Hash :
419bca3f
Author :
Date :
2022-01-19T18:22:56
Vulkan: Use Vulkan API directly for BufferPool's buffer allocation There are two motivations in this CL. 1) There are two layers of suballocator right now. BufferPool provides first suballocation. It tries to allocate from one of the buffers in the pool. If that failed, it try to create a new BufferBlock (i.e, a VkBuffer). Right now that calls into VMA which creates another pool to allocate a buffer. We really only need one layer of suballocation. And 2) Because we uses VMA to do actual VkBuffer allocation, we have to use Allocator object. But VMA can not handle external buffers, so we end up having a BufferMemory class just to handle two different cases. This CL attempts to clean up this by let ANGLE calling into vulkan driver directly for the actual buffer allocation, just like we did for VkImages. By doing so, we able to remove BufferHelper::mMemory data member as well as BufferMemory class all together. External memory is now treated exactly the same at BufferHelper. Bug: b/205337962 Change-Id: I7c183ab0fd7d9aceb6cf416b0214c300798bc010 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/3402740 Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org> Reviewed-by: Jamie Madill <jmadill@chromium.org> Commit-Queue: Charlie Lao <cclao@google.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// vk_utils:
// Helper functions for the Vulkan Renderer.
//
#include "libANGLE/renderer/vulkan/vk_utils.h"
#include "libANGLE/Context.h"
#include "libANGLE/renderer/vulkan/BufferVk.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/RendererVk.h"
#include "libANGLE/renderer/vulkan/ResourceVk.h"
#include "libANGLE/renderer/vulkan/android/vk_android_utils.h"
#include "libANGLE/renderer/vulkan/vk_mem_alloc_wrapper.h"
namespace angle
{
egl::Error ToEGL(Result result, rx::DisplayVk *displayVk, EGLint errorCode)
{
if (result != angle::Result::Continue)
{
return displayVk->getEGLError(errorCode);
}
else
{
return egl::NoError();
}
}
} // namespace angle
namespace rx
{
namespace
{
// Pick an arbitrary value to initialize non-zero memory for sanitization. Note that 0x3F3F3F3F
// as float is about 0.75.
constexpr int kNonZeroInitValue = 0x3F;
VkImageUsageFlags GetStagingBufferUsageFlags(vk::StagingUsage usage)
{
switch (usage)
{
case vk::StagingUsage::Read:
return VK_BUFFER_USAGE_TRANSFER_DST_BIT;
case vk::StagingUsage::Write:
return VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
case vk::StagingUsage::Both:
return (VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
default:
UNREACHABLE();
return 0;
}
}
bool FindCompatibleMemory(const VkPhysicalDeviceMemoryProperties &memoryProperties,
const VkMemoryRequirements &memoryRequirements,
VkMemoryPropertyFlags requestedMemoryPropertyFlags,
VkMemoryPropertyFlags *memoryPropertyFlagsOut,
uint32_t *typeIndexOut)
{
for (size_t memoryIndex : angle::BitSet32<32>(memoryRequirements.memoryTypeBits))
{
ASSERT(memoryIndex < memoryProperties.memoryTypeCount);
if ((memoryProperties.memoryTypes[memoryIndex].propertyFlags &
requestedMemoryPropertyFlags) == requestedMemoryPropertyFlags)
{
*memoryPropertyFlagsOut = memoryProperties.memoryTypes[memoryIndex].propertyFlags;
*typeIndexOut = static_cast<uint32_t>(memoryIndex);
return true;
}
}
return false;
}
angle::Result FindAndAllocateCompatibleMemory(vk::Context *context,
const vk::MemoryProperties &memoryProperties,
VkMemoryPropertyFlags requestedMemoryPropertyFlags,
VkMemoryPropertyFlags *memoryPropertyFlagsOut,
const VkMemoryRequirements &memoryRequirements,
const void *extraAllocationInfo,
vk::DeviceMemory *deviceMemoryOut)
{
VkDevice device = context->getDevice();
uint32_t memoryTypeIndex = 0;
ANGLE_TRY(memoryProperties.findCompatibleMemoryIndex(
context, memoryRequirements, requestedMemoryPropertyFlags, (extraAllocationInfo != nullptr),
memoryPropertyFlagsOut, &memoryTypeIndex));
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.pNext = extraAllocationInfo;
allocInfo.memoryTypeIndex = memoryTypeIndex;
allocInfo.allocationSize = memoryRequirements.size;
ANGLE_VK_TRY(context, deviceMemoryOut->allocate(device, allocInfo));
// Wipe memory to an invalid value when the 'allocateNonZeroMemory' feature is enabled. The
// invalid values ensures our testing doesn't assume zero-initialized memory.
RendererVk *renderer = context->getRenderer();
if (renderer->getFeatures().allocateNonZeroMemory.enabled)
{
if ((*memoryPropertyFlagsOut & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
{
// Can map the memory.
ANGLE_TRY(vk::InitMappableDeviceMemory(context, deviceMemoryOut,
memoryRequirements.size, kNonZeroInitValue,
*memoryPropertyFlagsOut));
}
}
return angle::Result::Continue;
}
template <typename T>
angle::Result AllocateAndBindBufferOrImageMemory(vk::Context *context,
VkMemoryPropertyFlags requestedMemoryPropertyFlags,
VkMemoryPropertyFlags *memoryPropertyFlagsOut,
const VkMemoryRequirements &memoryRequirements,
const void *extraAllocationInfo,
const VkBindImagePlaneMemoryInfoKHR *extraBindInfo,
T *bufferOrImage,
vk::DeviceMemory *deviceMemoryOut);
template <>
angle::Result AllocateAndBindBufferOrImageMemory(vk::Context *context,
VkMemoryPropertyFlags requestedMemoryPropertyFlags,
VkMemoryPropertyFlags *memoryPropertyFlagsOut,
const VkMemoryRequirements &memoryRequirements,
const void *extraAllocationInfo,
const VkBindImagePlaneMemoryInfoKHR *extraBindInfo,
vk::Image *image,
vk::DeviceMemory *deviceMemoryOut)
{
const vk::MemoryProperties &memoryProperties = context->getRenderer()->getMemoryProperties();
ANGLE_TRY(FindAndAllocateCompatibleMemory(
context, memoryProperties, requestedMemoryPropertyFlags, memoryPropertyFlagsOut,
memoryRequirements, extraAllocationInfo, deviceMemoryOut));
if (extraBindInfo)
{
VkBindImageMemoryInfoKHR bindInfo = {};
bindInfo.sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
bindInfo.pNext = extraBindInfo;
bindInfo.image = image->getHandle();
bindInfo.memory = deviceMemoryOut->getHandle();
bindInfo.memoryOffset = 0;
ANGLE_VK_TRY(context, image->bindMemory2(context->getDevice(), bindInfo));
}
else
{
ANGLE_VK_TRY(context, image->bindMemory(context->getDevice(), *deviceMemoryOut));
}
return angle::Result::Continue;
}
template <>
angle::Result AllocateAndBindBufferOrImageMemory(vk::Context *context,
VkMemoryPropertyFlags requestedMemoryPropertyFlags,
VkMemoryPropertyFlags *memoryPropertyFlagsOut,
const VkMemoryRequirements &memoryRequirements,
const void *extraAllocationInfo,
const VkBindImagePlaneMemoryInfoKHR *extraBindInfo,
vk::Buffer *buffer,
vk::DeviceMemory *deviceMemoryOut)
{
ASSERT(extraBindInfo == nullptr);
const vk::MemoryProperties &memoryProperties = context->getRenderer()->getMemoryProperties();
ANGLE_TRY(FindAndAllocateCompatibleMemory(
context, memoryProperties, requestedMemoryPropertyFlags, memoryPropertyFlagsOut,
memoryRequirements, extraAllocationInfo, deviceMemoryOut));
ANGLE_VK_TRY(context, buffer->bindMemory(context->getDevice(), *deviceMemoryOut));
return angle::Result::Continue;
}
template <typename T>
angle::Result AllocateBufferOrImageMemory(vk::Context *context,
VkMemoryPropertyFlags requestedMemoryPropertyFlags,
VkMemoryPropertyFlags *memoryPropertyFlagsOut,
const void *extraAllocationInfo,
T *bufferOrImage,
vk::DeviceMemory *deviceMemoryOut,
VkDeviceSize *sizeOut)
{
// Call driver to determine memory requirements.
