Hash :
f0b02054
Author :
Date :
2020-08-06T20:55:05
Add a Vulkan feature to compress float32 vertex formats. Use the vertex conversion pipeline in VertexArrayVk to detect static vertex data and convert float32 vertices to float16. This feature is useful for determining if an allication is vertex bandwidth bound and seeing what gains could be had by using smaller attributes. This feature could be implemented in ANGLE's frontend but new infrastructure for converting and storing the converted attributes would need to be added to gl::VertexArray. Our backends already have the functionality needed to handle unsupported attribute formats and this can be repurposed for compressing vertex formats. Bug: b/167404532 Bug: b/161716126 Change-Id: I9a09656a72e8499faa4124adf876d7261c8341c9 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/2342285 Commit-Queue: Geoff Lang <geofflang@chromium.org> Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// vk_format_utils:
// Helper for Vulkan format code.
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "libANGLE/Texture.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/load_functions_table.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/RendererVk.h"
#include "libANGLE/renderer/vulkan/vk_caps_utils.h"
namespace rx
{
namespace
{
void FillTextureFormatCaps(RendererVk *renderer, VkFormat format, gl::TextureCaps *outTextureCaps)
{
const VkPhysicalDeviceLimits &physicalDeviceLimits =
renderer->getPhysicalDeviceProperties().limits;
bool hasColorAttachmentFeatureBit =
renderer->hasImageFormatFeatureBits(format, VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT);
bool hasDepthAttachmentFeatureBit =
renderer->hasImageFormatFeatureBits(format, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
outTextureCaps->texturable =
renderer->hasImageFormatFeatureBits(format, VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
outTextureCaps->filterable = renderer->hasImageFormatFeatureBits(
format, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT);
outTextureCaps->blendable =
renderer->hasImageFormatFeatureBits(format, VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT);
// For renderbuffer and texture attachments we require transfer and sampling for
// GLES 2.0 CopyTexImage support. Sampling is also required for other features like
// blits and EGLImages.
outTextureCaps->textureAttachment =
outTextureCaps->texturable &&
(hasColorAttachmentFeatureBit || hasDepthAttachmentFeatureBit);
outTextureCaps->renderbuffer = outTextureCaps->textureAttachment;
if (outTextureCaps->renderbuffer)
{
if (hasColorAttachmentFeatureBit)
{
vk_gl::AddSampleCounts(physicalDeviceLimits.framebufferColorSampleCounts,
&outTextureCaps->sampleCounts);
}
if (hasDepthAttachmentFeatureBit)
{
// Some drivers report different depth and stencil sample counts. We'll AND those
// counts together, limiting all depth and/or stencil formats to the lower number of
// sample counts.
vk_gl::AddSampleCounts((physicalDeviceLimits.framebufferDepthSampleCounts &
physicalDeviceLimits.framebufferStencilSampleCounts),
&outTextureCaps->sampleCounts);
}
}
}
bool HasFullBufferFormatSupport(RendererVk *renderer, VkFormat vkFormat)
{
return renderer->hasBufferFormatFeatureBits(vkFormat, VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT);
}
using SupportTest = bool (*)(RendererVk *renderer, VkFormat vkFormat);
template <class FormatInitInfo>
int FindSupportedFormat(RendererVk *renderer,
const FormatInitInfo *info,
size_t skip,
int numInfo,
SupportTest hasSupport)
{
ASSERT(numInfo > 0);
const int last = numInfo - 1;
for (int i = static_cast<int>(skip); i < last; ++i)
{
ASSERT(info[i].format != angle::FormatID::NONE);
if (hasSupport(renderer, info[i].vkFormat))
return i;
}
if (skip > 0 && !hasSupport(renderer, info[last].vkFormat))
{
// We couldn't find a valid fallback, try again without skip
return FindSupportedFormat(renderer, info, 0, numInfo, hasSupport);
}
ASSERT(info[last].format != angle::FormatID::NONE);
ASSERT(hasSupport(renderer, info[last].vkFormat));
return last;
}
} // anonymous namespace
namespace vk
{
// Format implementation.
