Hash :
c9d55051
        
        Author :
  
        
        Date :
2024-09-06T10:56:07
        
      
Vulkan: Consolidate dirtyRanges before vertex conversion Detect two ranges overlap or are continuous and merge them. This reduces number of dispatch calls as well as avoids redundant conversion. Bug: b/357622380 Change-Id: I06b73a1e9fd573d79af985b247f4d66bf97f756e Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/5851642 Auto-Submit: Charlie Lao <cclao@google.com> Commit-Queue: Yuxin Hu <yuxinhu@google.com> Reviewed-by: Yuxin Hu <yuxinhu@google.com> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// mathutil_unittest:
//   Unit tests for the utils defined in mathutil.h
//
#include "mathutil.h"
#include <gtest/gtest.h>
using namespace gl;
namespace
{
// Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions.
// For floats f1 and f2, unpackSnorm2x16(packSnorm2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackSnorm2x16)
{
    const float input[8][2] = {
        {0.0f, 0.0f},    {1.0f, 1.0f},          {-1.0f, 1.0f},           {-1.0f, -1.0f},
        {0.875f, 0.75f}, {0.00392f, -0.99215f}, {-0.000675f, 0.004954f}, {-0.6937f, -0.02146f}};
    const float floatFaultTolerance = 0.0001f;
    float outputVal1, outputVal2;
    for (size_t i = 0; i < 8; i++)
    {
        unpackSnorm2x16(packSnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
        EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance);
        EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance);
    }
}
// Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions with infinity values,
// result should be clamped to [-1, 1].
TEST(MathUtilTest, packAndUnpackSnorm2x16Infinity)
{
    const float floatFaultTolerance = 0.0001f;
    float outputVal1, outputVal2;
    unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(),
                                  std::numeric_limits<float>::infinity()),
                    &outputVal1, &outputVal2);
    EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
    EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance);
    unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(),
                                  -std::numeric_limits<float>::infinity()),
                    &outputVal1, &outputVal2);
    EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
    EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance);
    unpackSnorm2x16(packSnorm2x16(-std::numeric_limits<float>::infinity(),
                                  -std::numeric_limits<float>::infinity()),
                    &outputVal1, &outputVal2);
    EXPECT_NEAR(-1.0f, outputVal1, floatFaultTolerance);
    EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance);
}
// Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions.
// For floats f1 and f2, unpackUnorm2x16(packUnorm2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackUnorm2x16)
{
    const float input[8][2] = {
        {0.0f, 0.0f},    {1.0f, 1.0f},          {-1.0f, 1.0f},           {-1.0f, -1.0f},
        {0.875f, 0.75f}, {0.00392f, -0.99215f}, {-0.000675f, 0.004954f}, {-0.6937f, -0.02146f}};
    const float floatFaultTolerance = 0.0001f;
    float outputVal1, outputVal2;
    for (size_t i = 0; i < 8; i++)
    {
        unpackUnorm2x16(packUnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
        float expected = input[i][0] < 0.0f ? 0.0f : input[i][0];
        EXPECT_NEAR(expected, outputVal1, floatFaultTolerance);
        expected = input[i][1] < 0.0f ? 0.0f : input[i][1];
        EXPECT_NEAR(expected, outputVal2, floatFaultTolerance);
    }
}
// Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions with infinity values,
// result should be clamped to [0, 1].
TEST(MathUtilTest, packAndUnpackUnorm2x16Infinity)
{
    const float floatFaultTolerance = 0.0001f;
    float outputVal1, outputVal2;
    unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(),
                                  std::numeric_limits<float>::infinity()),
                    &outputVal1, &outputVal2);
    EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
    EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance);
    unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(),
                                  -std::numeric_limits<float>::infinity()),
                    &outputVal1, &outputVal2);
    EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
    EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance);
    unpackUnorm2x16(packUnorm2x16(-std::numeric_limits<float>::infinity(),
                                  -std::numeric_limits<float>::infinity()),
                    &outputVal1, &outputVal2);
    EXPECT_NEAR(0.0f, outputVal1, floatFaultTolerance);
    EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance);
}
// Test the correctness of packHalf2x16 and unpackHalf2x16 functions.
// For floats f1 and f2, unpackHalf2x16(packHalf2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackHalf2x16)
{
    const float input[8][2] = {
        {0.0f, 0.0f},    {1.0f, 1.0f},          {-1.0f, 1.0f},           {-1.0f, -1.0f},
        {0.875f, 0.75f}, {0.00392f, -0.99215f}, {-0.000675f, 0.004954f}, {-0.6937f, -0.02146f},
    };
    const float floatFaultTolerance = 0.0005f;
    float outputVal1, outputVal2;
    for (size_t i = 0; i < 8; i++)
    {
        unpackHalf2x16(packHalf2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
        EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance);
        EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance);
    }
}
// Test the correctness of packUnorm4x8 and unpackUnorm4x8 functions.
// For floats f1 to f4, unpackUnorm4x8(packUnorm4x8(f1, f2, f3, f4)) should be same as f1 to f4.