VkMemoryRequirements memoryRequirements;
bufferOrImage->getMemoryRequirements(context->getDevice(), &memoryRequirements);
ANGLE_TRY(AllocateAndBindBufferOrImageMemory(
context, requestedMemoryPropertyFlags, memoryPropertyFlagsOut, memoryRequirements,
extraAllocationInfo, nullptr, bufferOrImage, deviceMemoryOut));
*sizeOut = memoryRequirements.size;
return angle::Result::Continue;
}
// Unified layer that includes full validation layer stack
constexpr char kVkKhronosValidationLayerName[] = "VK_LAYER_KHRONOS_validation";
constexpr char kVkStandardValidationLayerName[] = "VK_LAYER_LUNARG_standard_validation";
const char *kVkValidationLayerNames[] = {
"VK_LAYER_GOOGLE_threading", "VK_LAYER_LUNARG_parameter_validation",
"VK_LAYER_LUNARG_object_tracker", "VK_LAYER_LUNARG_core_validation",
"VK_LAYER_GOOGLE_unique_objects"};
bool HasValidationLayer(const std::vector<VkLayerProperties> &layerProps, const char *layerName)
{
for (const auto &layerProp : layerProps)
{
if (std::string(layerProp.layerName) == layerName)
{
return true;
}
}
return false;
}
bool HasKhronosValidationLayer(const std::vector<VkLayerProperties> &layerProps)
{
return HasValidationLayer(layerProps, kVkKhronosValidationLayerName);
}
bool HasStandardValidationLayer(const std::vector<VkLayerProperties> &layerProps)
{
return HasValidationLayer(layerProps, kVkStandardValidationLayerName);
}
bool HasValidationLayers(const std::vector<VkLayerProperties> &layerProps)
{
for (const char *layerName : kVkValidationLayerNames)
{
if (!HasValidationLayer(layerProps, layerName))
{
return false;
}
}
return true;
}
} // anonymous namespace
const char *VulkanResultString(VkResult result)
{
switch (result)
{
case VK_SUCCESS:
return "Command successfully completed";
case VK_NOT_READY:
return "A fence or query has not yet completed";
case VK_TIMEOUT:
return "A wait operation has not completed in the specified time";
case VK_EVENT_SET:
return "An event is signaled";
case VK_EVENT_RESET:
return "An event is unsignaled";
case VK_INCOMPLETE:
return "A return array was too small for the result";
case VK_SUBOPTIMAL_KHR:
return "A swapchain no longer matches the surface properties exactly, but can still be "
"used to present to the surface successfully";
case VK_ERROR_OUT_OF_HOST_MEMORY:
return "A host memory allocation has failed";
case VK_ERROR_OUT_OF_DEVICE_MEMORY:
return "A device memory allocation has failed";
case VK_ERROR_INITIALIZATION_FAILED:
return "Initialization of an object could not be completed for implementation-specific "
"reasons";
case VK_ERROR_DEVICE_LOST:
return "The logical or physical device has been lost";
case VK_ERROR_MEMORY_MAP_FAILED:
return "Mapping of a memory object has failed";
case VK_ERROR_LAYER_NOT_PRESENT:
return "A requested layer is not present or could not be loaded";
case VK_ERROR_EXTENSION_NOT_PRESENT:
return "A requested extension is not supported";
case VK_ERROR_FEATURE_NOT_PRESENT:
return "A requested feature is not supported";
case VK_ERROR_INCOMPATIBLE_DRIVER:
return "The requested version of Vulkan is not supported by the driver or is otherwise "
"incompatible for implementation-specific reasons";
case VK_ERROR_TOO_MANY_OBJECTS:
return "Too many objects of the type have already been created";
case VK_ERROR_FORMAT_NOT_SUPPORTED:
return "A requested format is not supported on this device";
case VK_ERROR_SURFACE_LOST_KHR:
return "A surface is no longer available";
case VK_ERROR_NATIVE_WINDOW_IN_USE_KHR:
return "The requested window is already connected to a VkSurfaceKHR, or to some other "
"non-Vulkan API";
case VK_ERROR_OUT_OF_DATE_KHR:
return "A surface has changed in such a way that it is no longer compatible with the "
"swapchain";
case VK_ERROR_INCOMPATIBLE_DISPLAY_KHR:
return "The display used by a swapchain does not use the same presentable image "
"layout, or is incompatible in a way that prevents sharing an image";
case VK_ERROR_VALIDATION_FAILED_EXT:
return "The validation layers detected invalid API usage";
case VK_ERROR_INVALID_SHADER_NV:
return "Invalid Vulkan shader was generated";
case VK_ERROR_OUT_OF_POOL_MEMORY:
return "A pool memory allocation has failed";
case VK_ERROR_FRAGMENTED_POOL:
return "A pool allocation has failed due to fragmentation of the pool's memory";
case VK_ERROR_INVALID_EXTERNAL_HANDLE:
return "An external handle is not a valid handle of the specified type";
default:
return "Unknown vulkan error code";
}
}
bool GetAvailableValidationLayers(const std::vector<VkLayerProperties> &layerProps,
bool mustHaveLayers,
VulkanLayerVector *enabledLayerNames)
{
// Favor unified Khronos layer, but fallback to standard validation
if (HasKhronosValidationLayer(layerProps))
{
enabledLayerNames->push_back(kVkKhronosValidationLayerName);
}
else if (HasStandardValidationLayer(layerProps))
{
enabledLayerNames->push_back(kVkStandardValidationLayerName);
}
else if (HasValidationLayers(layerProps))
{
for (const char *layerName : kVkValidationLayerNames)
{
enabledLayerNames->push_back(layerName);
}
}
else
{
// Generate an error if the layers were explicitly requested, warning otherwise.
if (mustHaveLayers)
{
ERR() << "Vulkan validation layers are missing.";
}
else
{
WARN() << "Vulkan validation layers are missing.";
}
return false;
}
return true;
}
namespace vk
{
const char *gLoaderLayersPathEnv = "VK_LAYER_PATH";
const char *gLoaderICDFilenamesEnv = "VK_ICD_FILENAMES";
const char *gANGLEPreferredDevice = "ANGLE_PREFERRED_DEVICE";
VkImageAspectFlags GetDepthStencilAspectFlags(const angle::Format &format)
{
return (format.depthBits > 0 ? VK_IMAGE_ASPECT_DEPTH_BIT : 0) |
(format.stencilBits > 0 ? VK_IMAGE_ASPECT_STENCIL_BIT : 0);
}
VkImageAspectFlags GetFormatAspectFlags(const angle::Format &format)
{
VkImageAspectFlags dsAspect = GetDepthStencilAspectFlags(format);
// If the image is not depth stencil, assume color aspect. Note that detecting color formats
// is less trivial than depth/stencil, e.g. as block formats don't indicate any bits for RGBA
// channels.
return dsAspect != 0 ? dsAspect : VK_IMAGE_ASPECT_COLOR_BIT;
}
// Context implementation.
