Hash :
5fc3fa9a
Author :
Date :
2021-06-25T10:18:06
Fix -Wimplicit-int-float-conversions. Bug: chromium:989932 Change-Id: Id7a49a4bd925508ea0362d1e6b9d853bf860ddb9 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/2987733 Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org> Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
//
// Copyright 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// copyvertex.inc.h: Implementation of vertex buffer copying and conversion functions
namespace rx
{
template <typename T,
size_t inputComponentCount,
size_t outputComponentCount,
uint32_t alphaDefaultValueBits>
inline void CopyNativeVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
const size_t attribSize = sizeof(T) * inputComponentCount;
if (attribSize == stride && inputComponentCount == outputComponentCount)
{
memcpy(output, input, count * attribSize);
return;
}
if (inputComponentCount == outputComponentCount)
{
for (size_t i = 0; i < count; i++)
{
const T *offsetInput = reinterpret_cast<const T *>(input + (i * stride));
T *offsetOutput = reinterpret_cast<T *>(output) + i * outputComponentCount;
memcpy(offsetOutput, offsetInput, attribSize);
}
return;
}
const T defaultAlphaValue = gl::bitCast<T>(alphaDefaultValueBits);
const size_t lastNonAlphaOutputComponent = std::min<size_t>(outputComponentCount, 3);
for (size_t i = 0; i < count; i++)
{
const T *offsetInput = reinterpret_cast<const T *>(input + (i * stride));
T *offsetOutput = reinterpret_cast<T *>(output) + i * outputComponentCount;
memcpy(offsetOutput, offsetInput, attribSize);
if (inputComponentCount < lastNonAlphaOutputComponent)
{
// Set the remaining G/B channels to 0.
size_t numComponents = (lastNonAlphaOutputComponent - inputComponentCount);
memset(&offsetOutput[inputComponentCount], 0, numComponents * sizeof(T));
}
if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
{
// Set the remaining alpha channel to the defaultAlphaValue.
offsetOutput[3] = defaultAlphaValue;
}
}
}
template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy8SintTo16SintVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
const size_t lastNonAlphaOutputComponent = std::min<size_t>(outputComponentCount, 3);
for (size_t i = 0; i < count; i++)
{
const GLbyte *offsetInput = reinterpret_cast<const GLbyte *>(input + i * stride);
GLshort *offsetOutput = reinterpret_cast<GLshort *>(output) + i * outputComponentCount;
for (size_t j = 0; j < inputComponentCount; j++)
{
offsetOutput[j] = static_cast<GLshort>(offsetInput[j]);
}
for (size_t j = inputComponentCount; j < lastNonAlphaOutputComponent; j++)
{
// Set remaining G/B channels to 0.
offsetOutput[j] = 0;
}
if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
{
// On integer formats, we must set the Alpha channel to 1 if it's unused.
offsetOutput[3] = 1;
}
}
}
template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy8SnormTo16SnormVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
for (size_t i = 0; i < count; i++)
{
const GLbyte *offsetInput = reinterpret_cast<const GLbyte *>(input + i * stride);
GLshort *offsetOutput = reinterpret_cast<GLshort *>(output) + i * outputComponentCount;
for (size_t j = 0; j < inputComponentCount; j++)
{
// The original GLbyte value ranges from -128 to +127 (INT8_MAX).
// When converted to GLshort, the value must be scaled to between -32768 and +32767
// (INT16_MAX).
if (offsetInput[j] > 0)
{
offsetOutput[j] =
offsetInput[j] << 8 | offsetInput[j] << 1 | ((offsetInput[j] & 0x40) >> 6);
}
else
{
offsetOutput[j] = offsetInput[j] << 8;
}
}
for (size_t j = inputComponentCount; j < std::min<size_t>(outputComponentCount, 3); j++)
{
// Set remaining G/B channels to 0.
offsetOutput[j] = 0;
}
if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
{
// On normalized formats, we must set the Alpha channel to the max value if it's unused.