TEST(MathUtilTest, packAndUnpackUnorm4x8)
{
    const float input[5][4] = {{0.0f, 0.0f, 0.0f, 0.0f},
                               {1.0f, 1.0f, 1.0f, 1.0f},
                               {-1.0f, 1.0f, -1.0f, 1.0f},
                               {-1.0f, -1.0f, -1.0f, -1.0f},
                               {64.0f / 255.0f, 128.0f / 255.0f, 32.0f / 255.0f, 16.0f / 255.0f}};
    const float floatFaultTolerance = 0.005f;
    float outputVals[4];
    for (size_t i = 0; i < 5; i++)
    {
        UnpackUnorm4x8(PackUnorm4x8(input[i][0], input[i][1], input[i][2], input[i][3]),
                       outputVals);
        for (size_t j = 0; j < 4; j++)
        {
            float expected = input[i][j] < 0.0f ? 0.0f : input[i][j];
            EXPECT_NEAR(expected, outputVals[j], floatFaultTolerance);
        }
    }
}
// Test the correctness of packSnorm4x8 and unpackSnorm4x8 functions.
// For floats f1 to f4, unpackSnorm4x8(packSnorm4x8(f1, f2, f3, f4)) should be same as f1 to f4.
TEST(MathUtilTest, packAndUnpackSnorm4x8)
{
    const float input[5][4] = {{0.0f, 0.0f, 0.0f, 0.0f},
                               {1.0f, 1.0f, 1.0f, 1.0f},
                               {-1.0f, 1.0f, -1.0f, 1.0f},
                               {-1.0f, -1.0f, -1.0f, -1.0f},
                               {64.0f / 127.0f, -8.0f / 127.0f, 32.0f / 127.0f, 16.0f / 127.0f}};
    const float floatFaultTolerance = 0.01f;
    float outputVals[4];
    for (size_t i = 0; i < 5; i++)
    {
        UnpackSnorm4x8(PackSnorm4x8(input[i][0], input[i][1], input[i][2], input[i][3]),
                       outputVals);
        for (size_t j = 0; j < 4; j++)
        {
            float expected = input[i][j];
            EXPECT_NEAR(expected, outputVals[j], floatFaultTolerance);
        }
    }
}
// Test the correctness of gl::isNaN function.
TEST(MathUtilTest, isNaN)
{
    EXPECT_TRUE(isNaN(bitCast<float>(0xffu << 23 | 1u)));
    EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 1u)));
    EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u)));
    EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu)));
    EXPECT_FALSE(isNaN(0.0f));
    EXPECT_FALSE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23)));
    EXPECT_FALSE(isNaN(bitCast<float>(0xffu << 23)));
}
// Test the correctness of gl::isInf function.
TEST(MathUtilTest, isInf)
{
    EXPECT_TRUE(isInf(bitCast<float>(0xffu << 23)));
    EXPECT_TRUE(isInf(bitCast<float>(1u << 31 | 0xffu << 23)));
    EXPECT_FALSE(isInf(0.0f));
    EXPECT_FALSE(isInf(bitCast<float>(0xffu << 23 | 1u)));
    EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 1u)));
    EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u)));
    EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu)));
    EXPECT_FALSE(isInf(bitCast<float>(0xfeu << 23 | 0x7fffffu)));
    EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xfeu << 23 | 0x7fffffu)));
}
TEST(MathUtilTest, CountLeadingZeros)
{
    for (unsigned int i = 0; i < 32u; ++i)
    {
        uint32_t iLeadingZeros = 1u << (31u - i);
        EXPECT_EQ(i, CountLeadingZeros(iLeadingZeros));
    }
    EXPECT_EQ(32u, CountLeadingZeros(0));
}
// Some basic tests. Pow2 roundUp test and test that rounding up zero produces zero.
TEST(MathUtilTest, Pow2RoundUp)
{
    EXPECT_EQ(0u, rx::roundUpPow2(0u, 4u));
    EXPECT_EQ(4u, rx::roundUpPow2(1u, 4u));
    EXPECT_EQ(4u, rx::roundUpPow2(4u, 4u));
}
// Non-pow2 test.
TEST(MathUtilTest, BasicRoundUp)
{
    EXPECT_EQ(0u, rx::roundUp(0u, 5u));
    EXPECT_EQ(5u, rx::roundUp(1u, 5u));
    EXPECT_EQ(5u, rx::roundUp(4u, 5u));
    EXPECT_EQ(5u, rx::roundUp(5u, 5u));
}
// Test that rounding up zero produces zero for checked ints.
TEST(MathUtilTest, CheckedRoundUpZero)
{
    auto checkedValue = rx::CheckedRoundUp(0u, 4u);
    ASSERT_TRUE(checkedValue.IsValid());
    ASSERT_EQ(0u, checkedValue.ValueOrDie());
}
// Test out-of-bounds with CheckedRoundUp
TEST(MathUtilTest, CheckedRoundUpInvalid)
{
    // The answer to this query is out of bounds.
    auto limit        = std::numeric_limits<unsigned int>::max();
    auto checkedValue = rx::CheckedRoundUp(limit, limit - 1);
    ASSERT_FALSE(checkedValue.IsValid());
    // Our implementation can't handle this query, despite the parameters being in range.
    auto checkedLimit = rx::CheckedRoundUp(limit - 1, limit);
    ASSERT_FALSE(checkedLimit.IsValid());
}
// Test BitfieldReverse which reverses the order of the bits in an integer.