Context::Context(RendererVk *renderer) : mRenderer(renderer) {}
Context::~Context() {}
VkDevice Context::getDevice() const
{
return mRenderer->getDevice();
}
// MemoryProperties implementation.
MemoryProperties::MemoryProperties() : mMemoryProperties{} {}
void MemoryProperties::init(VkPhysicalDevice physicalDevice)
{
ASSERT(mMemoryProperties.memoryTypeCount == 0);
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &mMemoryProperties);
ASSERT(mMemoryProperties.memoryTypeCount > 0);
}
void MemoryProperties::destroy()
{
mMemoryProperties = {};
}
bool MemoryProperties::hasLazilyAllocatedMemory() const
{
for (uint32_t typeIndex = 0; typeIndex < mMemoryProperties.memoryTypeCount; ++typeIndex)
{
const VkMemoryType &memoryType = mMemoryProperties.memoryTypes[typeIndex];
if ((memoryType.propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)
{
return true;
}
}
return false;
}
angle::Result MemoryProperties::findCompatibleMemoryIndex(
Context *context,
const VkMemoryRequirements &memoryRequirements,
VkMemoryPropertyFlags requestedMemoryPropertyFlags,
bool isExternalMemory,
VkMemoryPropertyFlags *memoryPropertyFlagsOut,
uint32_t *typeIndexOut) const
{
ASSERT(mMemoryProperties.memoryTypeCount > 0 && mMemoryProperties.memoryTypeCount <= 32);
// Find a compatible memory pool index. If the index doesn't change, we could cache it.
// Not finding a valid memory pool means an out-of-spec driver, or internal error.
// TODO(jmadill): Determine if it is possible to cache indexes.
// TODO(jmadill): More efficient memory allocation.
if (FindCompatibleMemory(mMemoryProperties, memoryRequirements, requestedMemoryPropertyFlags,
memoryPropertyFlagsOut, typeIndexOut))
{
return angle::Result::Continue;
}
// We did not find a compatible memory type. If the caller wanted a host visible memory, just
// return the memory index with fallback, guaranteed, memory flags.
if (requestedMemoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
{
// The Vulkan spec says the following -
// There must be at least one memory type with both the
// VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
// bits set in its propertyFlags
constexpr VkMemoryPropertyFlags fallbackMemoryPropertyFlags =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
if (FindCompatibleMemory(mMemoryProperties, memoryRequirements, fallbackMemoryPropertyFlags,
memoryPropertyFlagsOut, typeIndexOut))
{
return angle::Result::Continue;
}
}
// We did not find a compatible memory type. When importing external memory, there may be
// additional restrictions on memoryType. Fallback to requesting device local memory.
if (isExternalMemory)
{
// The Vulkan spec says the following -
// There must be at least one memory type with the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
// bit set in its propertyFlags
if (FindCompatibleMemory(mMemoryProperties, memoryRequirements,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, memoryPropertyFlagsOut,
typeIndexOut))
{
return angle::Result::Continue;
}
}
// TODO(jmadill): Add error message to error.
context->handleError(VK_ERROR_INCOMPATIBLE_DRIVER, __FILE__, ANGLE_FUNCTION, __LINE__);
return angle::Result::Stop;
}
// StagingBuffer implementation.
StagingBuffer::StagingBuffer() : mSize(0) {}
void StagingBuffer::destroy(RendererVk *renderer)
{
VkDevice device = renderer->getDevice();
mBuffer.destroy(device);
mAllocation.destroy(renderer->getAllocator());
mSize = 0;
}
angle::Result StagingBuffer::init(Context *context, VkDeviceSize size, StagingUsage usage)
{
VkBufferCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
createInfo.flags = 0;
createInfo.size = size;
createInfo.usage = GetStagingBufferUsageFlags(usage);
createInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.queueFamilyIndexCount = 0;
createInfo.pQueueFamilyIndices = nullptr;
VkMemoryPropertyFlags preferredFlags = 0;
VkMemoryPropertyFlags requiredFlags =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
RendererVk *renderer = context->getRenderer();
const Allocator &allocator = renderer->getAllocator();
uint32_t memoryTypeIndex = 0;
ANGLE_VK_TRY(context,
allocator.createBuffer(createInfo, requiredFlags, preferredFlags,
renderer->getFeatures().persistentlyMappedBuffers.enabled,
&memoryTypeIndex, &mBuffer, &mAllocation));
mSize = static_cast<size_t>(size);
// Wipe memory to an invalid value when the 'allocateNonZeroMemory' feature is enabled. The
// invalid values ensures our testing doesn't assume zero-initialized memory.
if (renderer->getFeatures().allocateNonZeroMemory.enabled)
{
ANGLE_TRY(InitMappableAllocation(context, allocator, &mAllocation, size, kNonZeroInitValue,
requiredFlags));
}
return angle::Result::Continue;
}
void StagingBuffer::release(ContextVk *contextVk)
{
contextVk->addGarbage(&mBuffer);
contextVk->addGarbage(&mAllocation);
}
void StagingBuffer::collectGarbage(RendererVk *renderer, Serial serial)
{
GarbageList garbageList;
garbageList.emplace_back(GetGarbage(&mBuffer));
garbageList.emplace_back(GetGarbage(&mAllocation));
SharedResourceUse sharedUse;
sharedUse.init();
sharedUse.updateSerialOneOff(serial);
renderer->collectGarbage(std::move(sharedUse), std::move(garbageList));
}
angle::Result InitMappableAllocation(Context *context,
const Allocator &allocator,
Allocation *allocation,
VkDeviceSize size,
int value,
VkMemoryPropertyFlags memoryPropertyFlags)
{
uint8_t *mapPointer;
ANGLE_VK_TRY(context, allocation->map(allocator, &mapPointer));
memset(mapPointer, value, static_cast<size_t>(size));
if ((memoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)
{
allocation->flush(allocator, 0, size);
}
allocation->unmap(allocator);
return angle::Result::Continue;
}
angle::Result InitMappableDeviceMemory(Context *context,
DeviceMemory *deviceMemory,
VkDeviceSize size,
int value,
VkMemoryPropertyFlags memoryPropertyFlags)
{
VkDevice device = context->getDevice();
uint8_t *mapPointer;
ANGLE_VK_TRY(context, deviceMemory->map(device, 0, VK_WHOLE_SIZE, 0, &mapPointer));
memset(mapPointer, value, static_cast<size_t>(size));
// if the memory type is not host coherent, we perform an explicit flush
if ((memoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)
{
VkMappedMemoryRange mappedRange = {};
mappedRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
mappedRange.memory = deviceMemory->getHandle();
mappedRange.size = VK_WHOLE_SIZE;
ANGLE_VK_TRY(context, vkFlushMappedMemoryRanges(device, 1, &mappedRange));
}
deviceMemory->unmap(device);
return angle::Result::Continue;
}
angle::Result AllocateBufferMemory(Context *context,
VkMemoryPropertyFlags requestedMemoryPropertyFlags,
VkMemoryPropertyFlags *memoryPropertyFlagsOut,
const void *extraAllocationInfo,
Buffer *buffer,
DeviceMemory *deviceMemoryOut,
VkDeviceSize *sizeOut)
{
