Hash :
0ef55535
Author :
Date :
2025-02-06T15:40:28
FastVector::resize_down never increases capacity Note: this function is currently only called by SPIR-V code generation In particular, SpirvTransformer::transform() was bloated 8896 -> 9756 bytes due to ensure_capacity() getting fully inlined. After https://crrev.com/c/6236800 this makes a much smaller difference but this still probably makes sense as before this CL the only difference between resize() and resize_down() was an assertion. Bug: angleproject:394848869 Change-Id: If55a41d67e26a9bc1a30cb0012d1958faa734cc8 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/6238266 Commit-Queue: Roman Lavrov <romanl@google.com> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// FastVector.h:
// A vector class with a initial fixed size and variable growth.
// Based on FixedVector.
//
#ifndef COMMON_FASTVECTOR_H_
#define COMMON_FASTVECTOR_H_
#include "bitset_utils.h"
#include "common/debug.h"
#include <algorithm>
#include <array>
#include <cstring>
#include <initializer_list>
#include <iterator>
namespace angle
{
template <class Iter>
class WrapIter
{
public:
typedef Iter iterator_type;
typedef typename std::iterator_traits<iterator_type>::value_type value_type;
typedef typename std::iterator_traits<iterator_type>::difference_type difference_type;
typedef typename std::iterator_traits<iterator_type>::pointer pointer;
typedef typename std::iterator_traits<iterator_type>::reference reference;
typedef typename std::iterator_traits<iterator_type>::iterator_category iterator_category;
WrapIter() : mIter() {}
WrapIter(const WrapIter &x) = default;
WrapIter &operator=(const WrapIter &x) = default;
WrapIter(const Iter &iter) : mIter(iter) {}
~WrapIter() = default;
bool operator==(const WrapIter &x) const { return mIter == x.mIter; }
bool operator!=(const WrapIter &x) const { return mIter != x.mIter; }
bool operator<(const WrapIter &x) const { return mIter < x.mIter; }
bool operator<=(const WrapIter &x) const { return mIter <= x.mIter; }
bool operator>(const WrapIter &x) const { return mIter > x.mIter; }
bool operator>=(const WrapIter &x) const { return mIter >= x.mIter; }
WrapIter &operator++()
{
mIter++;
return *this;
}
WrapIter operator++(int)
{
WrapIter tmp(mIter);
mIter++;
return tmp;
}
WrapIter operator+(difference_type n)
{
WrapIter tmp(mIter);
tmp.mIter += n;
return tmp;
}
WrapIter operator-(difference_type n)
{
WrapIter tmp(mIter);
tmp.mIter -= n;
return tmp;
}
difference_type operator-(const WrapIter &x) const { return mIter - x.mIter; }
iterator_type operator->() const { return mIter; }
reference operator*() const { return *mIter; }
private:
iterator_type mIter;
};
template <class T, size_t N, class Storage = std::array<T, N>>
class FastVector final
{
public:
using value_type = typename Storage::value_type;
using size_type = typename Storage::size_type;
using reference = typename Storage::reference;
using const_reference = typename Storage::const_reference;
using pointer = typename Storage::pointer;
using const_pointer = typename Storage::const_pointer;
using iterator = WrapIter<T *>;
using const_iterator = WrapIter<const T *>;
// This class does not call destructors when resizing down (for performance reasons).
static_assert(std::is_trivially_destructible_v<value_type>);
FastVector();
FastVector(size_type count, const value_type &value);
FastVector(size_type count);
FastVector(const FastVector<T, N, Storage> &other);
FastVector(FastVector<T, N, Storage> &&other);
FastVector(std::initializer_list<value_type> init);
template <class InputIt, std::enable_if_t<!std::is_integral<InputIt>::value, bool> = true>
FastVector(InputIt first, InputIt last);
FastVector<T, N, Storage> &operator=(const FastVector<T, N, Storage> &other);
FastVector<T, N, Storage> &operator=(FastVector<T, N, Storage> &&other);
FastVector<T, N, Storage> &operator=(std::initializer_list<value_type> init);
~FastVector();
reference at(size_type pos);
const_reference at(size_type pos) const;
reference operator[](size_type pos);
const_reference operator[](size_type pos) const;
pointer data();
const_pointer data() const;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
bool empty() const;
size_type size() const;
void clear();
void push_back(const value_type &value);
void push_back(value_type &&value);
template <typename... Args>
void emplace_back(Args &&...args);
void pop_back();
reference front();
const_reference front() const;
reference back();
const_reference back() const;
void swap(FastVector<T, N, Storage> &other);
void resetWithRawData(size_type count, const uint8_t *data);
void resize(size_type count);
void resize(size_type count, const value_type &value);
// Only for use with non trivially constructible types.