TEST(MathUtilTest, BitfieldReverse)
{
    EXPECT_EQ(0u, gl::BitfieldReverse(0u));
    EXPECT_EQ(0x80000000u, gl::BitfieldReverse(1u));
    EXPECT_EQ(0x1u, gl::BitfieldReverse(0x80000000u));
    uint32_t bits     = (1u << 4u) | (1u << 7u);
    uint32_t reversed = (1u << (31u - 4u)) | (1u << (31u - 7u));
    EXPECT_EQ(reversed, gl::BitfieldReverse(bits));
}
// Test BitCount, which counts 1 bits in an integer.
TEST(MathUtilTest, BitCount)
{
    EXPECT_EQ(0, gl::BitCount(0u));
    EXPECT_EQ(32, gl::BitCount(0xFFFFFFFFu));
    EXPECT_EQ(10, gl::BitCount(0x17103121u));
    EXPECT_EQ(0, gl::BitCount(static_cast<uint64_t>(0ull)));
    EXPECT_EQ(32, gl::BitCount(static_cast<uint64_t>(0xFFFFFFFFull)));
    EXPECT_EQ(10, gl::BitCount(static_cast<uint64_t>(0x17103121ull)));
    EXPECT_EQ(33, gl::BitCount(static_cast<uint64_t>(0xFFFFFFFF80000000ull)));
    EXPECT_EQ(11, gl::BitCount(static_cast<uint64_t>(0x1710312180000000ull)));
}
// Test ScanForward, which scans for the least significant 1 bit from a non-zero integer.
TEST(MathUtilTest, ScanForward)
{
    EXPECT_EQ(0ul, gl::ScanForward(1u));
    EXPECT_EQ(16ul, gl::ScanForward(0x80010000u));
    EXPECT_EQ(31ul, gl::ScanForward(0x80000000u));
    EXPECT_EQ(0ul, gl::ScanForward(static_cast<uint64_t>(1ull)));
    EXPECT_EQ(16ul, gl::ScanForward(static_cast<uint64_t>(0x80010000ull)));
    EXPECT_EQ(31ul, gl::ScanForward(static_cast<uint64_t>(0x80000000ull)));
    EXPECT_EQ(32ul, gl::ScanForward(static_cast<uint64_t>(0x100000000ull)));
    EXPECT_EQ(48ul, gl::ScanForward(static_cast<uint64_t>(0x8001000000000000ull)));
    EXPECT_EQ(63ul, gl::ScanForward(static_cast<uint64_t>(0x8000000000000000ull)));
}
// Test ScanReverse, which scans for the most significant 1 bit from a non-zero integer.
TEST(MathUtilTest, ScanReverse)
{
    EXPECT_EQ(0ul, gl::ScanReverse(1u));
    EXPECT_EQ(16ul, gl::ScanReverse(static_cast<uint64_t>(0x00010030ull)));
    EXPECT_EQ(31ul, gl::ScanReverse(static_cast<uint64_t>(0x80000000ull)));
    EXPECT_EQ(32ul, gl::ScanReverse(static_cast<uint64_t>(0x100000000ull)));
    EXPECT_EQ(48ul, gl::ScanReverse(static_cast<uint64_t>(0x0001080000000000ull)));
    EXPECT_EQ(63ul, gl::ScanReverse(static_cast<uint64_t>(0x8000000000000000ull)));
}
// Test FindLSB, which finds the least significant 1 bit.
TEST(MathUtilTest, FindLSB)
{
    EXPECT_EQ(-1, gl::FindLSB(0u));
    EXPECT_EQ(0, gl::FindLSB(1u));
    EXPECT_EQ(16, gl::FindLSB(0x80010000u));
    EXPECT_EQ(31, gl::FindLSB(0x80000000u));
}
// Test FindMSB, which finds the most significant 1 bit.
TEST(MathUtilTest, FindMSB)
{
    EXPECT_EQ(-1, gl::FindMSB(0u));
    EXPECT_EQ(0, gl::FindMSB(1u));
    EXPECT_EQ(16, gl::FindMSB(0x00010030u));
    EXPECT_EQ(31, gl::FindMSB(0x80000000u));
}
// Test Ldexp, which combines mantissa and exponent into a floating-point number.
TEST(MathUtilTest, Ldexp)
{
    EXPECT_EQ(2.5f, Ldexp(0.625f, 2));
    EXPECT_EQ(-5.0f, Ldexp(-0.625f, 3));
    EXPECT_EQ(std::numeric_limits<float>::infinity(), Ldexp(0.625f, 129));
    EXPECT_EQ(0.0f, Ldexp(1.0f, -129));
}
// Test that Range::extend works as expected.