return AllocateBufferOrImageMemory(context, requestedMemoryPropertyFlags,
memoryPropertyFlagsOut, extraAllocationInfo, buffer,
deviceMemoryOut, sizeOut);
}
angle::Result AllocateImageMemory(Context *context,
VkMemoryPropertyFlags memoryPropertyFlags,
VkMemoryPropertyFlags *memoryPropertyFlagsOut,
const void *extraAllocationInfo,
Image *image,
DeviceMemory *deviceMemoryOut,
VkDeviceSize *sizeOut)
{
return AllocateBufferOrImageMemory(context, memoryPropertyFlags, memoryPropertyFlagsOut,
extraAllocationInfo, image, deviceMemoryOut, sizeOut);
}
angle::Result AllocateImageMemoryWithRequirements(
Context *context,
VkMemoryPropertyFlags memoryPropertyFlags,
const VkMemoryRequirements &memoryRequirements,
const void *extraAllocationInfo,
const VkBindImagePlaneMemoryInfoKHR *extraBindInfo,
Image *image,
DeviceMemory *deviceMemoryOut)
{
VkMemoryPropertyFlags memoryPropertyFlagsOut = 0;
return AllocateAndBindBufferOrImageMemory(context, memoryPropertyFlags, &memoryPropertyFlagsOut,
memoryRequirements, extraAllocationInfo,
extraBindInfo, image, deviceMemoryOut);
}
angle::Result AllocateBufferMemoryWithRequirements(Context *context,
VkMemoryPropertyFlags memoryPropertyFlags,
const VkMemoryRequirements &memoryRequirements,
const void *extraAllocationInfo,
Buffer *buffer,
VkMemoryPropertyFlags *memoryPropertyFlagsOut,
DeviceMemory *deviceMemoryOut)
{
return AllocateAndBindBufferOrImageMemory(context, memoryPropertyFlags, memoryPropertyFlagsOut,
memoryRequirements, extraAllocationInfo, nullptr,
buffer, deviceMemoryOut);
}
angle::Result InitShaderAndSerial(Context *context,
ShaderAndSerial *shaderAndSerial,
const uint32_t *shaderCode,
size_t shaderCodeSize)
{
VkShaderModuleCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
createInfo.flags = 0;
createInfo.codeSize = shaderCodeSize;
createInfo.pCode = shaderCode;
ANGLE_VK_TRY(context, shaderAndSerial->get().init(context->getDevice(), createInfo));
shaderAndSerial->updateSerial(context->getRenderer()->issueShaderSerial());
return angle::Result::Continue;
}
gl::TextureType Get2DTextureType(uint32_t layerCount, GLint samples)
{
if (layerCount > 1)
{
if (samples > 1)
{
return gl::TextureType::_2DMultisampleArray;
}
else
{
return gl::TextureType::_2DArray;
}
}
else
{
if (samples > 1)
{
return gl::TextureType::_2DMultisample;
}
else
{
return gl::TextureType::_2D;
}
}
}
GarbageObject::GarbageObject() : mHandleType(HandleType::Invalid), mHandle(VK_NULL_HANDLE) {}
GarbageObject::GarbageObject(HandleType handleType, GarbageHandle handle)
: mHandleType(handleType), mHandle(handle)
{}
GarbageObject::GarbageObject(GarbageObject &&other) : GarbageObject()
{
*this = std::move(other);
}
GarbageObject &GarbageObject::operator=(GarbageObject &&rhs)
{
std::swap(mHandle, rhs.mHandle);
std::swap(mHandleType, rhs.mHandleType);
return *this;
}
// GarbageObject implementation
// Using c-style casts here to avoid conditional compile for MSVC 32-bit
// which fails to compile with reinterpret_cast, requiring static_cast.
void GarbageObject::destroy(RendererVk *renderer)
{
ANGLE_TRACE_EVENT0("gpu.angle", "GarbageObject::destroy");
VkDevice device = renderer->getDevice();
switch (mHandleType)
{
case HandleType::Semaphore:
vkDestroySemaphore(device, (VkSemaphore)mHandle, nullptr);
break;
case HandleType::CommandBuffer:
// Command buffers are pool allocated.
UNREACHABLE();
break;
case HandleType::Event:
vkDestroyEvent(device, (VkEvent)mHandle, nullptr);
break;
case HandleType::Fence:
vkDestroyFence(device, (VkFence)mHandle, nullptr);
break;
case HandleType::DeviceMemory:
vkFreeMemory(device, (VkDeviceMemory)mHandle, nullptr);
break;
case HandleType::Buffer:
vkDestroyBuffer(device, (VkBuffer)mHandle, nullptr);
break;
case HandleType::BufferView:
vkDestroyBufferView(device, (VkBufferView)mHandle, nullptr);
break;
case HandleType::Image:
vkDestroyImage(device, (VkImage)mHandle, nullptr);
break;
case HandleType::ImageView:
vkDestroyImageView(device, (VkImageView)mHandle, nullptr);
break;
case HandleType::ShaderModule:
vkDestroyShaderModule(device, (VkShaderModule)mHandle, nullptr);
break;
case HandleType::PipelineLayout:
vkDestroyPipelineLayout(device, (VkPipelineLayout)mHandle, nullptr);
break;
case HandleType::RenderPass:
vkDestroyRenderPass(device, (VkRenderPass)mHandle, nullptr);
break;
case HandleType::Pipeline:
vkDestroyPipeline(device, (VkPipeline)mHandle, nullptr);
break;
case HandleType::DescriptorSetLayout:
vkDestroyDescriptorSetLayout(device, (VkDescriptorSetLayout)mHandle, nullptr);
break;
case HandleType::Sampler:
vkDestroySampler(device, (VkSampler)mHandle, nullptr);
break;
case HandleType::DescriptorPool:
vkDestroyDescriptorPool(device, (VkDescriptorPool)mHandle, nullptr);
break;
case HandleType::Framebuffer:
vkDestroyFramebuffer(device, (VkFramebuffer)mHandle, nullptr);
break;
case HandleType::CommandPool:
vkDestroyCommandPool(device, (VkCommandPool)mHandle, nullptr);
break;
case HandleType::QueryPool:
vkDestroyQueryPool(device, (VkQueryPool)mHandle, nullptr);
break;
case HandleType::Allocation:
vma::FreeMemory(renderer->getAllocator().getHandle(), (VmaAllocation)mHandle);
break;
case HandleType::BufferSuballocation:
DestroyVmaBufferSuballocation(renderer, (VmaBufferSuballocation)mHandle);
break;
default:
UNREACHABLE();
break;
}
renderer->onDeallocateHandle(mHandleType);
}
void MakeDebugUtilsLabel(GLenum source, const char *marker, VkDebugUtilsLabelEXT *label)
{
static constexpr angle::ColorF kLabelColors[6] = {
angle::ColorF(1.0f, 0.5f, 0.5f, 1.0f), // DEBUG_SOURCE_API
angle::ColorF(0.5f, 1.0f, 0.5f, 1.0f), // DEBUG_SOURCE_WINDOW_SYSTEM
angle::ColorF(0.5f, 0.5f, 1.0f, 1.0f), // DEBUG_SOURCE_SHADER_COMPILER
angle::ColorF(0.7f, 0.7f, 0.7f, 1.0f), // DEBUG_SOURCE_THIRD_PARTY
angle::ColorF(0.5f, 0.8f, 0.9f, 1.0f), // DEBUG_SOURCE_APPLICATION
angle::ColorF(0.9f, 0.8f, 0.5f, 1.0f), // DEBUG_SOURCE_OTHER
};
int colorIndex = source - GL_DEBUG_SOURCE_API;
ASSERT(colorIndex >= 0 && static_cast<size_t>(colorIndex) < ArraySize(kLabelColors));
label->sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT;
label->pNext = nullptr;
label->pLabelName = marker;
kLabelColors[colorIndex].writeData(label->color);
}
// ClearValuesArray implementation.
ClearValuesArray::ClearValuesArray() : mValues{}, mEnabled{} {}
ClearValuesArray::~ClearValuesArray() = default;
ClearValuesArray::ClearValuesArray(const ClearValuesArray &other) = default;
ClearValuesArray &ClearValuesArray::operator=(const ClearValuesArray &rhs) = default;
void ClearValuesArray::store(uint32_t index,
VkImageAspectFlags aspectFlags,
const VkClearValue &clearValue)
{
ASSERT(aspectFlags != 0);
// We do this double if to handle the packed depth-stencil case.
if ((aspectFlags & VK_IMAGE_ASPECT_STENCIL_BIT) != 0)
{
// Ensure for packed DS we're writing to the depth index.
