Hash :
21ad9b3c
Author :
Date :
2022-04-07T09:57:26
Vulkan: Add generic descriptors for DS cache. With the new design, the descriptor set cache keys include all identifying information needed to reconstruct the update descriptor sets calls except the specific resource handles. The places for the resource handles are held by serials intead. When we miss the cache, we no longer need a second step to then construct the update calls, and can build the update calls directly from the key structures in combination with a list of resource handles. Bug: angleproject:6776 Change-Id: If1660a557585a75e9aa2560d6a38c56b62f555c8 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/3484981 Reviewed-by: Yuxin Hu <yuxinhu@google.com> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org> Commit-Queue: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
//
// Copyright 2020 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ProgramExecutableVk.cpp: Collects the information and interfaces common to both ProgramVks and
// ProgramPipelineVks in order to execute/draw with either.
#include "libANGLE/renderer/vulkan/ProgramExecutableVk.h"
#include "libANGLE/renderer/glslang_wrapper_utils.h"
#include "libANGLE/renderer/vulkan/BufferVk.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include "libANGLE/renderer/vulkan/GlslangWrapperVk.h"
#include "libANGLE/renderer/vulkan/ProgramPipelineVk.h"
#include "libANGLE/renderer/vulkan/ProgramVk.h"
#include "libANGLE/renderer/vulkan/TextureVk.h"
#include "libANGLE/renderer/vulkan/TransformFeedbackVk.h"
#include "libANGLE/renderer/vulkan/vk_helpers.h"
#include "libANGLE/renderer/vulkan/vk_utils.h"
namespace rx
{
namespace
{
void LoadShaderInterfaceVariableXfbInfo(gl::BinaryInputStream *stream,
ShaderInterfaceVariableXfbInfo *xfb)
{
xfb->buffer = stream->readInt<uint32_t>();
xfb->offset = stream->readInt<uint32_t>();
xfb->stride = stream->readInt<uint32_t>();
xfb->arraySize = stream->readInt<uint32_t>();
xfb->columnCount = stream->readInt<uint32_t>();
xfb->rowCount = stream->readInt<uint32_t>();
xfb->arrayIndex = stream->readInt<uint32_t>();
xfb->componentType = stream->readInt<uint32_t>();
xfb->arrayElements.resize(stream->readInt<size_t>());
for (ShaderInterfaceVariableXfbInfo &arrayElement : xfb->arrayElements)
{
LoadShaderInterfaceVariableXfbInfo(stream, &arrayElement);
}
}
void SaveShaderInterfaceVariableXfbInfo(const ShaderInterfaceVariableXfbInfo &xfb,
gl::BinaryOutputStream *stream)
{
stream->writeInt(xfb.buffer);
stream->writeInt(xfb.offset);
stream->writeInt(xfb.stride);
stream->writeInt(xfb.arraySize);
stream->writeInt(xfb.columnCount);
stream->writeInt(xfb.rowCount);
stream->writeInt(xfb.arrayIndex);
stream->writeInt(xfb.componentType);
stream->writeInt(xfb.arrayElements.size());
for (const ShaderInterfaceVariableXfbInfo &arrayElement : xfb.arrayElements)
{
SaveShaderInterfaceVariableXfbInfo(arrayElement, stream);
}
}
bool ValidateTransformedSpirV(const gl::ShaderBitSet &linkedShaderStages,
const ShaderInterfaceVariableInfoMap &variableInfoMap,
const gl::ShaderMap<angle::spirv::Blob> &spirvBlobs)
{
gl::ShaderType lastPreFragmentStage = gl::GetLastPreFragmentStage(linkedShaderStages);
for (gl::ShaderType shaderType : linkedShaderStages)
{
GlslangSpirvOptions options;
options.shaderType = shaderType;
options.preRotation = SurfaceRotation::FlippedRotated90Degrees;
options.negativeViewportSupported = false;
options.transformPositionToVulkanClipSpace = true;
options.removeDebugInfo = true;
options.isTransformFeedbackStage = shaderType == lastPreFragmentStage;
angle::spirv::Blob transformed;
if (GlslangWrapperVk::TransformSpirV(options, variableInfoMap, spirvBlobs[shaderType],
&transformed) != angle::Result::Continue)
{
return false;
}
}
return true;
}
} // namespace
DefaultUniformBlock::DefaultUniformBlock() = default;
DefaultUniformBlock::~DefaultUniformBlock() = default;
// ShaderInfo implementation.