TEST(MathUtilTest, RangeExtend)
{
    RangeI range(0, 0);
    range.extend(5);
    EXPECT_EQ(0, range.low());
    EXPECT_EQ(6, range.high());
    EXPECT_EQ(6, range.length());
    range.extend(-1);
    EXPECT_EQ(-1, range.low());
    EXPECT_EQ(6, range.high());
    EXPECT_EQ(7, range.length());
    range.extend(10);
    EXPECT_EQ(-1, range.low());
    EXPECT_EQ(11, range.high());
    EXPECT_EQ(12, range.length());
}
// Test that Range::merge works as expected.
TEST(MathUtilTest, RangMerge)
{
    // merge valid range to invalid range
    RangeI range1;
    range1.invalidate();
    RangeI range2(1, 2);
    range1.merge(range2);
    EXPECT_EQ(1, range1.low());
    EXPECT_EQ(2, range1.high());
    EXPECT_EQ(1, range1.length());
    // merge invalid range to valid range
    RangeI range3(1, 2);
    RangeI range4;
    range4.invalidate();
    range3.merge(range4);
    EXPECT_EQ(1, range3.low());
    EXPECT_EQ(2, range3.high());
    EXPECT_EQ(1, range3.length());
    // merge two valid non-overlapping ranges
    RangeI range5(1, 2);
    RangeI range6(3, 4);
    range5.merge(range6);
    EXPECT_EQ(1, range5.low());
    EXPECT_EQ(4, range5.high());
    EXPECT_EQ(3, range5.length());
    // merge two valid non-overlapping ranges
    RangeI range7(2, 3);
    RangeI range8(1, 2);
    range7.merge(range8);
    EXPECT_EQ(1, range7.low());
    EXPECT_EQ(3, range7.high());
    EXPECT_EQ(2, range7.length());
    // merge two valid overlapping ranges
    RangeI range9(2, 4);
    RangeI range10(1, 3);
    range9.merge(range10);
    EXPECT_EQ(1, range9.low());
    EXPECT_EQ(4, range9.high());
    EXPECT_EQ(3, range9.length());
    // merge two valid overlapping ranges
    RangeI range11(1, 3);
    RangeI range12(2, 4);
    range11.merge(range12);
    EXPECT_EQ(1, range11.low());
    EXPECT_EQ(4, range11.high());
    EXPECT_EQ(3, range11.length());
}
// Test that Range::intersectsOrContinuous works as expected.
TEST(MathUtilTest, RangIntersectsOrContinuous)
{
    // Two non-overlapping ranges
    RangeI range1(1, 2);
    RangeI range2(3, 4);
    EXPECT_EQ(false, range1.intersectsOrContinuous(range2));
    EXPECT_EQ(false, range2.intersectsOrContinuous(range1));
    // Two overlapping ranges
    RangeI range3(1, 3);
    RangeI range4(2, 4);
    EXPECT_EQ(true, range3.intersectsOrContinuous(range4));
    EXPECT_EQ(true, range4.intersectsOrContinuous(range3));
    // Two overlapping ranges
    RangeI range5(1, 4);
    RangeI range6(2, 3);
    EXPECT_EQ(true, range5.intersectsOrContinuous(range6));
    EXPECT_EQ(true, range6.intersectsOrContinuous(range5));
    // Two continuous ranges
    RangeI range7(1, 3);
    RangeI range8(3, 4);
    EXPECT_EQ(true, range7.intersectsOrContinuous(range8));
    EXPECT_EQ(true, range8.intersectsOrContinuous(range7));
    // Two identical ranges
    RangeI range9(1, 3);
    RangeI range10(1, 3);
    EXPECT_EQ(true, range9.intersectsOrContinuous(range10));
}
// Test that Range iteration works as expected.