ASSERT(index == kUnpackedDepthIndex ||
(index == kUnpackedStencilIndex && aspectFlags == VK_IMAGE_ASPECT_STENCIL_BIT));
storeNoDepthStencil(kUnpackedStencilIndex, clearValue);
}
if (aspectFlags != VK_IMAGE_ASPECT_STENCIL_BIT)
{
storeNoDepthStencil(index, clearValue);
}
}
void ClearValuesArray::storeNoDepthStencil(uint32_t index, const VkClearValue &clearValue)
{
mValues[index] = clearValue;
mEnabled.set(index);
}
gl::DrawBufferMask ClearValuesArray::getColorMask() const
{
constexpr uint32_t kColorBuffersMask =
angle::BitMask<uint32_t>(gl::IMPLEMENTATION_MAX_DRAW_BUFFERS);
return gl::DrawBufferMask(mEnabled.bits() & kColorBuffersMask);
}
// ResourceSerialFactory implementation.
ResourceSerialFactory::ResourceSerialFactory() : mCurrentUniqueSerial(1) {}
ResourceSerialFactory::~ResourceSerialFactory() {}
uint32_t ResourceSerialFactory::issueSerial()
{
uint32_t newSerial = ++mCurrentUniqueSerial;
// make sure serial does not wrap
ASSERT(newSerial > 0);
return newSerial;
}
#define ANGLE_DEFINE_GEN_VK_SERIAL(Type) \
Type##Serial ResourceSerialFactory::generate##Type##Serial() \
{ \
return Type##Serial(issueSerial()); \
}
ANGLE_VK_SERIAL_OP(ANGLE_DEFINE_GEN_VK_SERIAL)
void ClampViewport(VkViewport *viewport)
{
// 0-sized viewports are invalid in Vulkan.
ASSERT(viewport);
if (viewport->width == 0.0f)
{
viewport->width = 1.0f;
}
if (viewport->height == 0.0f)
{
viewport->height = 1.0f;
}
}
} // namespace vk
#if !defined(ANGLE_SHARED_LIBVULKAN)
// VK_EXT_debug_utils
PFN_vkCreateDebugUtilsMessengerEXT vkCreateDebugUtilsMessengerEXT = nullptr;
PFN_vkDestroyDebugUtilsMessengerEXT vkDestroyDebugUtilsMessengerEXT = nullptr;
PFN_vkCmdBeginDebugUtilsLabelEXT vkCmdBeginDebugUtilsLabelEXT = nullptr;
PFN_vkCmdEndDebugUtilsLabelEXT vkCmdEndDebugUtilsLabelEXT = nullptr;
PFN_vkCmdInsertDebugUtilsLabelEXT vkCmdInsertDebugUtilsLabelEXT = nullptr;
// VK_EXT_debug_report
PFN_vkCreateDebugReportCallbackEXT vkCreateDebugReportCallbackEXT = nullptr;
PFN_vkDestroyDebugReportCallbackEXT vkDestroyDebugReportCallbackEXT = nullptr;
// VK_KHR_get_physical_device_properties2
PFN_vkGetPhysicalDeviceProperties2KHR vkGetPhysicalDeviceProperties2KHR = nullptr;
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR = nullptr;
PFN_vkGetPhysicalDeviceMemoryProperties2KHR vkGetPhysicalDeviceMemoryProperties2KHR = nullptr;
// VK_KHR_external_semaphore_fd
PFN_vkImportSemaphoreFdKHR vkImportSemaphoreFdKHR = nullptr;
// VK_EXT_external_memory_host
PFN_vkGetMemoryHostPointerPropertiesEXT vkGetMemoryHostPointerPropertiesEXT = nullptr;
// VK_EXT_host_query_reset
PFN_vkResetQueryPoolEXT vkResetQueryPoolEXT = nullptr;
// VK_EXT_transform_feedback
PFN_vkCmdBindTransformFeedbackBuffersEXT vkCmdBindTransformFeedbackBuffersEXT = nullptr;
PFN_vkCmdBeginTransformFeedbackEXT vkCmdBeginTransformFeedbackEXT = nullptr;
PFN_vkCmdEndTransformFeedbackEXT vkCmdEndTransformFeedbackEXT = nullptr;
PFN_vkCmdBeginQueryIndexedEXT vkCmdBeginQueryIndexedEXT = nullptr;
PFN_vkCmdEndQueryIndexedEXT vkCmdEndQueryIndexedEXT = nullptr;
PFN_vkCmdDrawIndirectByteCountEXT vkCmdDrawIndirectByteCountEXT = nullptr;
// VK_KHR_get_memory_requirements2
PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR = nullptr;
PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR = nullptr;
// VK_KHR_bind_memory2
PFN_vkBindBufferMemory2KHR vkBindBufferMemory2KHR = nullptr;
PFN_vkBindImageMemory2KHR vkBindImageMemory2KHR = nullptr;
// VK_KHR_external_fence_capabilities
PFN_vkGetPhysicalDeviceExternalFencePropertiesKHR vkGetPhysicalDeviceExternalFencePropertiesKHR =
nullptr;
// VK_KHR_external_fence_fd
PFN_vkGetFenceFdKHR vkGetFenceFdKHR = nullptr;
PFN_vkImportFenceFdKHR vkImportFenceFdKHR = nullptr;
// VK_KHR_external_semaphore_capabilities
PFN_vkGetPhysicalDeviceExternalSemaphorePropertiesKHR
vkGetPhysicalDeviceExternalSemaphorePropertiesKHR = nullptr;
// VK_KHR_sampler_ycbcr_conversion
PFN_vkCreateSamplerYcbcrConversionKHR vkCreateSamplerYcbcrConversionKHR = nullptr;
PFN_vkDestroySamplerYcbcrConversionKHR vkDestroySamplerYcbcrConversionKHR = nullptr;
// VK_KHR_create_renderpass2
PFN_vkCreateRenderPass2KHR vkCreateRenderPass2KHR = nullptr;
# if defined(ANGLE_PLATFORM_FUCHSIA)
// VK_FUCHSIA_imagepipe_surface
PFN_vkCreateImagePipeSurfaceFUCHSIA vkCreateImagePipeSurfaceFUCHSIA = nullptr;
# endif
# if defined(ANGLE_PLATFORM_ANDROID)
PFN_vkGetAndroidHardwareBufferPropertiesANDROID vkGetAndroidHardwareBufferPropertiesANDROID =
nullptr;
PFN_vkGetMemoryAndroidHardwareBufferANDROID vkGetMemoryAndroidHardwareBufferANDROID = nullptr;
# endif
# if defined(ANGLE_PLATFORM_GGP)
PFN_vkCreateStreamDescriptorSurfaceGGP vkCreateStreamDescriptorSurfaceGGP = nullptr;
# endif
# define GET_INSTANCE_FUNC(vkName) \
do \
{ \
vkName = reinterpret_cast<PFN_##vkName>(vkGetInstanceProcAddr(instance, #vkName)); \
ASSERT(vkName); \
} while (0)
# define GET_DEVICE_FUNC(vkName) \
do \
{ \
vkName = reinterpret_cast<PFN_##vkName>(vkGetDeviceProcAddr(device, #vkName)); \
ASSERT(vkName); \
} while (0)
// VK_KHR_shared_presentable_image
PFN_vkGetSwapchainStatusKHR vkGetSwapchainStatusKHR = nullptr;
void InitDebugUtilsEXTFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkCreateDebugUtilsMessengerEXT);
GET_INSTANCE_FUNC(vkDestroyDebugUtilsMessengerEXT);
GET_INSTANCE_FUNC(vkCmdBeginDebugUtilsLabelEXT);
GET_INSTANCE_FUNC(vkCmdEndDebugUtilsLabelEXT);
GET_INSTANCE_FUNC(vkCmdInsertDebugUtilsLabelEXT);
}
void InitDebugReportEXTFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkCreateDebugReportCallbackEXT);
GET_INSTANCE_FUNC(vkDestroyDebugReportCallbackEXT);
}
void InitGetPhysicalDeviceProperties2KHRFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkGetPhysicalDeviceProperties2KHR);
GET_INSTANCE_FUNC(vkGetPhysicalDeviceFeatures2KHR);
GET_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR);
}
void InitTransformFeedbackEXTFunctions(VkDevice device)
{
GET_DEVICE_FUNC(vkCmdBindTransformFeedbackBuffersEXT);
GET_DEVICE_FUNC(vkCmdBeginTransformFeedbackEXT);
GET_DEVICE_FUNC(vkCmdEndTransformFeedbackEXT);
GET_DEVICE_FUNC(vkCmdBeginQueryIndexedEXT);
GET_DEVICE_FUNC(vkCmdEndQueryIndexedEXT);
GET_DEVICE_FUNC(vkCmdDrawIndirectByteCountEXT);
}
// VK_KHR_sampler_ycbcr_conversion
void InitSamplerYcbcrKHRFunctions(VkDevice device)
{
GET_DEVICE_FUNC(vkCreateSamplerYcbcrConversionKHR);
GET_DEVICE_FUNC(vkDestroySamplerYcbcrConversionKHR);