ShaderInfo::ShaderInfo() {}
ShaderInfo::~ShaderInfo() = default;
angle::Result ShaderInfo::initShaders(const gl::ShaderBitSet &linkedShaderStages,
const gl::ShaderMap<const angle::spirv::Blob *> &spirvBlobs,
const ShaderInterfaceVariableInfoMap &variableInfoMap)
{
clear();
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (spirvBlobs[shaderType] != nullptr)
{
mSpirvBlobs[shaderType] = *spirvBlobs[shaderType];
}
}
// Assert that SPIR-V transformation is correct, even if the test never issues a draw call.
ASSERT(ValidateTransformedSpirV(linkedShaderStages, variableInfoMap, mSpirvBlobs));
mIsInitialized = true;
return angle::Result::Continue;
}
void ShaderInfo::initShaderFromProgram(gl::ShaderType shaderType,
const ShaderInfo &programShaderInfo)
{
mSpirvBlobs[shaderType] = programShaderInfo.mSpirvBlobs[shaderType];
mIsInitialized = true;
}
void ShaderInfo::clear()
{
for (angle::spirv::Blob &spirvBlob : mSpirvBlobs)
{
spirvBlob.clear();
}
mIsInitialized = false;
}
void ShaderInfo::load(gl::BinaryInputStream *stream)
{
clear();
// Read in shader codes for all shader types
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
angle::spirv::Blob *spirvBlob = &mSpirvBlobs[shaderType];
// Read the SPIR-V
stream->readIntVector<uint32_t>(spirvBlob);
}
mIsInitialized = true;
}
void ShaderInfo::save(gl::BinaryOutputStream *stream)
{
ASSERT(valid());
// Write out shader codes for all shader types
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
const angle::spirv::Blob &spirvBlob = mSpirvBlobs[shaderType];
// Write the SPIR-V
stream->writeIntVector(spirvBlob);
}
}
// ProgramInfo implementation.
ProgramInfo::ProgramInfo() {}
ProgramInfo::~ProgramInfo() = default;
angle::Result ProgramInfo::initProgram(ContextVk *contextVk,
gl::ShaderType shaderType,
bool isLastPreFragmentStage,
bool isTransformFeedbackProgram,
const ShaderInfo &shaderInfo,
ProgramTransformOptions optionBits,
const ShaderInterfaceVariableInfoMap &variableInfoMap)
{
const gl::ShaderMap<angle::spirv::Blob> &originalSpirvBlobs = shaderInfo.getSpirvBlobs();
const angle::spirv::Blob &originalSpirvBlob = originalSpirvBlobs[shaderType];
gl::ShaderMap<angle::spirv::Blob> transformedSpirvBlobs;
angle::spirv::Blob &transformedSpirvBlob = transformedSpirvBlobs[shaderType];
GlslangSpirvOptions options;
options.shaderType = shaderType;
options.removeEarlyFragmentTestsOptimization =
shaderType == gl::ShaderType::Fragment && optionBits.removeEarlyFragmentTestsOptimization;
options.removeDebugInfo = !contextVk->getFeatures().retainSPIRVDebugInfo.enabled;
options.isTransformFeedbackStage = isLastPreFragmentStage && isTransformFeedbackProgram &&
!optionBits.removeTransformFeedbackEmulation;
options.isTransformFeedbackEmulated = contextVk->getFeatures().emulateTransformFeedback.enabled;
options.negativeViewportSupported = contextVk->getFeatures().supportsNegativeViewport.enabled;
if (isLastPreFragmentStage)
{
options.preRotation = static_cast<SurfaceRotation>(optionBits.surfaceRotation);
options.transformPositionToVulkanClipSpace =
optionBits.enableDepthCorrection &&
!contextVk->getFeatures().supportsDepthClipControl.enabled;
}
ANGLE_TRY(GlslangWrapperVk::TransformSpirV(options, variableInfoMap, originalSpirvBlob,
&transformedSpirvBlob));
ANGLE_TRY(vk::InitShaderAndSerial(contextVk, &mShaders[shaderType].get(),
transformedSpirvBlob.data(),
transformedSpirvBlob.size() * sizeof(uint32_t)));
mProgramHelper.setShader(shaderType, &mShaders[shaderType]);
mProgramHelper.setSpecializationConstant(sh::vk::SpecializationConstantId::LineRasterEmulation,
optionBits.enableLineRasterEmulation);
mProgramHelper.setSpecializationConstant(sh::vk::SpecializationConstantId::SurfaceRotation,
optionBits.surfaceRotation);
return angle::Result::Continue;
}
void ProgramInfo::release(ContextVk *contextVk)
{
mProgramHelper.release(contextVk);
for (vk::RefCounted<vk::ShaderAndSerial> &shader : mShaders)
{