// When increasing size, new elements may have previous values. Use with caution in cases when
// initialization of new elements is not required (will be explicitly initialized later), or
// is never resizing down (not possible to reuse previous values).
void resize_maybe_value_reuse(size_type count);
// Only for use with non trivially constructible types.
// No new elements added, so this function is safe to use. Generates ASSERT() if try resize up.
void resize_down(size_type count);
void reserve(size_type count);
// Specialty function that removes a known element and might shuffle the list.
void remove_and_permute(const value_type &element);
void remove_and_permute(iterator pos);
private:
void assign_from_initializer_list(std::initializer_list<value_type> init);
void ensure_capacity(size_t capacity);
void increase_capacity(size_t capacity);
bool uses_fixed_storage() const;
void resize_impl(size_type count);
Storage mFixedStorage;
pointer mData = mFixedStorage.data();
size_type mSize = 0;
size_type mReservedSize = N;
};
template <class T, size_t N, class StorageN, size_t M, class StorageM>
bool operator==(const FastVector<T, N, StorageN> &a, const FastVector<T, M, StorageM> &b)
{
return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin());
}
template <class T, size_t N, class StorageN, size_t M, class StorageM>
bool operator!=(const FastVector<T, N, StorageN> &a, const FastVector<T, M, StorageM> &b)
{
return !(a == b);
}
template <class T, size_t N, class Storage>
ANGLE_INLINE bool FastVector<T, N, Storage>::uses_fixed_storage() const
{
return mData == mFixedStorage.data();
}
template <class T, size_t N, class Storage>
FastVector<T, N, Storage>::FastVector()
{}
template <class T, size_t N, class Storage>
FastVector<T, N, Storage>::FastVector(size_type count, const value_type &value)
{
ensure_capacity(count);
mSize = count;
std::fill(begin(), end(), value);
}
template <class T, size_t N, class Storage>
FastVector<T, N, Storage>::FastVector(size_type count)
{
ensure_capacity(count);
mSize = count;
}
template <class T, size_t N, class Storage>
FastVector<T, N, Storage>::FastVector(const FastVector<T, N, Storage> &other)
: FastVector(other.begin(), other.end())
{}
template <class T, size_t N, class Storage>
FastVector<T, N, Storage>::FastVector(FastVector<T, N, Storage> &&other) : FastVector()
{
swap(other);
}
template <class T, size_t N, class Storage>
FastVector<T, N, Storage>::FastVector(std::initializer_list<value_type> init)
{
assign_from_initializer_list(init);
}
template <class T, size_t N, class Storage>
template <class InputIt, std::enable_if_t<!std::is_integral<InputIt>::value, bool>>
FastVector<T, N, Storage>::FastVector(InputIt first, InputIt last)
{
size_t newSize = last - first;
ensure_capacity(newSize);
mSize = newSize;
std::copy(first, last, begin());
}
template <class T, size_t N, class Storage>
FastVector<T, N, Storage> &FastVector<T, N, Storage>::operator=(
const FastVector<T, N, Storage> &other)
{
ensure_capacity(other.mSize);
mSize = other.mSize;
std::copy(other.begin(), other.end(), begin());
return *this;
}
template <class T, size_t N, class Storage>
FastVector<T, N, Storage> &FastVector<T, N, Storage>::operator=(FastVector<T, N, Storage> &&other)
{
swap(other);
return *this;
}
template <class T, size_t N, class Storage>
FastVector<T, N, Storage> &FastVector<T, N, Storage>::operator=(
std::initializer_list<value_type> init)
{
assign_from_initializer_list(init);
return *this;
}
template <class T, size_t N, class Storage>
FastVector<T, N, Storage>::~FastVector()
{
clear();
if (!uses_fixed_storage())
{
delete[] mData;
}
}
template <class T, size_t N, class Storage>
typename FastVector<T, N, Storage>::reference FastVector<T, N, Storage>::at(size_type pos)
{
ASSERT(pos < mSize);
return mData[pos];
}
template <class T, size_t N, class Storage>
typename FastVector<T, N, Storage>::const_reference FastVector<T, N, Storage>::at(
size_type pos) const
{
ASSERT(pos < mSize);