}
// VK_KHR_create_renderpass2
void InitRenderPass2KHRFunctions(VkDevice device)
{
GET_DEVICE_FUNC(vkCreateRenderPass2KHR);
}
# if defined(ANGLE_PLATFORM_FUCHSIA)
void InitImagePipeSurfaceFUCHSIAFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkCreateImagePipeSurfaceFUCHSIA);
}
# endif
# if defined(ANGLE_PLATFORM_ANDROID)
void InitExternalMemoryHardwareBufferANDROIDFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkGetAndroidHardwareBufferPropertiesANDROID);
GET_INSTANCE_FUNC(vkGetMemoryAndroidHardwareBufferANDROID);
}
# endif
# if defined(ANGLE_PLATFORM_GGP)
void InitGGPStreamDescriptorSurfaceFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkCreateStreamDescriptorSurfaceGGP);
}
# endif // defined(ANGLE_PLATFORM_GGP)
void InitExternalSemaphoreFdFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkImportSemaphoreFdKHR);
}
void InitExternalMemoryHostFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkGetMemoryHostPointerPropertiesEXT);
}
void InitHostQueryResetFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkGetMemoryHostPointerPropertiesEXT);
}
// VK_KHR_get_memory_requirements2
void InitGetMemoryRequirements2KHRFunctions(VkDevice device)
{
GET_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR);
GET_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR);
}
// VK_KHR_bind_memory2
void InitBindMemory2KHRFunctions(VkDevice device)
{
GET_DEVICE_FUNC(vkBindBufferMemory2KHR);
GET_DEVICE_FUNC(vkBindImageMemory2KHR);
}
// VK_KHR_external_fence_capabilities
void InitExternalFenceCapabilitiesFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkGetPhysicalDeviceExternalFencePropertiesKHR);
}
// VK_KHR_external_fence_fd
void InitExternalFenceFdFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkGetFenceFdKHR);
GET_INSTANCE_FUNC(vkImportFenceFdKHR);
}
// VK_KHR_external_semaphore_capabilities
void InitExternalSemaphoreCapabilitiesFunctions(VkInstance instance)
{
GET_INSTANCE_FUNC(vkGetPhysicalDeviceExternalSemaphorePropertiesKHR);
}
// VK_KHR_shared_presentable_image
void InitGetSwapchainStatusKHRFunctions(VkDevice device)
{
GET_DEVICE_FUNC(vkGetSwapchainStatusKHR);
}
# undef GET_INSTANCE_FUNC
# undef GET_DEVICE_FUNC
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
GLenum CalculateGenerateMipmapFilter(ContextVk *contextVk, angle::FormatID formatID)
{
const bool formatSupportsLinearFiltering = contextVk->getRenderer()->hasImageFormatFeatureBits(
formatID, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT);
const bool hintFastest = contextVk->getState().getGenerateMipmapHint() == GL_FASTEST;
return formatSupportsLinearFiltering && !hintFastest ? GL_LINEAR : GL_NEAREST;
}
// Return the log of samples. Assumes |sampleCount| is a power of 2. The result can be used to
// index an array based on sample count. See for example TextureVk::PerSampleCountArray.
size_t PackSampleCount(GLint sampleCount)
{
if (sampleCount == 0)
{
sampleCount = 1;
}
// We currently only support up to 16xMSAA.
ASSERT(sampleCount <= VK_SAMPLE_COUNT_16_BIT);
ASSERT(gl::isPow2(sampleCount));
return gl::ScanForward(static_cast<uint32_t>(sampleCount));
}
namespace gl_vk
{
VkFilter GetFilter(const GLenum filter)
{
switch (filter)
{
case GL_LINEAR_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_LINEAR:
return VK_FILTER_LINEAR;
case GL_NEAREST_MIPMAP_LINEAR:
case GL_NEAREST_MIPMAP_NEAREST:
case GL_NEAREST:
return VK_FILTER_NEAREST;
default:
UNIMPLEMENTED();
return VK_FILTER_MAX_ENUM;
}
}
VkSamplerMipmapMode GetSamplerMipmapMode(const GLenum filter)
{
switch (filter)
{
case GL_LINEAR_MIPMAP_LINEAR:
case GL_NEAREST_MIPMAP_LINEAR:
return VK_SAMPLER_MIPMAP_MODE_LINEAR;
case GL_LINEAR:
case GL_NEAREST:
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
return VK_SAMPLER_MIPMAP_MODE_NEAREST;
default:
UNIMPLEMENTED();
return VK_SAMPLER_MIPMAP_MODE_MAX_ENUM;
}
}
VkSamplerAddressMode GetSamplerAddressMode(const GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
return VK_SAMPLER_ADDRESS_MODE_REPEAT;
case GL_MIRRORED_REPEAT:
return VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
case GL_CLAMP_TO_BORDER:
return VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
case GL_CLAMP_TO_EDGE:
return VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
default:
UNIMPLEMENTED();
return VK_SAMPLER_ADDRESS_MODE_MAX_ENUM;
}
}
VkRect2D GetRect(const gl::Rectangle &source)
{
return {{source.x, source.y},
{static_cast<uint32_t>(source.width), static_cast<uint32_t>(source.height)}};
}
VkPrimitiveTopology GetPrimitiveTopology(gl::PrimitiveMode mode)
{
switch (mode)
{
case gl::PrimitiveMode::Triangles:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
case gl::PrimitiveMode::Points:
return VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
case gl::PrimitiveMode::Lines:
return VK_PRIMITIVE_TOPOLOGY_LINE_LIST;
case gl::PrimitiveMode::LineStrip:
return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
case gl::PrimitiveMode::TriangleFan:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN;
case gl::PrimitiveMode::TriangleStrip:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
case gl::PrimitiveMode::LineLoop:
return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
case gl::PrimitiveMode::LinesAdjacency:
return VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY;
case gl::PrimitiveMode::LineStripAdjacency:
return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY;
case gl::PrimitiveMode::TrianglesAdjacency:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY;
case gl::PrimitiveMode::TriangleStripAdjacency:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY;
case gl::PrimitiveMode::Patches:
return VK_PRIMITIVE_TOPOLOGY_PATCH_LIST;
default:
UNREACHABLE();
return VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
}
}
VkCullModeFlagBits GetCullMode(const gl::RasterizerState &rasterState)
{
if (!rasterState.cullFace)
{
return VK_CULL_MODE_NONE;
}
switch (rasterState.cullMode)
{
case gl::CullFaceMode::Front:
return VK_CULL_MODE_FRONT_BIT;
case gl::CullFaceMode::Back:
return VK_CULL_MODE_BACK_BIT;
case gl::CullFaceMode::FrontAndBack:
return VK_CULL_MODE_FRONT_AND_BACK;
default:
UNREACHABLE();
return VK_CULL_MODE_NONE;
}
}
VkFrontFace GetFrontFace(GLenum frontFace, bool invertCullFace)
{
// Invert CW and CCW to have the same behavior as OpenGL.
