Hash :
ac66f982
Author :
Date :
2018-10-09T18:30:01
Optimize ValidateBindTexture type check. This switch can be cached in a very fast packed map. The map contents only change if different extensions are exposed. This reduces the number of instructions we hit in ValidateBindTexture. Bug: angleproject:2763 Change-Id: I6ba8a4124d85e4c193d0dee3e03e50713d51b1f4 Reviewed-on: https://chromium-review.googlesource.com/c/1262739 Commit-Queue: Jamie Madill <jmadill@chromium.org> Reviewed-by: Yuly Novikov <ynovikov@google.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
// Copyright 2017 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// PackedGLEnums_autogen.h:
// Declares ANGLE-specific enums classes for GLEnum and functions operating
// on them.
#ifndef COMMON_PACKEDGLENUMS_H_
#define COMMON_PACKEDGLENUMS_H_
#include "common/PackedEGLEnums_autogen.h"
#include "common/PackedGLEnums_autogen.h"
#include <array>
#include <bitset>
#include <cstddef>
#include <EGL/egl.h>
#include "common/bitset_utils.h"
namespace angle
{
// Return the number of elements of a packed enum, including the InvalidEnum element.
template <typename E>
constexpr size_t EnumSize()
{
using UnderlyingType = typename std::underlying_type<E>::type;
return static_cast<UnderlyingType>(E::EnumCount);
}
// Implementation of AllEnums which allows iterating over all the possible values for a packed enums
// like so:
// for (auto value : AllEnums<MyPackedEnum>()) {
// // Do something with the enum.
// }
template <typename E>
class EnumIterator final
{
private:
using UnderlyingType = typename std::underlying_type<E>::type;
public:
EnumIterator(E value) : mValue(static_cast<UnderlyingType>(value)) {}
EnumIterator &operator++()
{
mValue++;
return *this;
}
bool operator==(const EnumIterator &other) const { return mValue == other.mValue; }
bool operator!=(const EnumIterator &other) const { return mValue != other.mValue; }
E operator*() const { return static_cast<E>(mValue); }
private:
UnderlyingType mValue;
};
template <typename E>
struct AllEnums
{
EnumIterator<E> begin() const { return {static_cast<E>(0)}; }
EnumIterator<E> end() const { return {E::InvalidEnum}; }
};
// PackedEnumMap<E, T> is like an std::array<T, E::EnumCount> but is indexed with enum values. It
// implements all of the std::array interface except with enum values instead of indices.
template <typename E, typename T, size_t MaxSize = EnumSize<E>()>
class PackedEnumMap
{
using UnderlyingType = typename std::underlying_type<E>::type;
using Storage = std::array<T, MaxSize>;
public:
// types:
using value_type = T;
using pointer = T *;
using const_pointer = const T *;
using reference = T &;
using const_reference = const T &;
using size_type = size_t;
using difference_type = ptrdiff_t;
using iterator = typename Storage::iterator;
using const_iterator = typename Storage::const_iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
// No explicit construct/copy/destroy for aggregate type
void fill(const T &u) { mPrivateData.fill(u); }
void swap(PackedEnumMap<E, T> &a) noexcept { mPrivateData.swap(a.mPrivateData); }
// iterators:
iterator begin() noexcept { return mPrivateData.begin(); }
const_iterator begin() const noexcept { return mPrivateData.begin(); }
iterator end() noexcept { return mPrivateData.end(); }
const_iterator end() const noexcept { return mPrivateData.end(); }
reverse_iterator rbegin() noexcept { return mPrivateData.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return mPrivateData.rbegin(); }
reverse_iterator rend() noexcept { return mPrivateData.rend(); }
const_reverse_iterator rend() const noexcept { return mPrivateData.rend(); }
// capacity:
constexpr size_type size() const noexcept { return mPrivateData.size(); }
constexpr size_type max_size() const noexcept { return mPrivateData.max_size(); }
constexpr bool empty() const noexcept { return mPrivateData.empty(); }
// element access:
reference operator[](E n)
{
ASSERT(static_cast<size_t>(n) < mPrivateData.size());
return mPrivateData[static_cast<UnderlyingType>(n)];
}
const_reference operator[](E n) const
{
ASSERT(static_cast<size_t>(n) < mPrivateData.size());
return mPrivateData[static_cast<UnderlyingType>(n)];
}
const_reference at(E n) const { return mPrivateData.at(static_cast<UnderlyingType>(n)); }
reference at(E n) { return mPrivateData.at(static_cast<UnderlyingType>(n)); }
reference front() { return mPrivateData.front(); }
const_reference front() const { return mPrivateData.front(); }
reference back() { return mPrivateData.back(); }
const_reference back() const { return mPrivateData.back(); }
T *data() noexcept { return mPrivateData.data(); }
const T *data() const noexcept { return mPrivateData.data(); }
// Do not access this variable directly. It unfortunately must be public to use aggregate init.
