Hash :
5384667f
Author :
Date :
2023-03-20T10:23:13
IWYU: missing include for std::atomic in FixedQueue.h
Fix build error using libstdc++ due to missing include for usage of
std::atomic in FixedQueue.h:
../../third_party/angle/src/common/FixedQueue.h:61:10: error: ‘atomic’ in namespace ‘std’ does not name a template type
61 | std::atomic<size_type> mSize;
| ^~~~~~
Bug: chromium:957519
Change-Id: I099a4a8c463149d74cf82ec6eda5e4a872d6e812
Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/4352888
Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org>
Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
//
// Copyright 2023 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// FixedQueue.h:
// An array based fifo queue class that supports concurrent push and pop.
//
#ifndef COMMON_FIXEDQUEUE_H_
#define COMMON_FIXEDQUEUE_H_
#include "common/debug.h"
#include <algorithm>
#include <array>
#include <atomic>
namespace angle
{
// class FixedQueue: An array based fix storage fifo queue class that supports concurrent push and
// pop. Caller must ensure queue is not empty before pop and not full before push. This class
// supports concurrent push and pop from different threads. If caller want to push from two
// different threads, proper mutex must be used to ensure the access is serialized.
template <class T, size_t N, class Storage = std::array<T, N>>
class FixedQueue final : angle::NonCopyable
{
public:
using value_type = typename Storage::value_type;
using size_type = typename Storage::size_type;
using reference = typename Storage::reference;
using const_reference = typename Storage::const_reference;
FixedQueue();
~FixedQueue();
size_type size() const;
bool empty() const;
bool full() const;
reference front();
const_reference front() const;
void push(const value_type &value);
void push(value_type &&value);
reference back();
const_reference back() const;
void pop();
void clear();
private:
Storage mData;
// The front and back indices are virtual indices (think about queue sizd is infinite). They
// will never wrap around when hit N. The wrap around occur when element is referenced. Virtual
// index for current head
size_type mFrontIndex;
// Virtual index for next write.
size_type mEndIndex;
// Atomic so that we can support concurrent push and pop.
std::atomic<size_type> mSize;
};
template <class T, size_t N, class Storage>
FixedQueue<T, N, Storage>::FixedQueue() : mFrontIndex(0), mEndIndex(0), mSize(0)
{}
template <class T, size_t N, class Storage>
FixedQueue<T, N, Storage>::~FixedQueue()
{}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FixedQueue<T, N, Storage>::size_type FixedQueue<T, N, Storage>::size() const
{
return mSize;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE bool FixedQueue<T, N, Storage>::empty() const
{
return mSize == 0;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE bool FixedQueue<T, N, Storage>::full() const
{
return mSize >= N;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FixedQueue<T, N, Storage>::reference FixedQueue<T, N, Storage>::front()
{
ASSERT(mSize > 0);
return mData[mFrontIndex % N];
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FixedQueue<T, N, Storage>::const_reference FixedQueue<T, N, Storage>::front()
const
{
ASSERT(mSize > 0);
return mData[mFrontIndex % N];
}
template <class T, size_t N, class Storage>
void FixedQueue<T, N, Storage>::push(const value_type &value)
{
ASSERT(mSize < N);
mData[mEndIndex % N] = value;
mEndIndex++;
// We must increment size last, after we wrote data. That way if another thread is doing
// `if(!dq.empty()){ s = dq.front(); }`, it will only see not empty until element is fully
// pushed.
mSize++;
}
template <class T, size_t N, class Storage>
void FixedQueue<T, N, Storage>::push(value_type &&value)
{
ASSERT(mSize < N);
mData[mEndIndex % N] = std::move(value);
mEndIndex++;
// We must increment size last, after we wrote data. That way if another thread is doing
// `if(!dq.empty()){ s = dq.front(); }`, it will only see not empty until element is fully
// pushed.
mSize++;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FixedQueue<T, N, Storage>::reference FixedQueue<T, N, Storage>::back()
{
ASSERT(mSize > 0);
return mData[(mEndIndex + (N - 1)) % N];
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FixedQueue<T, N, Storage>::const_reference FixedQueue<T, N, Storage>::back()
const
{
ASSERT(mSize > 0);
return mData[(mEndIndex + (N - 1)) % N];
}
template <class T, size_t N, class Storage>
void FixedQueue<T, N, Storage>::pop()
{
ASSERT(mSize > 0);
mData[mFrontIndex % N] = value_type();
mFrontIndex++;
// We must decrement size last, after we wrote data. That way if another thread is doing
// `if(!dq.full()){ dq.push; }`, it will only see not full until element is fully popped.
mSize--;
}
template <class T, size_t N, class Storage>
void FixedQueue<T, N, Storage>::clear()
{
// Size will change in the "pop()" and also by "push()" calls from other thread.
const size_type localSize = mSize;
for (size_type i = 0; i < localSize; i++)
{
pop();
}
}
} // namespace angle
#endif // COMMON_FIXEDQUEUE_H_