TEST(MathUtilTest, RangeIteration)
{
    RangeI range(0, 10);
    int expected = 0;
    for (int value : range)
    {
        EXPECT_EQ(expected, value);
        expected++;
    }
    EXPECT_EQ(range.length(), expected);
}
// Tests for clampForBitCount
TEST(MathUtilTest, ClampForBitCount)
{
    constexpr uint64_t kUnsignedMax = std::numeric_limits<uint64_t>::max();
    constexpr int64_t kSignedMax    = std::numeric_limits<int64_t>::max();
    constexpr int64_t kSignedMin    = std::numeric_limits<int64_t>::min();
    constexpr int64_t kRandomValue  = 0x4D34A0B1;
    ASSERT_EQ(clampForBitCount<uint64_t>(kUnsignedMax, 64), std::numeric_limits<uint64_t>::max());
    ASSERT_EQ(clampForBitCount<uint64_t>(kUnsignedMax, 32),
              static_cast<uint64_t>(std::numeric_limits<uint32_t>::max()));
    ASSERT_EQ(clampForBitCount<uint64_t>(kUnsignedMax, 16),
              static_cast<uint64_t>(std::numeric_limits<uint16_t>::max()));
    ASSERT_EQ(clampForBitCount<uint64_t>(kUnsignedMax, 8),
              static_cast<uint64_t>(std::numeric_limits<uint8_t>::max()));
    ASSERT_EQ(clampForBitCount<uint64_t>(kUnsignedMax, 4), 15u);
    ASSERT_EQ(clampForBitCount<uint64_t>(kUnsignedMax, 2), 3u);
    ASSERT_EQ(clampForBitCount<uint64_t>(kUnsignedMax, 1), 1u);
    ASSERT_EQ(clampForBitCount<uint64_t>(kUnsignedMax, 0), 0u);
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMax, 64), std::numeric_limits<int64_t>::max());
    ASSERT_EQ(clampForBitCount<uint64_t>(static_cast<uint64_t>(kSignedMax), 64),
              static_cast<uint64_t>(std::numeric_limits<int64_t>::max()));
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMax, 32),
              static_cast<int64_t>(std::numeric_limits<int32_t>::max()));
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMax, 16),
              static_cast<int64_t>(std::numeric_limits<int16_t>::max()));
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMax, 8),
              static_cast<int64_t>(std::numeric_limits<int8_t>::max()));
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMax, 4), 7);
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMax, 2), 1);
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMax, 0), 0);
    ASSERT_EQ(clampForBitCount<int64_t>(kRandomValue, 64), kRandomValue);
    ASSERT_EQ(clampForBitCount<int64_t>(kRandomValue, 32), kRandomValue);
    ASSERT_EQ(clampForBitCount<int64_t>(kRandomValue, 16),
              static_cast<int64_t>(std::numeric_limits<int16_t>::max()));
    ASSERT_EQ(clampForBitCount<int64_t>(kRandomValue, 8),
              static_cast<int64_t>(std::numeric_limits<int8_t>::max()));
    ASSERT_EQ(clampForBitCount<int64_t>(kRandomValue, 4), 7);
    ASSERT_EQ(clampForBitCount<int64_t>(kRandomValue, 2), 1);
    ASSERT_EQ(clampForBitCount<int64_t>(kRandomValue, 0), 0);
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMin, 64), std::numeric_limits<int64_t>::min());
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMin, 32),
              static_cast<int64_t>(std::numeric_limits<int32_t>::min()));
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMin, 16),
              static_cast<int64_t>(std::numeric_limits<int16_t>::min()));
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMin, 8),
              static_cast<int64_t>(std::numeric_limits<int8_t>::min()));
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMin, 4), -8);
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMin, 2), -2);
    ASSERT_EQ(clampForBitCount<int64_t>(kSignedMin, 0), 0);
}
// Tests for float32 to float16 conversion
TEST(MathUtilTest, Float32ToFloat16)
{
    ASSERT_EQ(float32ToFloat16(0.0f), 0x0000);
    ASSERT_EQ(float32ToFloat16(-0.0f), 0x8000);
    float inf = std::numeric_limits<float>::infinity();
    ASSERT_EQ(float32ToFloat16(inf), 0x7C00);
    ASSERT_EQ(float32ToFloat16(-inf), 0xFC00);
    // Check that NaN is converted to a value in one of the float16 NaN ranges
    float nan      = std::numeric_limits<float>::quiet_NaN();
    uint16_t nan16 = float32ToFloat16(nan);
    ASSERT_TRUE(nan16 > 0xFC00 || (nan16 < 0x8000 && nan16 > 0x7C00));
    ASSERT_EQ(float32ToFloat16(1.0f), 0x3C00);
}
// Tests the RGB float to 999E5 conversion
TEST(MathUtilTest, convertRGBFloatsTo999E5)
{
    const int numTests                  = 18;
    const float input[numTests][3]      = {// The basics
                                      {0.0f, 0.0f, 0.0f},
                                      {0.0f, 0.0f, 1.0f},