shader.get().destroy(contextVk->getDevice());
}
}
ProgramExecutableVk::ProgramExecutableVk()
: mEmptyDescriptorSets{},
mNumDefaultUniformDescriptors(0),
mImmutableSamplersMaxDescriptorCount(1),
mUniformBufferDescriptorType(VK_DESCRIPTOR_TYPE_MAX_ENUM),
mDynamicUniformDescriptorOffsets{}
{
for (std::shared_ptr<DefaultUniformBlock> &defaultBlock : mDefaultUniformBlocks)
{
defaultBlock = std::make_shared<DefaultUniformBlock>();
}
}
ProgramExecutableVk::~ProgramExecutableVk() {}
void ProgramExecutableVk::reset(ContextVk *contextVk)
{
for (auto &descriptorSetLayout : mDescriptorSetLayouts)
{
descriptorSetLayout.reset();
}
mImmutableSamplersMaxDescriptorCount = 1;
mImmutableSamplerIndexMap.clear();
mPipelineLayout.reset();
mDescriptorSets.fill(VK_NULL_HANDLE);
mEmptyDescriptorSets.fill(VK_NULL_HANDLE);
mNumDefaultUniformDescriptors = 0;
mTransformOptions = {};
for (vk::RefCountedDescriptorPoolBinding &binding : mDescriptorPoolBindings)
{
binding.reset();
}
for (vk::DescriptorPoolPointer &pool : mDescriptorPools)
{
pool.reset();
}
// Initialize with an invalid BufferSerial
mCurrentDefaultUniformBufferSerial = vk::BufferSerial();
for (ProgramInfo &programInfo : mGraphicsProgramInfos)
{
programInfo.release(contextVk);
}
mComputeProgramInfo.release(contextVk);
contextVk->onProgramExecutableReset(this);
}
std::unique_ptr<rx::LinkEvent> ProgramExecutableVk::load(ContextVk *contextVk,
const gl::ProgramExecutable &glExecutable,
gl::BinaryInputStream *stream)
{
gl::ShaderMap<ShaderInterfaceVariableInfoMap::VariableTypeToInfoMap> data;
gl::ShaderMap<ShaderInterfaceVariableInfoMap::NameToTypeAndIndexMap> nameToTypeAndIndexMap;
gl::ShaderMap<ShaderInterfaceVariableInfoMap::VariableTypeToIndexMap> indexedResourceMap;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
size_t nameCount = stream->readInt<size_t>();
for (size_t nameIndex = 0; nameIndex < nameCount; ++nameIndex)
{
const std::string variableName = stream->readString();
ShaderVariableType variableType = stream->readEnum<ShaderVariableType>();
uint32_t index = stream->readInt<uint32_t>();
nameToTypeAndIndexMap[shaderType][variableName] = {variableType, index};
}
for (ShaderVariableType variableType : angle::AllEnums<ShaderVariableType>())
{
size_t infoArraySize = stream->readInt<size_t>();
for (size_t infoIndex = 0; infoIndex < infoArraySize; ++infoIndex)
{
ShaderInterfaceVariableInfo info;
info.descriptorSet = stream->readInt<uint32_t>();
info.binding = stream->readInt<uint32_t>();
info.location = stream->readInt<uint32_t>();
info.component = stream->readInt<uint32_t>();
info.index = stream->readInt<uint32_t>();
// PackedEnumBitSet uses uint8_t
info.activeStages = gl::ShaderBitSet(stream->readInt<uint8_t>());
LoadShaderInterfaceVariableXfbInfo(stream, &info.xfb);
info.fieldXfb.resize(stream->readInt<size_t>());
for (ShaderInterfaceVariableXfbInfo &xfb : info.fieldXfb)
{
LoadShaderInterfaceVariableXfbInfo(stream, &xfb);
}
info.useRelaxedPrecision = stream->readBool();
info.varyingIsInput = stream->readBool();
info.varyingIsOutput = stream->readBool();
info.attributeComponentCount = stream->readInt<uint8_t>();
info.attributeLocationCount = stream->readInt<uint8_t>();
info.isDuplicate = stream->readBool();
data[shaderType][variableType].push_back(info);
}
uint32_t resourceMapSize = stream->readInt<uint32_t>();
for (uint32_t resourceIndex = 0; resourceIndex < resourceMapSize; ++resourceIndex)
{
uint32_t variableIndex = stream->readInt<uint32_t>();
indexedResourceMap[shaderType][variableType][resourceIndex] = variableIndex;
}
}
}
mVariableInfoMap.load(data, nameToTypeAndIndexMap, indexedResourceMap);
mOriginalShaderInfo.load(stream);
// Deserializes the uniformLayout data of mDefaultUniformBlocks
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
const size_t uniformCount = stream->readInt<size_t>();
for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; ++uniformIndex)
{
sh::BlockMemberInfo blockInfo;