Format::Format()
: intendedFormatID(angle::FormatID::NONE),
internalFormat(GL_NONE),
actualImageFormatID(angle::FormatID::NONE),
vkImageFormat(VK_FORMAT_UNDEFINED),
actualBufferFormatID(angle::FormatID::NONE),
vkBufferFormat(VK_FORMAT_UNDEFINED),
actualCompressedBufferFormatID(angle::FormatID::NONE),
vkCompressedBufferFormat(VK_FORMAT_UNDEFINED),
imageInitializerFunction(nullptr),
textureLoadFunctions(),
vertexLoadFunction(nullptr),
compressedVertexLoadFunction(nullptr),
vertexLoadRequiresConversion(false),
compressedVertexLoadRequiresConversion(false),
vkBufferFormatIsPacked(false),
vkFormatIsInt(false),
vkFormatIsUnsigned(false)
{}
void Format::initImageFallback(RendererVk *renderer, const ImageFormatInitInfo *info, int numInfo)
{
size_t skip = renderer->getFeatures().forceFallbackFormat.enabled ? 1 : 0;
SupportTest testFunction = HasFullTextureFormatSupport;
const angle::Format &format = angle::Format::Get(info[0].format);
if (format.isInt() || (format.isFloat() && format.redBits >= 32))
{
// Integer formats don't support filtering in GL, so don't test for it.
// Filtering of 32-bit float textures is not supported on Android, and
// it's enabled by the extension OES_texture_float_linear, which is
// enabled automatically by examining format capabilities.
testFunction = HasNonFilterableTextureFormatSupport;
}
if (format.isSnorm() || format.isBlock)
{
// Rendering to SNORM textures is not supported on Android, and it's
// enabled by the extension EXT_render_snorm.
// Compressed textures also need to perform this check.
testFunction = HasNonRenderableTextureFormatSupport;
}
int i = FindSupportedFormat(renderer, info, skip, static_cast<uint32_t>(numInfo), testFunction);
actualImageFormatID = info[i].format;
vkImageFormat = info[i].vkFormat;
imageInitializerFunction = info[i].initializer;
}
void Format::initBufferFallback(RendererVk *renderer,
const BufferFormatInitInfo *info,
int numInfo,
int compressedStartIndex)
{
{
size_t skip = renderer->getFeatures().forceFallbackFormat.enabled ? 1 : 0;
int i = FindSupportedFormat(renderer, info, skip, compressedStartIndex,
HasFullBufferFormatSupport);
actualBufferFormatID = info[i].format;
vkBufferFormat = info[i].vkFormat;
vkBufferFormatIsPacked = info[i].vkFormatIsPacked;
vertexLoadFunction = info[i].vertexLoadFunction;
vertexLoadRequiresConversion = info[i].vertexLoadRequiresConversion;
}
if (renderer->getFeatures().compressVertexData.enabled && compressedStartIndex < numInfo)
{
int i = FindSupportedFormat(renderer, info, compressedStartIndex, numInfo,
HasFullBufferFormatSupport);
actualCompressedBufferFormatID = info[i].format;
vkCompressedBufferFormat = info[i].vkFormat;
vkCompressedBufferFormatIsPacked = info[i].vkFormatIsPacked;
compressedVertexLoadFunction = info[i].vertexLoadFunction;
compressedVertexLoadRequiresConversion = info[i].vertexLoadRequiresConversion;
}
}
size_t Format::getImageCopyBufferAlignment() const
{
// vkCmdCopyBufferToImage must have an offset that is a multiple of 4 as well as a multiple
// of the texel size (if uncompressed) or pixel block size (if compressed).
// https://www.khronos.org/registry/vulkan/specs/1.0/man/html/VkBufferImageCopy.html
//
// We need lcm(4, texelSize) (lcm = least common multiplier). For compressed images,
// |texelSize| would contain the block size. Since 4 is constant, this can be calculated as:
//
// | texelSize texelSize % 4 == 0
// | 4 * texelSize texelSize % 4 == 1
// lcm(4, texelSize) = <
// | 2 * texelSize texelSize % 4 == 2
// | 4 * texelSize texelSize % 4 == 3
//
// This means:
//
// - texelSize % 2 != 0 gives a 4x multiplier
// - else texelSize % 4 != 0 gives a 2x multiplier
// - else there's no multiplier.