/* private: */ Storage mPrivateData;
};
// PackedEnumBitSetE> is like an std::bitset<E::EnumCount> but is indexed with enum values. It
// implements the std::bitset interface except with enum values instead of indices.
template <typename E, typename DataT = uint32_t>
using PackedEnumBitSet = BitSetT<EnumSize<E>(), DataT, E>;
} // namespace angle
namespace gl
{
TextureType TextureTargetToType(TextureTarget target);
TextureTarget NonCubeTextureTypeToTarget(TextureType type);
TextureTarget CubeFaceIndexToTextureTarget(size_t face);
size_t CubeMapTextureTargetToFaceIndex(TextureTarget target);
bool IsCubeMapFaceTarget(TextureTarget target);
constexpr TextureTarget kCubeMapTextureTargetMin = TextureTarget::CubeMapPositiveX;
constexpr TextureTarget kCubeMapTextureTargetMax = TextureTarget::CubeMapNegativeZ;
constexpr TextureTarget kAfterCubeMapTextureTargetMax =
static_cast<TextureTarget>(static_cast<uint8_t>(kCubeMapTextureTargetMax) + 1);
struct AllCubeFaceTextureTargets
{
angle::EnumIterator<TextureTarget> begin() const { return kCubeMapTextureTargetMin; }
angle::EnumIterator<TextureTarget> end() const { return kAfterCubeMapTextureTargetMax; }
};
constexpr ShaderType kGLES2ShaderTypeMin = ShaderType::Vertex;
constexpr ShaderType kGLES2ShaderTypeMax = ShaderType::Fragment;
constexpr ShaderType kAfterGLES2ShaderTypeMax =
static_cast<ShaderType>(static_cast<uint8_t>(kGLES2ShaderTypeMax) + 1);
struct AllGLES2ShaderTypes
{
angle::EnumIterator<ShaderType> begin() const { return kGLES2ShaderTypeMin; }
angle::EnumIterator<ShaderType> end() const { return kAfterGLES2ShaderTypeMax; }
};
constexpr ShaderType kShaderTypeMin = ShaderType::Vertex;
constexpr ShaderType kShaderTypeMax = ShaderType::Compute;
constexpr ShaderType kAfterShaderTypeMax =
static_cast<ShaderType>(static_cast<uint8_t>(kShaderTypeMax) + 1);
struct AllShaderTypes
{
angle::EnumIterator<ShaderType> begin() const { return kShaderTypeMin; }
angle::EnumIterator<ShaderType> end() const { return kAfterShaderTypeMax; }
};
constexpr size_t kGraphicsShaderCount = static_cast<size_t>(ShaderType::EnumCount) - 1u;
// Arrange the shader types in the order of rendering pipeline
constexpr std::array<ShaderType, kGraphicsShaderCount> kAllGraphicsShaderTypes = {
ShaderType::Vertex, ShaderType::Geometry, ShaderType::Fragment};
using ShaderBitSet = angle::PackedEnumBitSet<ShaderType, uint8_t>;
static_assert(sizeof(ShaderBitSet) == sizeof(uint8_t), "Unexpected size");
template <typename T>
using ShaderMap = angle::PackedEnumMap<ShaderType, T>;
TextureType SamplerTypeToTextureType(GLenum samplerType);
bool IsMultisampled(gl::TextureType type);
} // namespace gl
namespace egl
{
MessageType ErrorCodeToMessageType(EGLint errorCode);
} // namespace egl
namespace egl_gl
{
gl::TextureTarget EGLCubeMapTargetToCubeMapTarget(EGLenum eglTarget);
gl::TextureTarget EGLImageTargetToTextureTarget(EGLenum eglTarget);
gl::TextureType EGLTextureTargetToTextureType(EGLenum eglTarget);
} // namespace egl_gl
#endif // COMMON_PACKEDGLENUMS_H_