gl::LoadBlockMemberInfo(stream, &blockInfo);
mDefaultUniformBlocks[shaderType]->uniformLayout.push_back(blockInfo);
}
}
gl::ShaderMap<size_t> requiredBufferSize;
requiredBufferSize.fill(0);
// Deserializes required uniform block memory sizes
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
requiredBufferSize[shaderType] = stream->readInt<size_t>();
}
// Initialize and resize the mDefaultUniformBlocks' memory
angle::Result status = resizeUniformBlockMemory(contextVk, glExecutable, requiredBufferSize);
if (status != angle::Result::Continue)
{
return std::make_unique<LinkEventDone>(status);
}
status = createPipelineLayout(contextVk, glExecutable, nullptr);
return std::make_unique<LinkEventDone>(status);
}
void ProgramExecutableVk::save(gl::BinaryOutputStream *stream)
{
const gl::ShaderMap<ShaderInterfaceVariableInfoMap::VariableTypeToInfoMap> &data =
mVariableInfoMap.getData();
const gl::ShaderMap<ShaderInterfaceVariableInfoMap::NameToTypeAndIndexMap>
&nameToTypeAndIndexMap = mVariableInfoMap.getNameToTypeAndIndexMap();
const gl::ShaderMap<ShaderInterfaceVariableInfoMap::VariableTypeToIndexMap>
&indexedResourceMap = mVariableInfoMap.getIndexedResourceMap();
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeInt(nameToTypeAndIndexMap[shaderType].size());
for (const auto &iter : nameToTypeAndIndexMap[shaderType])
{
const std::string &name = iter.first;
const TypeAndIndex &typeAndIndex = iter.second;
stream->writeString(name);
stream->writeEnum(typeAndIndex.variableType);
stream->writeInt(typeAndIndex.index);
}
for (ShaderVariableType variableType : angle::AllEnums<ShaderVariableType>())
{
const ShaderInterfaceVariableInfoMap::VariableInfoArray &infoArray =
data[shaderType][variableType];
stream->writeInt(infoArray.size());
for (const ShaderInterfaceVariableInfo &info : infoArray)
{
stream->writeInt(info.descriptorSet);
stream->writeInt(info.binding);
stream->writeInt(info.location);
stream->writeInt(info.component);
stream->writeInt(info.index);
// PackedEnumBitSet uses uint8_t
stream->writeInt(info.activeStages.bits());
SaveShaderInterfaceVariableXfbInfo(info.xfb, stream);
stream->writeInt(info.fieldXfb.size());
for (const ShaderInterfaceVariableXfbInfo &xfb : info.fieldXfb)
{
SaveShaderInterfaceVariableXfbInfo(xfb, stream);
}
stream->writeBool(info.useRelaxedPrecision);
stream->writeBool(info.varyingIsInput);
stream->writeBool(info.varyingIsOutput);
stream->writeInt(info.attributeComponentCount);
stream->writeInt(info.attributeLocationCount);
stream->writeBool(info.isDuplicate);
}
const ShaderInterfaceVariableInfoMap::ResourceIndexMap &resourceIndexMap =
indexedResourceMap[shaderType][variableType];
stream->writeInt(static_cast<uint32_t>(resourceIndexMap.size()));
for (uint32_t resourceIndex = 0; resourceIndex < resourceIndexMap.size();
++resourceIndex)
{
stream->writeInt(resourceIndexMap[resourceIndex]);
}
}
}
mOriginalShaderInfo.save(stream);
// Serializes the uniformLayout data of mDefaultUniformBlocks
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
const size_t uniformCount = mDefaultUniformBlocks[shaderType]->uniformLayout.size();
stream->writeInt(uniformCount);
for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; ++uniformIndex)
{
sh::BlockMemberInfo &blockInfo =
mDefaultUniformBlocks[shaderType]->uniformLayout[uniformIndex];
gl::WriteBlockMemberInfo(stream, blockInfo);
}
}
// Serializes required uniform block memory sizes
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeInt(mDefaultUniformBlocks[shaderType]->uniformData.size());
}
}
void ProgramExecutableVk::clearVariableInfoMap()
{
mVariableInfoMap.clear();
}
uint32_t GetInterfaceBlockArraySize(const std::vector<gl::InterfaceBlock> &blocks,
uint32_t bufferIndex)
{
const gl::InterfaceBlock &block = blocks[bufferIndex];
if (!block.isArray)
{
return 1;
}
ASSERT(block.arrayElement == 0);
// Search consecutively until all array indices of this block are visited.