return mData[pos];
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::reference FastVector<T, N, Storage>::operator[](
size_type pos)
{
ASSERT(pos < mSize);
return mData[pos];
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::const_reference
FastVector<T, N, Storage>::operator[](size_type pos) const
{
ASSERT(pos < mSize);
return mData[pos];
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::const_pointer
angle::FastVector<T, N, Storage>::data() const
{
return mData;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::pointer angle::FastVector<T, N, Storage>::data()
{
return mData;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::iterator FastVector<T, N, Storage>::begin()
{
return mData;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::const_iterator FastVector<T, N, Storage>::begin()
const
{
return mData;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::iterator FastVector<T, N, Storage>::end()
{
return mData + mSize;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::const_iterator FastVector<T, N, Storage>::end()
const
{
return mData + mSize;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE bool FastVector<T, N, Storage>::empty() const
{
return mSize == 0;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::size_type FastVector<T, N, Storage>::size() const
{
return mSize;
}
template <class T, size_t N, class Storage>
void FastVector<T, N, Storage>::clear()
{
resize_impl(0);
}
template <class T, size_t N, class Storage>
ANGLE_INLINE void FastVector<T, N, Storage>::push_back(const value_type &value)
{
if (mSize == mReservedSize)
ensure_capacity(mSize + 1);
mData[mSize++] = value;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE void FastVector<T, N, Storage>::push_back(value_type &&value)
{
emplace_back(std::move(value));
}
template <class T, size_t N, class Storage>
template <typename... Args>
ANGLE_INLINE void FastVector<T, N, Storage>::emplace_back(Args &&...args)
{
if (mSize == mReservedSize)
ensure_capacity(mSize + 1);
mData[mSize++] = std::move(T(std::forward<Args>(args)...));
}
template <class T, size_t N, class Storage>
ANGLE_INLINE void FastVector<T, N, Storage>::pop_back()
{
ASSERT(mSize > 0);
mSize--;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::reference FastVector<T, N, Storage>::front()
{
ASSERT(mSize > 0);
return mData[0];
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::const_reference FastVector<T, N, Storage>::front()
const
{
ASSERT(mSize > 0);
return mData[0];
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::reference FastVector<T, N, Storage>::back()
{
ASSERT(mSize > 0);
return mData[mSize - 1];
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename FastVector<T, N, Storage>::const_reference FastVector<T, N, Storage>::back()
const
{
ASSERT(mSize > 0);
return mData[mSize - 1];
}
template <class T, size_t N, class Storage>
void FastVector<T, N, Storage>::swap(FastVector<T, N, Storage> &other)
{
std::swap(mSize, other.mSize);
pointer tempData = other.mData;
if (uses_fixed_storage())
other.mData = other.mFixedStorage.data();
else
other.mData = mData;
if (tempData == other.mFixedStorage.data())
mData = mFixedStorage.data();
else
mData = tempData;
std::swap(mReservedSize, other.mReservedSize);
if (uses_fixed_storage() || other.uses_fixed_storage())
std::swap(mFixedStorage, other.mFixedStorage);
}
template <class T, size_t N, class Storage>
void FastVector<T, N, Storage>::resetWithRawData(size_type count, const uint8_t *data)
{
static_assert(std::is_trivially_copyable<value_type>(),
"This is a special method for trivially copyable types.");
ASSERT(count > 0 && data != nullptr);
resize_impl(count);
std::memcpy(mData, data, count * sizeof(value_type));
}
template <class T, size_t N, class Storage>
ANGLE_INLINE void FastVector<T, N, Storage>::resize(size_type count)
{
// Trivially constructible types will have undefined values when created therefore reusing
// previous values after resize should not be a problem..