//
const angle::Format &format = actualImageFormat();
ASSERT(format.pixelBytes != 0);
const size_t texelSize = format.pixelBytes;
const size_t multiplier = texelSize % 2 != 0 ? 4 : texelSize % 4 != 0 ? 2 : 1;
const size_t alignment = multiplier * texelSize;
return alignment;
}
size_t Format::getValidImageCopyBufferAlignment() const
{
constexpr size_t kMinimumAlignment = 16;
return (intendedFormatID == angle::FormatID::NONE) ? kMinimumAlignment
: getImageCopyBufferAlignment();
}
bool Format::hasEmulatedImageChannels() const
{
const angle::Format &angleFmt = intendedFormat();
const angle::Format &textureFmt = actualImageFormat();
return (angleFmt.alphaBits == 0 && textureFmt.alphaBits > 0) ||
(angleFmt.blueBits == 0 && textureFmt.blueBits > 0) ||
(angleFmt.greenBits == 0 && textureFmt.greenBits > 0) ||
(angleFmt.depthBits == 0 && textureFmt.depthBits > 0) ||
(angleFmt.stencilBits == 0 && textureFmt.stencilBits > 0);
}
bool operator==(const Format &lhs, const Format &rhs)
{
return &lhs == &rhs;
}
bool operator!=(const Format &lhs, const Format &rhs)
{
return &lhs != &rhs;
}
// FormatTable implementation.
FormatTable::FormatTable() {}
FormatTable::~FormatTable() {}
void FormatTable::initialize(RendererVk *renderer,
gl::TextureCapsMap *outTextureCapsMap,
std::vector<GLenum> *outCompressedTextureFormats)
{
for (size_t formatIndex = 0; formatIndex < angle::kNumANGLEFormats; ++formatIndex)
{
vk::Format &format = mFormatData[formatIndex];
const auto formatID = static_cast<angle::FormatID>(formatIndex);
const angle::Format &angleFormat = angle::Format::Get(formatID);
format.initialize(renderer, angleFormat);
const GLenum internalFormat = format.internalFormat;
format.intendedFormatID = formatID;
if (!format.valid())
{
continue;
}
gl::TextureCaps textureCaps;
FillTextureFormatCaps(renderer, format.vkImageFormat, &textureCaps);
outTextureCapsMap->set(formatID, textureCaps);
if (textureCaps.texturable)
{
format.textureLoadFunctions =
GetLoadFunctionsMap(internalFormat, format.actualImageFormatID);
}
if (angleFormat.isBlock)
{
outCompressedTextureFormats->push_back(internalFormat);
}
}
}
VkImageUsageFlags GetMaximalImageUsageFlags(RendererVk *renderer, VkFormat format)
{
constexpr VkFormatFeatureFlags kImageUsageFeatureBits =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT |
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT | VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_FORMAT_FEATURE_TRANSFER_SRC_BIT | VK_FORMAT_FEATURE_TRANSFER_DST_BIT;
VkFormatFeatureFlags featureBits =
renderer->getImageFormatFeatureBits(format, kImageUsageFeatureBits);
VkImageUsageFlags imageUsageFlags = 0;
if (featureBits & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)
imageUsageFlags |= VK_IMAGE_USAGE_SAMPLED_BIT;
if (featureBits & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)
imageUsageFlags |= VK_IMAGE_USAGE_STORAGE_BIT;
if (featureBits & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)
imageUsageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
if (featureBits & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)
imageUsageFlags |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
if (featureBits & VK_FORMAT_FEATURE_TRANSFER_SRC_BIT)
imageUsageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
if (featureBits & VK_FORMAT_FEATURE_TRANSFER_DST_BIT)
imageUsageFlags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageUsageFlags |= VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
return imageUsageFlags;
}
} // namespace vk
bool HasFullTextureFormatSupport(RendererVk *renderer, VkFormat vkFormat)
{
constexpr uint32_t kBitsColor = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT |
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT |
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT;
// In OpenGL ES, all renderable formats except 32-bit floating-point support blending.
// 32-bit floating-point case validation is handled by ANGLE's frontend.