                                      {0.0f, 1.0f, 0.0f},
                                      {0.0f, 1.0f, 1.0f},
                                      {1.0f, 0.0f, 0.0f},
                                      {1.0f, 0.0f, 1.0f},
                                      {1.0f, 1.0f, 0.0f},
                                      {1.0f, 1.0f, 1.0f},
                                      // Extended range
                                      {0.0f, 0.0f, 1.5f},
                                      {0.0f, 2.0f, 0.0f},
                                      {0.0f, 2.5f, 3.0f},
                                      {3.5f, 0.0f, 0.0f},
                                      {4.0f, 0.0f, 4.5f},
                                      {5.0f, 5.5f, 0.0f},
                                      {6.0f, 6.5f, 7.0f},
                                      // Random
                                      {0.1f, 9.6f, 3.2f},
                                      {2.0f, 1.7f, 8.6f},
                                      {0.7f, 4.2f, 9.1f}};
    const unsigned int result[numTests] = {// The basics
                                           0x00000000, 0x84000000, 0x80020000, 0x84020000,
                                           0x80000100, 0x84000100, 0x80020100, 0x84020100,
                                           // Extended range
                                           0x86000000, 0x88020000, 0x8E028000, 0x880001C0,
                                           0x94800100, 0x9002C140, 0x97034180,
                                           // Random
                                           0x999A6603, 0x9C4C6C40, 0x9C8D0C16};
    for (int i = 0; i < numTests; i++)
    {
        EXPECT_EQ(convertRGBFloatsTo999E5(input[i][0], input[i][1], input[i][2]), result[i]);
    }
}
// Tests the 999E5 to RGB float conversion
TEST(MathUtilTest, convert999E5toRGBFloats)
{
    const int numTests                 = 18;
    const float result[numTests][3]    = {// The basics
                                       {0.0f, 0.0f, 0.0f},
                                       {0.0f, 0.0f, 1.0f},
                                       {0.0f, 1.0f, 0.0f},
                                       {0.0f, 1.0f, 1.0f},
                                       {1.0f, 0.0f, 0.0f},
                                       {1.0f, 0.0f, 1.0f},
                                       {1.0f, 1.0f, 0.0f},
                                       {1.0f, 1.0f, 1.0f},
                                       // Extended range
                                       {0.0f, 0.0f, 1.5f},
                                       {0.0f, 2.0f, 0.0f},
                                       {0.0f, 2.5f, 3.0f},
                                       {3.5f, 0.0f, 0.0f},
                                       {4.0f, 0.0f, 4.5f},
                                       {5.0f, 5.5f, 0.0f},
                                       {6.0f, 6.5f, 7.0f},
                                       // Random
                                       {0.1f, 9.6f, 3.2f},
                                       {2.0f, 1.7f, 8.6f},
                                       {0.7f, 4.2f, 9.1f}};
    const unsigned int input[numTests] = {// The basics
                                          0x00000000, 0x84000000, 0x80020000, 0x84020000,
                                          0x80000100, 0x84000100, 0x80020100, 0x84020100,
                                          // Extended range
                                          0x86000000, 0x88020000, 0x8E028000, 0x880001C0,
                                          0x94800100, 0x9002C140, 0x97034180,
                                          // Random
                                          0x999A6603, 0x9C4C6C40, 0x9C8D0C16};
    // Note: quite a low tolerance is required
    const float floatFaultTolerance = 0.05f;
    float outR, outG, outB;
    for (int i = 0; i < numTests; i++)
    {
        convert999E5toRGBFloats(input[i], &outR, &outG, &outB);
        EXPECT_NEAR(result[i][0], outR, floatFaultTolerance);
        EXPECT_NEAR(result[i][1], outG, floatFaultTolerance);
        EXPECT_NEAR(result[i][2], outB, floatFaultTolerance);
    }
}
// Test sRGB conversions
TEST(MathUtilTest, sRGB)
{
    // Check simple roundtrip
    for (size_t c = 0; c < 256; c++)
    {
        ASSERT_EQ(c, linearToSRGB(sRGBToLinear(c)));
    }
    // Check average of identical values