static_assert(std::is_trivially_constructible_v<value_type>,
"For non trivially constructible types please use: resize(count, value), "
"resize_maybe_value_reuse(count), or resize_down(count) methods.");
resize_impl(count);
}
template <class T, size_t N, class Storage>
ANGLE_INLINE void FastVector<T, N, Storage>::resize_maybe_value_reuse(size_type count)
{
static_assert(!std::is_trivially_constructible_v<value_type>,
"This is a special method for non trivially constructible types. "
"Please use regular resize(count) method.");
resize_impl(count);
}
template <class T, size_t N, class Storage>
ANGLE_INLINE void FastVector<T, N, Storage>::resize_down(size_type count)
{
static_assert(!std::is_trivially_constructible_v<value_type>,
"This is a special method for non trivially constructible types. "
"Please use regular resize(count) method.");
ASSERT(count <= mSize);
mSize = count;
}
template <class T, size_t N, class Storage>
void FastVector<T, N, Storage>::resize_impl(size_type count)
{
if (count > mSize)
{
ensure_capacity(count);
}
mSize = count;
}
template <class T, size_t N, class Storage>
void FastVector<T, N, Storage>::resize(size_type count, const value_type &value)
{
if (count > mSize)
{
ensure_capacity(count);
std::fill(mData + mSize, mData + count, value);
}
mSize = count;
}
template <class T, size_t N, class Storage>
void FastVector<T, N, Storage>::reserve(size_type count)
{
ensure_capacity(count);
}
template <class T, size_t N, class Storage>
void FastVector<T, N, Storage>::assign_from_initializer_list(std::initializer_list<value_type> init)
{
ensure_capacity(init.size());
mSize = init.size();
size_t index = 0;
for (auto &value : init)
{
mData[index++] = value;
}
}
template <class T, size_t N, class Storage>
ANGLE_INLINE void FastVector<T, N, Storage>::remove_and_permute(const value_type &element)
{
size_t len = mSize - 1;
for (size_t index = 0; index < len; ++index)
{
if (mData[index] == element)
{
mData[index] = std::move(mData[len]);
break;
}
}
pop_back();
}
template <class T, size_t N, class Storage>
ANGLE_INLINE void FastVector<T, N, Storage>::remove_and_permute(iterator pos)
{
ASSERT(pos >= begin());
ASSERT(pos < end());
size_t len = mSize - 1;
*pos = std::move(mData[len]);
pop_back();
}
template <class T, size_t N, class Storage>
void FastVector<T, N, Storage>::ensure_capacity(size_t capacity)
{
// We have a minimum capacity of N.