uint32_t arraySize;
for (arraySize = 1; bufferIndex + arraySize < blocks.size(); ++arraySize)
{
const gl::InterfaceBlock &nextBlock = blocks[bufferIndex + arraySize];
if (nextBlock.arrayElement != arraySize)
{
break;
}
// It's unexpected for an array to start at a non-zero array size, so we can always rely on
// the sequential `arrayElement`s to belong to the same block.
ASSERT(nextBlock.name == block.name);
ASSERT(nextBlock.isArray);
}
return arraySize;
}
void ProgramExecutableVk::addInterfaceBlockDescriptorSetDesc(
const std::vector<gl::InterfaceBlock> &blocks,
gl::ShaderType shaderType,
ShaderVariableType variableType,
VkDescriptorType descType,
vk::DescriptorSetLayoutDesc *descOut)
{
for (uint32_t bufferIndex = 0, arraySize = 0; bufferIndex < blocks.size();
bufferIndex += arraySize)
{
gl::InterfaceBlock block = blocks[bufferIndex];
arraySize = GetInterfaceBlockArraySize(blocks, bufferIndex);
if (!block.isActive(shaderType))
{
continue;
}
const ShaderInterfaceVariableInfo &info =
mVariableInfoMap.getIndexedVariableInfo(shaderType, variableType, bufferIndex);
if (info.isDuplicate)
{
continue;
}
VkShaderStageFlags activeStages = gl_vk::GetShaderStageFlags(info.activeStages);
descOut->update(info.binding, descType, arraySize, activeStages, nullptr);
}
}
void ProgramExecutableVk::addAtomicCounterBufferDescriptorSetDesc(
const std::vector<gl::AtomicCounterBuffer> &atomicCounterBuffers,
gl::ShaderType shaderType,
vk::DescriptorSetLayoutDesc *descOut)
{
if (atomicCounterBuffers.empty() || !mVariableInfoMap.hasAtomicCounterInfo(shaderType))
{
return;
}
const ShaderInterfaceVariableInfo &info = mVariableInfoMap.getAtomicCounterInfo(shaderType);
if (info.isDuplicate || !info.activeStages[shaderType])
{
return;
}
VkShaderStageFlags activeStages = gl_vk::GetShaderStageFlags(info.activeStages);
// A single storage buffer array is used for all stages for simplicity.
descOut->update(info.binding, vk::kStorageBufferDescriptorType,
gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS, activeStages, nullptr);
}
void ProgramExecutableVk::addImageDescriptorSetDesc(const gl::ProgramExecutable &executable,
vk::DescriptorSetLayoutDesc *descOut)
{
const std::vector<gl::ImageBinding> &imageBindings = executable.getImageBindings();
const std::vector<gl::LinkedUniform> &uniforms = executable.getUniforms();
for (uint32_t imageIndex = 0; imageIndex < imageBindings.size(); ++imageIndex)
{
uint32_t uniformIndex = executable.getUniformIndexFromImageIndex(imageIndex);
const gl::LinkedUniform &imageUniform = uniforms[uniformIndex];
// 2D arrays are split into multiple 1D arrays when generating LinkedUniforms. Since they
// are flattened into one array, ignore the nonzero elements and expand the array to the
// total array size.