switch (frontFace)
{
case GL_CW:
return invertCullFace ? VK_FRONT_FACE_CLOCKWISE : VK_FRONT_FACE_COUNTER_CLOCKWISE;
case GL_CCW:
return invertCullFace ? VK_FRONT_FACE_COUNTER_CLOCKWISE : VK_FRONT_FACE_CLOCKWISE;
default:
UNREACHABLE();
return VK_FRONT_FACE_CLOCKWISE;
}
}
VkSampleCountFlagBits GetSamples(GLint sampleCount)
{
switch (sampleCount)
{
case 0:
UNREACHABLE();
return VK_SAMPLE_COUNT_1_BIT;
case 1:
return VK_SAMPLE_COUNT_1_BIT;
case 2:
return VK_SAMPLE_COUNT_2_BIT;
case 4:
return VK_SAMPLE_COUNT_4_BIT;
case 8:
return VK_SAMPLE_COUNT_8_BIT;
case 16:
return VK_SAMPLE_COUNT_16_BIT;
case 32:
return VK_SAMPLE_COUNT_32_BIT;
default:
UNREACHABLE();
return VK_SAMPLE_COUNT_FLAG_BITS_MAX_ENUM;
}
}
VkComponentSwizzle GetSwizzle(const GLenum swizzle)
{
switch (swizzle)
{
case GL_ALPHA:
return VK_COMPONENT_SWIZZLE_A;
case GL_RED:
return VK_COMPONENT_SWIZZLE_R;
case GL_GREEN:
return VK_COMPONENT_SWIZZLE_G;
case GL_BLUE:
return VK_COMPONENT_SWIZZLE_B;
case GL_ZERO:
return VK_COMPONENT_SWIZZLE_ZERO;
case GL_ONE:
return VK_COMPONENT_SWIZZLE_ONE;
default:
UNREACHABLE();
return VK_COMPONENT_SWIZZLE_IDENTITY;
}
}
VkCompareOp GetCompareOp(const GLenum compareFunc)
{
switch (compareFunc)
{
case GL_NEVER:
return VK_COMPARE_OP_NEVER;
case GL_LESS:
return VK_COMPARE_OP_LESS;
case GL_EQUAL:
return VK_COMPARE_OP_EQUAL;
case GL_LEQUAL:
return VK_COMPARE_OP_LESS_OR_EQUAL;
case GL_GREATER:
return VK_COMPARE_OP_GREATER;
case GL_NOTEQUAL:
return VK_COMPARE_OP_NOT_EQUAL;
case GL_GEQUAL:
return VK_COMPARE_OP_GREATER_OR_EQUAL;
case GL_ALWAYS:
return VK_COMPARE_OP_ALWAYS;
default:
UNREACHABLE();
return VK_COMPARE_OP_ALWAYS;
}
}
void GetOffset(const gl::Offset &glOffset, VkOffset3D *vkOffset)
{
vkOffset->x = glOffset.x;
vkOffset->y = glOffset.y;
vkOffset->z = glOffset.z;
}
void GetExtent(const gl::Extents &glExtent, VkExtent3D *vkExtent)
{
vkExtent->width = glExtent.width;
vkExtent->height = glExtent.height;
vkExtent->depth = glExtent.depth;
}
VkImageType GetImageType(gl::TextureType textureType)
{
switch (textureType)
{
case gl::TextureType::_2D:
case gl::TextureType::_2DArray:
case gl::TextureType::_2DMultisample:
case gl::TextureType::_2DMultisampleArray:
case gl::TextureType::CubeMap:
case gl::TextureType::CubeMapArray:
case gl::TextureType::External:
return VK_IMAGE_TYPE_2D;
case gl::TextureType::_3D:
return VK_IMAGE_TYPE_3D;
default:
// We will need to implement all the texture types for ES3+.
UNIMPLEMENTED();
return VK_IMAGE_TYPE_MAX_ENUM;
}
}
VkImageViewType GetImageViewType(gl::TextureType textureType)
{
switch (textureType)
{
case gl::TextureType::_2D:
case gl::TextureType::_2DMultisample:
case gl::TextureType::External:
return VK_IMAGE_VIEW_TYPE_2D;
case gl::TextureType::_2DArray:
case gl::TextureType::_2DMultisampleArray:
return VK_IMAGE_VIEW_TYPE_2D_ARRAY;
case gl::TextureType::_3D:
return VK_IMAGE_VIEW_TYPE_3D;
case gl::TextureType::CubeMap:
return VK_IMAGE_VIEW_TYPE_CUBE;
case gl::TextureType::CubeMapArray:
return VK_IMAGE_VIEW_TYPE_CUBE_ARRAY;
default:
// We will need to implement all the texture types for ES3+.
UNIMPLEMENTED();
return VK_IMAGE_VIEW_TYPE_MAX_ENUM;
}
}
VkColorComponentFlags GetColorComponentFlags(bool red, bool green, bool blue, bool alpha)
{
return (red ? VK_COLOR_COMPONENT_R_BIT : 0) | (green ? VK_COLOR_COMPONENT_G_BIT : 0) |
(blue ? VK_COLOR_COMPONENT_B_BIT : 0) | (alpha ? VK_COLOR_COMPONENT_A_BIT : 0);
}
VkShaderStageFlags GetShaderStageFlags(gl::ShaderBitSet activeShaders)
{
VkShaderStageFlags flags = 0;
for (const gl::ShaderType shaderType : activeShaders)
{
flags |= kShaderStageMap[shaderType];
}
return flags;
}
void GetViewport(const gl::Rectangle &viewport,
float nearPlane,
float farPlane,
bool invertViewport,
bool clipSpaceOriginUpperLeft,
GLint renderAreaHeight,
VkViewport *viewportOut)
{
viewportOut->x = static_cast<float>(viewport.x);
viewportOut->y = static_cast<float>(viewport.y);
viewportOut->width = static_cast<float>(viewport.width);
viewportOut->height = static_cast<float>(viewport.height);
viewportOut->minDepth = gl::clamp01(nearPlane);
viewportOut->maxDepth = gl::clamp01(farPlane);
// Say an application intends to draw a primitive (shown as 'o' below), it can choose to use
// different clip space origin. When clip space origin (shown as 'C' below) is switched from
// lower-left to upper-left, primitives will be rendered with its y-coordinate flipped.
// Rendered content will differ based on whether it is a default framebuffer or a user defined
// framebuffer. We modify the viewport's 'y' and 'h' accordingly.