offsetOutput[3] = INT16_MAX;
}
}
}
template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy32FixedTo32FVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
static const float divisor = 1.0f / (1 << 16);
for (size_t i = 0; i < count; i++)
{
const uint8_t *offsetInput = input + i * stride;
float *offsetOutput = reinterpret_cast<float *>(output) + i * outputComponentCount;
// GLfixed access must be 4-byte aligned on arm32, input and stride sometimes are not
if (reinterpret_cast<uintptr_t>(offsetInput) % sizeof(GLfixed) == 0)
{
for (size_t j = 0; j < inputComponentCount; j++)
{
offsetOutput[j] =
static_cast<float>(reinterpret_cast<const GLfixed *>(offsetInput)[j]) * divisor;
}
}
else
{
for (size_t j = 0; j < inputComponentCount; j++)
{
GLfixed alignedInput;
memcpy(&alignedInput, offsetInput + j * sizeof(GLfixed), sizeof(GLfixed));
offsetOutput[j] = static_cast<float>(alignedInput) * divisor;
}
}
// 4-component output formats would need special padding in the alpha channel.
static_assert(!(inputComponentCount < 4 && outputComponentCount == 4),
"An inputComponentCount less than 4 and an outputComponentCount equal to 4 "
"is not supported.");
for (size_t j = inputComponentCount; j < outputComponentCount; j++)
{
offsetOutput[j] = 0.0f;
}
}
}
template <typename T,
size_t inputComponentCount,
size_t outputComponentCount,
bool normalized,
bool toHalf>
inline void CopyToFloatVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
typedef std::numeric_limits<T> NL;
typedef typename std::conditional<toHalf, GLhalf, float>::type outputType;
for (size_t i = 0; i < count; i++)
{
const T *offsetInput = reinterpret_cast<const T *>(input + (stride * i));
outputType *offsetOutput =
reinterpret_cast<outputType *>(output) + i * outputComponentCount;
for (size_t j = 0; j < inputComponentCount; j++)
{
float result = 0;
if (normalized)
{
if (NL::is_signed)
{
result = static_cast<float>(offsetInput[j]) / static_cast<float>(NL::max());
result = result >= -1.0f ? result : -1.0f;
}
else
{
result = static_cast<float>(offsetInput[j]) / static_cast<float>(NL::max());
}
}
else
{
result = static_cast<float>(offsetInput[j]);
}
if (toHalf)
{
offsetOutput[j] = gl::float32ToFloat16(result);
}
else
{
offsetOutput[j] = static_cast<outputType>(result);
}
}
for (size_t j = inputComponentCount; j < outputComponentCount; j++)
{
offsetOutput[j] = 0;
}
if (inputComponentCount < 4 && outputComponentCount == 4)
{
if (toHalf)
{
offsetOutput[3] = gl::Float16One;
}
else
{
offsetOutput[3] = static_cast<outputType>(gl::Float32One);
}
}
}
}
template <size_t inputComponentCount, size_t outputComponentCount>
void Copy32FTo16FVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
const unsigned short kZero = gl::float32ToFloat16(0.0f);
const unsigned short kOne = gl::float32ToFloat16(1.0f);
for (size_t i = 0; i < count; i++)
{
const float *offsetInput = reinterpret_cast<const float *>(input + (stride * i));
unsigned short *offsetOutput =
reinterpret_cast<unsigned short *>(output) + i * outputComponentCount;
for (size_t j = 0; j < inputComponentCount; j++)
{
offsetOutput[j] = gl::float32ToFloat16(offsetInput[j]);
}
for (size_t j = inputComponentCount; j < outputComponentCount; j++)
{
offsetOutput[j] = (j == 3) ? kOne : kZero;
}
}
}
inline void CopyXYZ32FToXYZ9E5(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
for (size_t i = 0; i < count; i++)
{
const float *offsetInput = reinterpret_cast<const float *>(input + (stride * i));
unsigned int *offsetOutput = reinterpret_cast<unsigned int *>(output) + i;
*offsetOutput = gl::convertRGBFloatsTo999E5(offsetInput[0], offsetInput[1], offsetInput[2]);