if (imageUniform.outerArrayOffset > 0)
{
ASSERT(gl::SamplerNameContainsNonZeroArrayElement(imageUniform.name));
continue;
}
ASSERT(!gl::SamplerNameContainsNonZeroArrayElement(imageUniform.name));
// The front-end always binds array image units sequentially.
const gl::ImageBinding &imageBinding = imageBindings[imageIndex];
uint32_t arraySize = static_cast<uint32_t>(imageBinding.boundImageUnits.size());
for (unsigned int outerArraySize : imageUniform.outerArraySizes)
{
arraySize *= outerArraySize;
}
for (gl::ShaderType shaderType : executable.getLinkedShaderStages())
{
if (!imageUniform.isActive(shaderType))
{
continue;
}
const ShaderInterfaceVariableInfo &info = mVariableInfoMap.getIndexedVariableInfo(
shaderType, ShaderVariableType::Image, imageIndex);
if (info.isDuplicate)
{
continue;
}
VkShaderStageFlags activeStages = gl_vk::GetShaderStageFlags(info.activeStages);
const VkDescriptorType descType = imageBinding.textureType == gl::TextureType::Buffer
? VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER
: VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
descOut->update(info.binding, descType, arraySize, activeStages, nullptr);
}
}
}
void ProgramExecutableVk::addInputAttachmentDescriptorSetDesc(
const gl::ProgramExecutable &executable,
gl::ShaderType shaderType,
vk::DescriptorSetLayoutDesc *descOut)
{
if (shaderType != gl::ShaderType::Fragment)
{
return;
}
if (!executable.usesFramebufferFetch())
{
return;
}
const ShaderInterfaceVariableInfo &baseInfo =
mVariableInfoMap.getFramebufferFetchInfo(shaderType);
if (baseInfo.isDuplicate)
{
return;
}
const std::vector<gl::LinkedUniform> &uniforms = executable.getUniforms();
const uint32_t baseUniformIndex = executable.getFragmentInoutRange().low();
const gl::LinkedUniform &baseInputAttachment = uniforms.at(baseUniformIndex);
uint32_t baseBinding = baseInfo.binding - baseInputAttachment.location;
for (uint32_t colorIndex = 0; colorIndex < gl::IMPLEMENTATION_MAX_DRAW_BUFFERS; ++colorIndex)
{
descOut->update(baseBinding, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1,
VK_SHADER_STAGE_FRAGMENT_BIT, nullptr);
baseBinding++;
}
}
angle::Result ProgramExecutableVk::addTextureDescriptorSetDesc(
ContextVk *contextVk,
const gl::ProgramExecutable &executable,
const gl::ActiveTextureArray<TextureVk *> *activeTextures,
vk::DescriptorSetLayoutDesc *descOut)
{
const std::vector<gl::SamplerBinding> &samplerBindings = executable.getSamplerBindings();
const std::vector<gl::LinkedUniform> &uniforms = executable.getUniforms();
for (uint32_t textureIndex = 0; textureIndex < samplerBindings.size(); ++textureIndex)
{
uint32_t uniformIndex = executable.getUniformIndexFromSamplerIndex(textureIndex);
const gl::LinkedUniform &samplerUniform = uniforms[uniformIndex];
// 2D arrays are split into multiple 1D arrays when generating LinkedUniforms. Since they
// are flattened into one array, ignore the nonzero elements and expand the array to the
// total array size.
if (samplerUniform.outerArrayOffset > 0)
{
ASSERT(gl::SamplerNameContainsNonZeroArrayElement(samplerUniform.name));
continue;
}
ASSERT(!gl::SamplerNameContainsNonZeroArrayElement(samplerUniform.name));
// The front-end always binds array sampler units sequentially.
const gl::SamplerBinding &samplerBinding = samplerBindings[textureIndex];
uint32_t arraySize = static_cast<uint32_t>(samplerBinding.boundTextureUnits.size());
for (unsigned int outerArraySize : samplerUniform.outerArraySizes)
{
arraySize *= outerArraySize;
}
for (gl::ShaderType shaderType : executable.getLinkedShaderStages())
{
if (!samplerUniform.isActive(shaderType))
{
continue;
}
const ShaderInterfaceVariableInfo &info = mVariableInfoMap.getIndexedVariableInfo(
shaderType, ShaderVariableType::Texture, textureIndex);
if (info.isDuplicate)
{
continue;
}
VkShaderStageFlags activeStages = gl_vk::GetShaderStageFlags(info.activeStages);
// TODO: https://issuetracker.google.com/issues/158215272: how do we handle array of
// immutable samplers?