if (mReservedSize < capacity)
{
increase_capacity(capacity);
}
}
template <class T, size_t N, class Storage>
ANGLE_NOINLINE void FastVector<T, N, Storage>::increase_capacity(size_t capacity)
{
ASSERT(capacity > N);
size_type newSize = std::max(mReservedSize, N);
while (newSize < capacity)
{
newSize *= 2;
}
pointer newData = new value_type[newSize];
if (mSize > 0)
{
std::move(begin(), end(), newData);
}
if (!uses_fixed_storage())
{
delete[] mData;
}
mData = newData;
mReservedSize = newSize;
}
template <class Value, size_t N, class Storage = FastVector<Value, N>>
class FastMap final
{
public:
using value_type = typename Storage::value_type;
using size_type = typename Storage::size_type;
using reference = typename Storage::reference;
using const_reference = typename Storage::const_reference;
using pointer = typename Storage::pointer;
using const_pointer = typename Storage::const_pointer;
using iterator = typename Storage::iterator;
using const_iterator = typename Storage::const_iterator;
FastMap() {}
~FastMap() {}
Value &operator[](uint32_t key)
{
if (mData.size() <= key)
{
mData.resize(key + 1, {});
}
return at(key);
}
const Value &operator[](uint32_t key) const { return at(key); }
Value &at(uint32_t key)
{
ASSERT(key < mData.size());
return mData[key];
}
const Value &at(uint32_t key) const
{
ASSERT(key < mData.size());
return mData[key];
}
void clear() { mData.clear(); }
void resetWithRawData(size_type count, const uint8_t *data)
{
mData.resetWithRawData(count, data);
}
bool empty() const { return mData.empty(); }
size_t size() const { return mData.size(); }
const Value *data() const { return mData.data(); }
bool operator==(const FastMap<Value, N> &other) const
{
return (size() == other.size()) &&
(memcmp(data(), other.data(), size() * sizeof(Value)) == 0);
}
iterator begin() { return mData.begin(); }
const_iterator begin() const { return mData.begin(); }
iterator end() { return mData.end(); }
const_iterator end() const { return mData.end(); }
private:
FastVector<Value, N> mData;
};
template <class Key, class Value, size_t N>
class FlatUnorderedMap final
{
public:
using Pair = std::pair<Key, Value>;
using Storage = FastVector<Pair, N>;
using iterator = typename Storage::iterator;
using const_iterator = typename Storage::const_iterator;
FlatUnorderedMap() = default;
~FlatUnorderedMap() = default;
iterator begin() { return mData.begin(); }
const_iterator begin() const { return mData.begin(); }
iterator end() { return mData.end(); }
const_iterator end() const { return mData.end(); }
iterator find(const Key &key)
{
for (auto it = mData.begin(); it != mData.end(); ++it)
{
if (it->first == key)
{
return it;
}
}
return mData.end();
}
const_iterator find(const Key &key) const
{
for (auto it = mData.begin(); it != mData.end(); ++it)
{
if (it->first == key)
{
return it;
}
}
return mData.end();
}
Value &operator[](const Key &key)
{
iterator it = find(key);
if (it != end())
{
return it->second;
}
mData.push_back(Pair(key, {}));
return mData.back().second;
}
void insert(Pair pair)
{
ASSERT(!contains(pair.first));
mData.push_back(std::move(pair));
}
void insert(const Key &key, Value value) { insert(Pair(key, value)); }
void erase(iterator pos) { mData.remove_and_permute(pos); }
bool contains(const Key &key) const { return find(key) != end(); }
void clear() { mData.clear(); }
bool get(const Key &key, Value *value) const
{
auto it = find(key);
if (it != end())
{
*value = it->second;
return true;
}
return false;
}
bool empty() const { return mData.empty(); }
size_t size() const { return mData.size(); }
private:
FastVector<Pair, N> mData;
};
template <class T, size_t N>
class FlatUnorderedSet final
{
public:
using Storage = FastVector<T, N>;
using iterator = typename Storage::iterator;
using const_iterator = typename Storage::const_iterator;
FlatUnorderedSet() = default;
~FlatUnorderedSet() = default;
iterator begin() { return mData.begin(); }
const_iterator begin() const { return mData.begin(); }
iterator end() { return mData.end(); }
const_iterator end() const { return mData.end(); }
iterator find(const T &value)
{
for (auto it = mData.begin(); it != mData.end(); ++it)
{
if (*it == value)
{
return it;
}
}
return mData.end();
}
const_iterator find(const T &value) const
{
for (auto it = mData.begin(); it != mData.end(); ++it)
{
if (*it == value)
{
return it;
}
}
return mData.end();
}
bool empty() const { return mData.empty(); }
void insert(const T &value)
{
ASSERT(!contains(value));
mData.push_back(value);
}
void erase(const T &value)
{
ASSERT(contains(value));
mData.remove_and_permute(value);
}
void remove(const T &value) { erase(value); }
bool contains(const T &value) const { return find(value) != end(); }
void clear() { mData.clear(); }
bool operator==(const FlatUnorderedSet<T, N> &other) const { return mData == other.mData; }
private:
Storage mData;
};
} // namespace angle
#endif // COMMON_FASTVECTOR_H_