    for (size_t c = 0; c < 256; c++)
    {
        ASSERT_EQ(c, linearToSRGB((sRGBToLinear(c) + sRGBToLinear(c)) * 0.5));
    }
    // Check that all average values are in range
    for (size_t a = 0; a < 256; a++)
    {
        for (size_t b = 0; b < 256; b++)
        {
            const float avg = (sRGBToLinear(a) + sRGBToLinear(b)) * 0.5f;
            ASSERT_GE(avg, 0.0f);
            ASSERT_LE(avg, 1.0f);
        }
    }
}
// Test roundToNearest with boundary values
TEST(MathUtilTest, RoundToNearest)
{
    EXPECT_EQ((roundToNearest<float, uint8_t>(0.00000000f)), 0u);
    EXPECT_EQ((roundToNearest<float, uint8_t>(0.49999997f)), 0u);
    EXPECT_EQ((roundToNearest<float, uint8_t>(0.50000000f)), 1u);
    EXPECT_EQ((roundToNearest<float, int8_t>(-0.50000000f)), -1);
    EXPECT_EQ((roundToNearest<float, int8_t>(-0.49999997f)), 0);
    EXPECT_EQ((roundToNearest<float, int8_t>(-0.00000000f)), 0);
    EXPECT_EQ((roundToNearest<float, int8_t>(+0.00000000f)), 0);
    EXPECT_EQ((roundToNearest<float, int8_t>(+0.49999997f)), 0);
    EXPECT_EQ((roundToNearest<float, int8_t>(+0.50000000f)), +1);
    EXPECT_EQ((roundToNearest<double, uint8_t>(0.00000000000000000)), 0u);
    EXPECT_EQ((roundToNearest<double, uint8_t>(0.49999999999999994)), 0u);
    EXPECT_EQ((roundToNearest<double, uint8_t>(0.50000000000000000)), 1u);
    EXPECT_EQ((roundToNearest<double, int8_t>(-0.50000000000000000)), -1);
    EXPECT_EQ((roundToNearest<double, int8_t>(-0.49999999999999994)), 0);
    EXPECT_EQ((roundToNearest<double, int8_t>(-0.00000000000000000)), 0);
    EXPECT_EQ((roundToNearest<double, int8_t>(+0.00000000000000000)), 0);
    EXPECT_EQ((roundToNearest<double, int8_t>(+0.49999999999999994)), 0);
    EXPECT_EQ((roundToNearest<double, int8_t>(+0.50000000000000000)), +1);
}
// Test floatToNormalized conversions with uint8_t
TEST(MathUtilTest, FloatToNormalizedUnorm8)
{
    // Check exact values
    EXPECT_EQ(floatToNormalized<uint8_t>(0.00f), 0u);
    EXPECT_EQ(floatToNormalized<uint8_t>(0.25f), 64u);
    EXPECT_EQ(floatToNormalized<uint8_t>(0.75f), 191u);
    EXPECT_EQ(floatToNormalized<uint8_t>(1.00f), 255u);
    // Check near values
    EXPECT_NEAR(floatToNormalized<uint8_t>(0.50f), 127u, 1);
}
// Test floatToNormalized conversions with int8_t
TEST(MathUtilTest, FloatToNormalizedSnorm8)
{
    // Check exact values
    EXPECT_EQ(floatToNormalized<int8_t>(-1.00f), -127);
    EXPECT_EQ(floatToNormalized<int8_t>(-0.75f), -95);
    EXPECT_EQ(floatToNormalized<int8_t>(-0.25f), -32);
    EXPECT_EQ(floatToNormalized<int8_t>(+0.00f), 0);
    EXPECT_EQ(floatToNormalized<int8_t>(+0.25f), +32);
    EXPECT_EQ(floatToNormalized<int8_t>(+0.75f), +95);
    EXPECT_EQ(floatToNormalized<int8_t>(+1.00f), +127);
    // Check near values
    EXPECT_NEAR(floatToNormalized<int8_t>(-0.50f), -63, 1);
    EXPECT_NEAR(floatToNormalized<int8_t>(+0.50f), +63, 1);
}
// Test floatToNormalized conversions with uint16_t
TEST(MathUtilTest, FloatToNormalizedUnorm16)
{
    // Check exact values
    EXPECT_EQ(floatToNormalized<uint16_t>(0.00f), 0u);
    EXPECT_EQ(floatToNormalized<uint16_t>(0.25f), 16384u);
    EXPECT_EQ(floatToNormalized<uint16_t>(0.75f), 49151u);
    EXPECT_EQ(floatToNormalized<uint16_t>(1.00f), 65535u);
    // Check near values
    EXPECT_NEAR(floatToNormalized<uint16_t>(0.50f), 32767u, 1);
}
// Test floatToNormalized conversions with int16_t
TEST(MathUtilTest, FloatToNormalizedSnorm16)
{
    // Check exact values
    EXPECT_EQ(floatToNormalized<int16_t>(-1.00f), -32767);
    EXPECT_EQ(floatToNormalized<int16_t>(-0.75f), -24575);
    EXPECT_EQ(floatToNormalized<int16_t>(-0.25f), -8192);
    EXPECT_EQ(floatToNormalized<int16_t>(+0.00f), 0);
    EXPECT_EQ(floatToNormalized<int16_t>(+0.25f), +8192);
    EXPECT_EQ(floatToNormalized<int16_t>(+0.75f), +24575);
    EXPECT_EQ(floatToNormalized<int16_t>(+1.00f), +32767);
    // Check near values
    EXPECT_NEAR(floatToNormalized<int16_t>(-0.50f), -16383, 1);
    EXPECT_NEAR(floatToNormalized<int16_t>(+0.50f), +16383, 1);
}
// Test floatToNormalized conversions with uint32_t
TEST(MathUtilTest, FloatToNormalizedUnorm32)
{
    // Check exact values
    EXPECT_EQ(floatToNormalized<uint32_t>(0.00f), 0u);
    EXPECT_EQ(floatToNormalized<uint32_t>(0.25f), 1073741824u);
    EXPECT_EQ(floatToNormalized<uint32_t>(0.75f), 3221225471u);
    EXPECT_EQ(floatToNormalized<uint32_t>(1.00f), 4294967295u);
    // Check near values
    EXPECT_NEAR(floatToNormalized<uint32_t>(0.50f), 2147483647u, 1);
