexCompiler;
break;
case GL_FRAGMENT_SHADER:
compiler = &mFragmentCompiler;
break;
case GL_COMPUTE_SHADER:
compiler = &mComputeCompiler;
break;
default:
UNREACHABLE();
return nullptr;
}
if (!(*compiler))
{
if (activeCompilerHandles == 0)
{
sh::Initialize();
}
*compiler = sh::ConstructCompiler(type, mSpec, mOutputType, &mResources);
ASSERT(*compiler);
activeCompilerHandles++;
}
return *compiler;
}
} // namespace gl