uint32_t kBitsColorFull = kBitsColor;
switch (vkFormat)
{
case VK_FORMAT_R32_SFLOAT:
case VK_FORMAT_R32G32_SFLOAT:
case VK_FORMAT_R32G32B32A32_SFLOAT:
break;
default:
kBitsColorFull |= VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT;
break;
}
constexpr uint32_t kBitsDepth = VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT;
return renderer->hasImageFormatFeatureBits(vkFormat, kBitsColorFull) ||
renderer->hasImageFormatFeatureBits(vkFormat, kBitsDepth);
}
bool HasNonFilterableTextureFormatSupport(RendererVk *renderer, VkFormat vkFormat)
{
constexpr uint32_t kBitsColor =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT;
constexpr uint32_t kBitsDepth = VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT;
return renderer->hasImageFormatFeatureBits(vkFormat, kBitsColor) ||
renderer->hasImageFormatFeatureBits(vkFormat, kBitsDepth);
}
bool HasNonRenderableTextureFormatSupport(RendererVk *renderer, VkFormat vkFormat)
{
constexpr uint32_t kBitsColor =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT;
constexpr uint32_t kBitsDepth = VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT;
return renderer->hasImageFormatFeatureBits(vkFormat, kBitsColor) ||
renderer->hasImageFormatFeatureBits(vkFormat, kBitsDepth);
}
size_t GetVertexInputAlignment(const vk::Format &format, bool compressed)
{
const angle::Format &bufferFormat = format.actualBufferFormat(compressed);
size_t pixelBytes = bufferFormat.pixelBytes;
return format.vkBufferFormatIsPacked ? pixelBytes : (pixelBytes / bufferFormat.channelCount);
}
GLenum GetSwizzleStateComponent(const gl::SwizzleState &swizzleState, GLenum component)
{
switch (component)
{
case GL_RED:
return swizzleState.swizzleRed;
case GL_GREEN:
return swizzleState.swizzleGreen;
case GL_BLUE:
return swizzleState.swizzleBlue;
case GL_ALPHA:
return swizzleState.swizzleAlpha;
default:
return component;
}
}
gl::SwizzleState ApplySwizzle(const gl::SwizzleState &formatSwizzle,
const gl::SwizzleState &toApply)
{
gl::SwizzleState result;
result.swizzleRed = GetSwizzleStateComponent(formatSwizzle, toApply.swizzleRed);
result.swizzleGreen = GetSwizzleStateComponent(formatSwizzle, toApply.swizzleGreen);
result.swizzleBlue = GetSwizzleStateComponent(formatSwizzle, toApply.swizzleBlue);
result.swizzleAlpha = GetSwizzleStateComponent(formatSwizzle, toApply.swizzleAlpha);
return result;
}
gl::SwizzleState GetFormatSwizzle(const ContextVk *contextVk,
const vk::Format &format,
const bool sized)
{
const angle::Format &angleFormat = format.intendedFormat();
gl::SwizzleState internalSwizzle;
if (angleFormat.isLUMA())
{
GLenum swizzleRGB, swizzleA;
if (angleFormat.luminanceBits > 0)
{
swizzleRGB = GL_RED;
swizzleA = (angleFormat.alphaBits > 0 ? GL_GREEN : GL_ONE);
}
else
{
swizzleRGB = GL_ZERO;
swizzleA = GL_RED;
}
internalSwizzle.swizzleRed = swizzleRGB;
internalSwizzle.swizzleGreen = swizzleRGB;
internalSwizzle.swizzleBlue = swizzleRGB;
internalSwizzle.swizzleAlpha = swizzleA;
}
else
{
if (angleFormat.hasDepthOrStencilBits())
{
bool hasRed = angleFormat.depthBits > 0;
// In OES_depth_texture/ARB_depth_texture, depth
// textures are treated as luminance.
// If the internalformat was not sized, use OES_depth_texture behavior
bool hasGB = hasRed && !sized;
internalSwizzle.swizzleRed = hasRed ? GL_RED : GL_ZERO;
internalSwizzle.swizzleGreen = hasGB ? GL_RED : GL_ZERO;
internalSwizzle.swizzleBlue = hasGB ? GL_RED : GL_ZERO;
internalSwizzle.swizzleAlpha = GL_ONE;
}
else
{
// Color bits are all zero for blocked formats
if (!angleFormat.isBlock)
{
// Set any missing channel to default in case the emulated format has that channel.
internalSwizzle.swizzleRed = angleFormat.redBits > 0 ? GL_RED : GL_ZERO;
internalSwizzle.swizzleGreen = angleFormat.greenBits > 0 ? GL_GREEN : GL_ZERO;
internalSwizzle.swizzleBlue = angleFormat.blueBits > 0 ? GL_BLUE : GL_ZERO;
internalSwizzle.swizzleAlpha = angleFormat.alphaBits > 0 ? GL_ALPHA : GL_ONE;
}
}
}
return internalSwizzle;
}
} // namespace rx