GLuint textureUnit = samplerBinding.boundTextureUnits[0];
if (activeTextures &&
((*activeTextures)[textureUnit]->getImage().hasImmutableSampler()))
{
ASSERT(samplerBinding.boundTextureUnits.size() == 1);
// Always take the texture's sampler, that's only way to get to yuv conversion for
// externalFormat
const TextureVk *textureVk = (*activeTextures)[textureUnit];
const vk::Sampler &immutableSampler = textureVk->getSampler().get();
descOut->update(info.binding, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, arraySize,
activeStages, &immutableSampler);
const vk::ImageHelper &image = textureVk->getImage();
mImmutableSamplerIndexMap[image.getYcbcrConversionDesc()] = textureIndex;
// The Vulkan spec has the following note -
// All descriptors in a binding use the same maximum
// combinedImageSamplerDescriptorCount descriptors to allow implementations to use a
// uniform stride for dynamic indexing of the descriptors in the binding.
uint64_t externalFormat = image.getExternalFormat();
uint32_t formatDescriptorCount = 0;
RendererVk *renderer = contextVk->getRenderer();
if (externalFormat != 0)
{
ANGLE_TRY(renderer->getFormatDescriptorCountForExternalFormat(
contextVk, externalFormat, &formatDescriptorCount));
}
else
{
VkFormat vkFormat = image.getActualVkFormat();
ASSERT(vkFormat != 0);
ANGLE_TRY(renderer->getFormatDescriptorCountForVkFormat(
contextVk, vkFormat, &formatDescriptorCount));
}
ASSERT(formatDescriptorCount > 0);
mImmutableSamplersMaxDescriptorCount =
std::max(mImmutableSamplersMaxDescriptorCount, formatDescriptorCount);
}
else
{
const VkDescriptorType descType =
samplerBinding.textureType == gl::TextureType::Buffer
? VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER
: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descOut->update(info.binding, descType, arraySize, activeStages, nullptr);
}
}
}
return angle::Result::Continue;
}
void ProgramExecutableVk::updateEarlyFragmentTestsOptimization(
ContextVk *contextVk,
const gl::ProgramExecutable &glExecutable)
{
const gl::State &glState = contextVk->getState();
mTransformOptions.removeEarlyFragmentTestsOptimization = false;
if (!glState.canEnableEarlyFragmentTestsOptimization())
{
if (glExecutable.usesEarlyFragmentTestsOptimization())
{
mTransformOptions.removeEarlyFragmentTestsOptimization = true;
}
}
}
angle::Result ProgramExecutableVk::getGraphicsPipeline(ContextVk *contextVk,
gl::PrimitiveMode mode,
const vk::GraphicsPipelineDesc &desc,
const gl::ProgramExecutable &glExecutable,
const vk::GraphicsPipelineDesc **descPtrOut,
vk::PipelineHelper **pipelineOut)
{
const gl::State &glState = contextVk->getState();
RendererVk *renderer = contextVk->getRenderer();
vk::PipelineCache *pipelineCache = nullptr;
ASSERT(glExecutable.hasLinkedShaderStage(gl::ShaderType::Vertex));
mTransformOptions.enableLineRasterEmulation = contextVk->isBresenhamEmulationEnabled(mode);
mTransformOptions.surfaceRotation = ToUnderlying(desc.getSurfaceRotation());
mTransformOptions.enableDepthCorrection = !glState.isClipControlDepthZeroToOne();
mTransformOptions.removeTransformFeedbackEmulation =
contextVk->getFeatures().emulateTransformFeedback.enabled &&
!glState.isTransformFeedbackActiveUnpaused();
// This must be called after mTransformOptions have been set.