// clip space origin is lower-left
// Expected draw in GLES default framebuffer user defined framebuffer
// (0,H) (0,0) (0,0)
// + +-----------+ (W,0) +-----------+ (W,0)
// | | | C----+
// | | | | | (h)
// | +----+ | +----+ | | O |
// | | O | | | O | (-h) | +----+
// | | | | | | |
// | C----+ | C----+ |
// +-----------+ (W,0) + +
// (0,0) (0,H) (0,H)
// y' = H - h y' = y
// clip space origin is upper-left
// Expected draw in GLES default framebuffer user defined framebuffer
// (0,H) (0,0) (0,0)
// + +-----------+ (W,0) +-----------+ (W,0)
// | | | +----+
// | | | | O | (-h)
// | C----+ | C----+ | | |
// | | | | | | (h) | C----+
// | | O | | | O | |
// | +----+ | +----+ |
// +-----------+ (W,0) + +
// (0,0) (0,H) (0,H)
// y' = H - (y + h) y' = y + H
if (clipSpaceOriginUpperLeft)
{
if (invertViewport)
{
viewportOut->y = static_cast<float>(renderAreaHeight - (viewport.height + viewport.y));
}
else
{
viewportOut->y = static_cast<float>(viewport.height + viewport.y);
viewportOut->height = -viewportOut->height;
}
}
else
{
if (invertViewport)
{
viewportOut->y = static_cast<float>(renderAreaHeight - viewport.y);
viewportOut->height = -viewportOut->height;
}
}
}
void GetExtentsAndLayerCount(gl::TextureType textureType,
const gl::Extents &extents,
VkExtent3D *extentsOut,
uint32_t *layerCountOut)
{
extentsOut->width = extents.width;
extentsOut->height = extents.height;
switch (textureType)
{
case gl::TextureType::CubeMap:
extentsOut->depth = 1;
*layerCountOut = gl::kCubeFaceCount;
break;
case gl::TextureType::_2DArray:
case gl::TextureType::_2DMultisampleArray:
case gl::TextureType::CubeMapArray:
extentsOut->depth = 1;
*layerCountOut = extents.depth;
break;
default:
extentsOut->depth = extents.depth;
*layerCountOut = 1;
break;
}
}
vk::LevelIndex GetLevelIndex(gl::LevelIndex levelGL, gl::LevelIndex baseLevel)
{
ASSERT(baseLevel <= levelGL);
return vk::LevelIndex(levelGL.get() - baseLevel.get());
}
} // namespace gl_vk
namespace vk_gl
{
void AddSampleCounts(VkSampleCountFlags sampleCounts, gl::SupportedSampleSet *setOut)
{
// The possible bits are VK_SAMPLE_COUNT_n_BIT = n, with n = 1 << b. At the time of this
// writing, b is in [0, 6], however, we test all 32 bits in case the enum is extended.
for (size_t bit : angle::BitSet32<32>(sampleCounts & kSupportedSampleCounts))
{
setOut->insert(static_cast<GLuint>(1 << bit));
}
}
GLuint GetMaxSampleCount(VkSampleCountFlags sampleCounts)
{
GLuint maxCount = 0;
for (size_t bit : angle::BitSet32<32>(sampleCounts & kSupportedSampleCounts))
{
maxCount = static_cast<GLuint>(1 << bit);
}
return maxCount;
}
GLuint GetSampleCount(VkSampleCountFlags supportedCounts, GLuint requestedCount)
{
for (size_t bit : angle::BitSet32<32>(supportedCounts & kSupportedSampleCounts))
{
GLuint sampleCount = static_cast<GLuint>(1 << bit);
if (sampleCount >= requestedCount)
{
return sampleCount;
}
}
UNREACHABLE();
return 0;
}
gl::LevelIndex GetLevelIndex(vk::LevelIndex levelVk, gl::LevelIndex baseLevel)
{
return gl::LevelIndex(levelVk.get() + baseLevel.get());
}
} // namespace vk_gl
namespace vk
{
// BufferBlock implementation.
BufferBlock::BufferBlock() : mMemoryPropertyFlags(0), mSize(0), mMappedMemory(nullptr) {}
BufferBlock::BufferBlock(BufferBlock &&other)
: mVirtualBlock(std::move(other.mVirtualBlock)),
mBuffer(std::move(other.mBuffer)),
mDeviceMemory(std::move(other.mDeviceMemory)),
mMemoryPropertyFlags(other.mMemoryPropertyFlags),
mSize(other.mSize),
mMappedMemory(other.mMappedMemory),
mSerial(other.mSerial),
mCountRemainsEmpty(0)
{}
BufferBlock &BufferBlock::operator=(BufferBlock &&other)
{
std::swap(mVirtualBlock, other.mVirtualBlock);
std::swap(mBuffer, other.mBuffer);
std::swap(mDeviceMemory, other.mDeviceMemory);
std::swap(mMemoryPropertyFlags, other.mMemoryPropertyFlags);
std::swap(mSize, other.mSize);
std::swap(mMappedMemory, other.mMappedMemory);
std::swap(mSerial, other.mSerial);
std::swap(mCountRemainsEmpty, other.mCountRemainsEmpty);
return *this;
}
BufferBlock::~BufferBlock()
{
ASSERT(!mVirtualBlock.valid());
ASSERT(!mBuffer.valid());
ASSERT(!mDeviceMemory.valid());
}
void BufferBlock::destroy(RendererVk *renderer)
{
VkDevice device = renderer->getDevice();
if (mMappedMemory)
{
unmap(device);
}
mVirtualBlock.destroy(device);
mBuffer.destroy(device);
mDeviceMemory.destroy(device);
}
angle::Result BufferBlock::init(ContextVk *contextVk,
Buffer &buffer,
vma::VirtualBlockCreateFlags flags,
DeviceMemory &deviceMemory,
VkMemoryPropertyFlags memoryPropertyFlags,
VkDeviceSize size)
{
RendererVk *renderer = contextVk->getRenderer();
ASSERT(!mVirtualBlock.valid());
ASSERT(!mBuffer.valid());
ASSERT(!mDeviceMemory.valid());
mVirtualBlockMutex.init(renderer->isAsyncCommandQueueEnabled());
ANGLE_VK_TRY(contextVk, mVirtualBlock.init(renderer->getDevice(), flags, size));
mBuffer = std::move(buffer);
mDeviceMemory = std::move(deviceMemory);
mMemoryPropertyFlags = memoryPropertyFlags;
mSize = size;
mMappedMemory = nullptr;
mSerial = renderer->getResourceSerialFactory().generateBufferSerial();
return angle::Result::Continue;
}
void BufferBlock::initWithoutVirtualBlock(Context *context,
Buffer &buffer,
DeviceMemory &deviceMemory,
VkMemoryPropertyFlags memoryPropertyFlags,
VkDeviceSize size)
{
RendererVk *renderer = context->getRenderer();
ASSERT(!mVirtualBlock.valid());
ASSERT(!mBuffer.valid());
ASSERT(!mDeviceMemory.valid());
mBuffer = std::move(buffer);
mDeviceMemory = std::move(deviceMemory);
mMemoryPropertyFlags = memoryPropertyFlags;
mSize = size;
mMappedMemory = nullptr;
mSerial = renderer->getResourceSerialFactory().generateBufferSerial();
}
VkResult BufferBlock::map(const VkDevice device)
{
ASSERT(mMappedMemory == nullptr);
return mDeviceMemory.map(device, 0, mSize, 0, &mMappedMemory);
}
void BufferBlock::unmap(const VkDevice device)
{
mDeviceMemory.unmap(device);
mMappedMemory = nullptr;
}
void BufferBlock::free(VkDeviceSize offset)
{
std::lock_guard<ConditionalMutex> lock(mVirtualBlockMutex);
mVirtualBlock.free(offset);
}
int32_t BufferBlock::getAndIncrementEmptyCounter()
{
return ++mCountRemainsEmpty;
}
} // namespace vk
} // namespace rx