}
}
inline void CopyXYZ32FToX11Y11B10F(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
for (size_t i = 0; i < count; i++)
{
const float *offsetInput = reinterpret_cast<const float *>(input + (stride * i));
unsigned int *offsetOutput = reinterpret_cast<unsigned int *>(output) + i;
*offsetOutput = gl::float32ToFloat11(offsetInput[0]) << 0 |
gl::float32ToFloat11(offsetInput[1]) << 11 |
gl::float32ToFloat10(offsetInput[2]) << 22;
}
}
namespace priv
{
template <bool isSigned, bool normalized, bool toFloat, bool toHalf>
static inline void CopyPackedRGB(uint32_t data, uint8_t *output)
{
const uint32_t rgbSignMask = 0x200; // 1 set at the 9 bit
const uint32_t negativeMask = 0xFFFFFC00; // All bits from 10 to 31 set to 1
if (toFloat || toHalf)
{
GLfloat finalValue = static_cast<GLfloat>(data);
if (isSigned)
{
if (data & rgbSignMask)
{
int negativeNumber = data | negativeMask;
finalValue = static_cast<GLfloat>(negativeNumber);
}
if (normalized)
{
const int32_t maxValue = 0x1FF; // 1 set in bits 0 through 8
const int32_t minValue = 0xFFFFFE01; // Inverse of maxValue
// A 10-bit two's complement number has the possibility of being minValue - 1 but
// OpenGL's normalization rules dictate that it should be clamped to minValue in
// this case.
if (finalValue < minValue)
{
finalValue = minValue;
}
const int32_t halfRange = (maxValue - minValue) >> 1;
finalValue = ((finalValue - minValue) / halfRange) - 1.0f;
}
}
else
{
if (normalized)
{
const uint32_t maxValue = 0x3FF; // 1 set in bits 0 through 9
finalValue /= static_cast<GLfloat>(maxValue);
}
}
if (toHalf)
{
*reinterpret_cast<GLhalf *>(output) = gl::float32ToFloat16(finalValue);
}
else
{
*reinterpret_cast<GLfloat *>(output) = finalValue;
}
}
else
{
if (isSigned)
{
GLshort *intOutput = reinterpret_cast<GLshort *>(output);
if (data & rgbSignMask)
{
*intOutput = static_cast<GLshort>(data | negativeMask);
}
else
{
*intOutput = static_cast<GLshort>(data);
}
}
else
{
GLushort *uintOutput = reinterpret_cast<GLushort *>(output);
*uintOutput = static_cast<GLushort>(data);
}
}
}
template <bool isSigned, bool normalized, bool toFloat, bool toHalf>
inline void CopyPackedAlpha(uint32_t data, uint8_t *output)
{
ASSERT(data >= 0 && data <= 3);
if (toFloat || toHalf)
{
GLfloat finalValue = 0;
if (isSigned)
{
if (normalized)
{
switch (data)
{
case 0x0:
finalValue = 0.0f;
break;
case 0x1:
finalValue = 1.0f;
break;
case 0x2:
finalValue = -1.0f;
break;
case 0x3:
finalValue = -1.0f;
break;
default:
UNREACHABLE();
}
}
else
{
switch (data)
{
case 0x0:
finalValue = 0.0f;
break;
case 0x1:
finalValue = 1.0f;
break;
case 0x2:
finalValue = -2.0f;
break;
case 0x3:
finalValue = -1.0f;
break;
default:
UNREACHABLE();
}
}
}
else
{
if (normalized)
{
finalValue = data / 3.0f;
}
else
{
finalValue = static_cast<float>(data);
}
}
if (toHalf)
{
*reinterpret_cast<GLhalf *>(output) = gl::float32ToFloat16(finalValue);
}
else
{
*reinterpret_cast<GLfloat *>(output) = finalValue;
}
}
else
{
if (isSigned)
{
GLshort *intOutput = reinterpret_cast<GLshort *>(output);
switch (data)
{
case 0x0:
*intOutput = 0;
break;
case 0x1:
*intOutput = 1;
break;
case 0x2:
*intOutput = -2;
break;
case 0x3:
*intOutput = -1;
break;
default:
UNREACHABLE();
}
}
else
{
*reinterpret_cast<GLushort *>(output) = static_cast<GLushort>(data);
}
}
}
} // namespace priv
template <bool isSigned, bool normalized, bool toFloat, bool toHalf>
inline void CopyXYZ10W2ToXYZWFloatVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
const size_t outputComponentSize = toFloat && !toHalf ? 4 : 2;
const size_t componentCount = 4;