}
// Test floatToNormalized conversions with int32_t
TEST(MathUtilTest, FloatToNormalizedSnorm32)
{
    // Check exact values
    EXPECT_EQ(floatToNormalized<int32_t>(-1.00f), -2147483647);
    EXPECT_EQ(floatToNormalized<int32_t>(-0.75f), -1610612735);
    EXPECT_EQ(floatToNormalized<int32_t>(-0.25f), -536870912);
    EXPECT_EQ(floatToNormalized<int32_t>(+0.00f), 0);
    EXPECT_EQ(floatToNormalized<int32_t>(+0.25f), +536870912);
    EXPECT_EQ(floatToNormalized<int32_t>(+0.75f), +1610612735);
    EXPECT_EQ(floatToNormalized<int32_t>(+1.00f), +2147483647);
    // Check near values
    EXPECT_NEAR(floatToNormalized<int32_t>(-0.50f), -1073741823, 1);
    EXPECT_NEAR(floatToNormalized<int32_t>(+0.50f), +1073741823, 1);
}
// Test floatToNormalized conversions with 2-bit unsigned
TEST(MathUtilTest, FloatToNormalizedUnorm2)
{
    // Check exact values
    EXPECT_EQ((floatToNormalized<2, uint8_t>(0.00f)), 0u);
    EXPECT_EQ((floatToNormalized<2, uint8_t>(0.25f)), 1u);
    EXPECT_EQ((floatToNormalized<2, uint8_t>(0.75f)), 2u);
    EXPECT_EQ((floatToNormalized<2, uint8_t>(1.00f)), 3u);
    // Check near values
    EXPECT_NEAR((floatToNormalized<2, uint8_t>(0.50f)), 1u, 1);
}
// Test floatToNormalized conversions with 2-bit signed
TEST(MathUtilTest, FloatToNormalizedSnorm2)
{
    // Check exact values
    EXPECT_EQ((floatToNormalized<2, int8_t>(-1.00f)), -1);
    EXPECT_EQ((floatToNormalized<2, int8_t>(-0.75f)), -1);
    EXPECT_EQ((floatToNormalized<2, int8_t>(-0.25f)), 0);
    EXPECT_EQ((floatToNormalized<2, int8_t>(+0.00f)), 0);
    EXPECT_EQ((floatToNormalized<2, int8_t>(+0.25f)), 0);
    EXPECT_EQ((floatToNormalized<2, int8_t>(+0.75f)), +1);
    EXPECT_EQ((floatToNormalized<2, int8_t>(+1.00f)), +1);
    // Check near values
    EXPECT_NEAR((floatToNormalized<2, int8_t>(-0.50f)), 0, 1);
    EXPECT_NEAR((floatToNormalized<2, int8_t>(+0.50f)), 0, 1);
}
// Test floatToNormalized conversions with 10-bit unsigned
TEST(MathUtilTest, FloatToNormalizedUnorm10)
{
    // Check exact values
    EXPECT_EQ((floatToNormalized<10, uint16_t>(0.00f)), 0u);
    EXPECT_EQ((floatToNormalized<10, uint16_t>(0.25f)), 256u);
    EXPECT_EQ((floatToNormalized<10, uint16_t>(0.75f)), 767u);
    EXPECT_EQ((floatToNormalized<10, uint16_t>(1.00f)), 1023u);
    // Check near values
    EXPECT_NEAR((floatToNormalized<10, uint16_t>(0.50f)), 511u, 1);
}
// Test floatToNormalized conversions with 10-bit signed
TEST(MathUtilTest, FloatToNormalizedSnorm10)
{
    // Check exact values
    EXPECT_EQ((floatToNormalized<10, int16_t>(-1.00f)), -511);
    EXPECT_EQ((floatToNormalized<10, int16_t>(-0.75f)), -383);
    EXPECT_EQ((floatToNormalized<10, int16_t>(-0.25f)), -128);
    EXPECT_EQ((floatToNormalized<10, int16_t>(+0.00f)), 0);
    EXPECT_EQ((floatToNormalized<10, int16_t>(+0.25f)), +128);
    EXPECT_EQ((floatToNormalized<10, int16_t>(+0.75f)), +383);
    EXPECT_EQ((floatToNormalized<10, int16_t>(+1.00f)), +511);
    // Check near values
    EXPECT_NEAR((floatToNormalized<10, int16_t>(-0.50f)), -255, 1);
    EXPECT_NEAR((floatToNormalized<10, int16_t>(+0.50f)), +255, 1);
}
// Test floatToNormalized conversions with 30-bit unsigned
TEST(MathUtilTest, FloatToNormalizedUnorm30)
{
    // Check exact values
    EXPECT_EQ((floatToNormalized<30, uint32_t>(0.00f)), 0u);
    EXPECT_EQ((floatToNormalized<30, uint32_t>(0.25f)), 268435456u);
    EXPECT_EQ((floatToNormalized<30, uint32_t>(0.75f)), 805306367u);
    EXPECT_EQ((floatToNormalized<30, uint32_t>(1.00f)), 1073741823u);
    // Check near values
    EXPECT_NEAR((floatToNormalized<30, uint32_t>(0.50f)), 536870911u, 1);
}
// Test floatToNormalized conversions with 30-bit signed
TEST(MathUtilTest, FloatToNormalizedSnorm30)
{
    // Check exact values
    EXPECT_EQ((floatToNormalized<30, int32_t>(-1.00f)), -536870911);
    EXPECT_EQ((floatToNormalized<30, int32_t>(-0.75f)), -402653183);
    EXPECT_EQ((floatToNormalized<30, int32_t>(-0.25f)), -134217728);
    EXPECT_EQ((floatToNormalized<30, int32_t>(+0.00f)), 0);
    EXPECT_EQ((floatToNormalized<30, int32_t>(+0.25f)), +134217728);
    EXPECT_EQ((floatToNormalized<30, int32_t>(+0.75f)), +402653183);
    EXPECT_EQ((floatToNormalized<30, int32_t>(+1.00f)), +536870911);
    // Check near values
    EXPECT_NEAR((floatToNormalized<30, int32_t>(-0.50f)), -268435455, 1);
    EXPECT_NEAR((floatToNormalized<30, int32_t>(+0.50f)), +268435455, 1);
}
}  // anonymous namespace