const uint32_t rgbMask = 0x3FF; // 1 set in bits 0 through 9
const size_t redShift = 0; // red is bits 0 through 9
const size_t greenShift = 10; // green is bits 10 through 19
const size_t blueShift = 20; // blue is bits 20 through 29
const uint32_t alphaMask = 0x3; // 1 set in bits 0 and 1
const size_t alphaShift = 30; // Alpha is the 30 and 31 bits
for (size_t i = 0; i < count; i++)
{
GLuint packedValue = *reinterpret_cast<const GLuint *>(input + (i * stride));
uint8_t *offsetOutput = output + (i * outputComponentSize * componentCount);
priv::CopyPackedRGB<isSigned, normalized, toFloat, toHalf>(
(packedValue >> redShift) & rgbMask, offsetOutput + (0 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, toFloat, toHalf>(
(packedValue >> greenShift) & rgbMask, offsetOutput + (1 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, toFloat, toHalf>(
(packedValue >> blueShift) & rgbMask, offsetOutput + (2 * outputComponentSize));
priv::CopyPackedAlpha<isSigned, normalized, toFloat, toHalf>(
(packedValue >> alphaShift) & alphaMask, offsetOutput + (3 * outputComponentSize));
}
}
template <bool isSigned, bool normalized, bool toHalf>
inline void CopyXYZ10ToXYZWFloatVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
const size_t outputComponentSize = toHalf ? 2 : 4;
const size_t componentCount = 4;
const uint32_t rgbMask = 0x3FF; // 1 set in bits 0 through 9
const size_t redShift = 22; // red is bits 22 through 31
const size_t greenShift = 12; // green is bits 12 through 21
const size_t blueShift = 2; // blue is bits 2 through 11
const uint32_t alphaDefaultValueBits = normalized ? (isSigned ? 0x1 : 0x3) : 0x1;
for (size_t i = 0; i < count; i++)
{
GLuint packedValue = *reinterpret_cast<const GLuint *>(input + (i * stride));
uint8_t *offsetOutput = output + (i * outputComponentSize * componentCount);
priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
(packedValue >> redShift) & rgbMask, offsetOutput + (0 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
(packedValue >> greenShift) & rgbMask, offsetOutput + (1 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
(packedValue >> blueShift) & rgbMask, offsetOutput + (2 * outputComponentSize));
priv::CopyPackedAlpha<isSigned, normalized, true, toHalf>(
alphaDefaultValueBits, offsetOutput + (3 * outputComponentSize));
}
}
template <bool isSigned, bool normalized, bool toHalf>
inline void CopyW2XYZ10ToXYZWFloatVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
const size_t outputComponentSize = toHalf ? 2 : 4;
const size_t componentCount = 4;
const uint32_t rgbMask = 0x3FF; // 1 set in bits 0 through 9
const size_t redShift = 22; // red is bits 22 through 31
const size_t greenShift = 12; // green is bits 12 through 21
const size_t blueShift = 2; // blue is bits 2 through 11
const uint32_t alphaMask = 0x3; // 1 set in bits 0 and 1
const size_t alphaShift = 0; // Alpha is the 30 and 31 bits
for (size_t i = 0; i < count; i++)
{
GLuint packedValue = *reinterpret_cast<const GLuint *>(input + (i * stride));
uint8_t *offsetOutput = output + (i * outputComponentSize * componentCount);
priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
(packedValue >> redShift) & rgbMask, offsetOutput + (0 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
(packedValue >> greenShift) & rgbMask, offsetOutput + (1 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
(packedValue >> blueShift) & rgbMask, offsetOutput + (2 * outputComponentSize));
priv::CopyPackedAlpha<isSigned, normalized, true, toHalf>(
(packedValue >> alphaShift) & alphaMask, offsetOutput + (3 * outputComponentSize));
}
}
} // namespace rx