ProgramInfo &programInfo = getGraphicsProgramInfo();
const gl::ShaderBitSet linkedShaderStages = glExecutable.getLinkedShaderStages();
gl::ShaderType lastPreFragmentStage = gl::GetLastPreFragmentStage(linkedShaderStages);
const bool isTransformFeedbackProgram =
!glExecutable.getLinkedTransformFeedbackVaryings().empty();
for (gl::ShaderType shaderType : linkedShaderStages)
{
ANGLE_TRY(initGraphicsShaderProgram(
contextVk, shaderType, shaderType == lastPreFragmentStage, isTransformFeedbackProgram,
mTransformOptions, &programInfo, mVariableInfoMap));
}
vk::ShaderProgramHelper *shaderProgram = programInfo.getShaderProgram();
ASSERT(shaderProgram);
// Drawable size is part of specialization constant, but does not have its own dedicated
// programInfo entry. We pick the programInfo entry based on the mTransformOptions and then
// update drawable width/height specialization constant. It will go through desc matching and if
// spec constant does not match, it will recompile pipeline program.
const vk::PackedExtent &dimensions = desc.getDrawableSize();
shaderProgram->setSpecializationConstant(sh::vk::SpecializationConstantId::DrawableWidth,
dimensions.width);
shaderProgram->setSpecializationConstant(sh::vk::SpecializationConstantId::DrawableHeight,
dimensions.height);
// Similarly with the required dither based on the bound framebuffer attachment formats.
shaderProgram->setSpecializationConstant(sh::vk::SpecializationConstantId::Dither,
desc.getEmulatedDitherControl());
// Compare the fragment output interface with the framebuffer interface.
const gl::AttributesMask &activeAttribLocations =
glExecutable.getNonBuiltinAttribLocationsMask();
// Calculate missing shader outputs.
const gl::DrawBufferMask &shaderOutMask = glExecutable.getActiveOutputVariablesMask();
gl::DrawBufferMask framebufferMask = glState.getDrawFramebuffer()->getDrawBufferMask();
gl::DrawBufferMask missingOutputsMask = ~shaderOutMask & framebufferMask;
ANGLE_TRY(renderer->getPipelineCache(&pipelineCache));
return shaderProgram->getGraphicsPipeline(
contextVk, &contextVk->getRenderPassCache(), *pipelineCache, getPipelineLayout(), desc,
activeAttribLocations, glExecutable.getAttributesTypeMask(), missingOutputsMask, descPtrOut,
pipelineOut);
}
angle::Result ProgramExecutableVk::getComputePipeline(ContextVk *contextVk,
vk::PipelineHelper **pipelineOut)
{
const gl::State &glState = contextVk->getState();
const gl::ProgramExecutable *glExecutable = glState.getProgramExecutable();
ASSERT(glExecutable && glExecutable->hasLinkedShaderStage(gl::ShaderType::Compute));
ANGLE_TRY(initComputeProgram(contextVk, &mComputeProgramInfo, mVariableInfoMap));
vk::ShaderProgramHelper *shaderProgram = mComputeProgramInfo.getShaderProgram();
ASSERT(shaderProgram);
return shaderProgram->getComputePipeline(contextVk, getPipelineLayout(), pipelineOut);
}
angle::Result ProgramExecutableVk::createPipelineLayout(
ContextVk *contextVk,
const gl::ProgramExecutable &glExecutable,
gl::ActiveTextureArray<TextureVk *> *activeTextures)
{
gl::TransformFeedback *transformFeedback = contextVk->getState().getCurrentTransformFeedback();
const gl::ShaderBitSet &linkedShaderStages = glExecutable.getLinkedShaderStages();
reset(contextVk);
// Store a reference to the pipeline and descriptor set layouts. This will create them if they
// don't already exist in the cache.
// Default uniforms and transform feedback:
vk::DescriptorSetLayoutDesc uniformsAndXfbSetDesc;
mNumDefaultUniformDescriptors = 0;
for (gl::ShaderType shaderType : linkedShaderStages)
{
const ShaderInterfaceVariableInfo &info =
mVariableInfoMap.getDefaultUniformInfo(shaderType);
if (info.isDuplicate || !info.activeStages[shaderType])
{
continue;
}
uniformsAndXfbSetDesc.update(info.binding, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1,
gl_vk::kShaderStageMap[shaderType], nullptr);
mNumDefaultUniformDescriptors++;
}
gl::ShaderType linkedTransformFeedbackStage = glExecutable.getLinkedTransformFeedbackStage();
bool hasXfbVaryings = linkedTransformFeedbackStage != gl::ShaderType::InvalidEnum &&
!glExecutable.getLinkedTransformFeedbackVaryings().empty();
if (transformFeedback && hasXfbVaryings)
{
size_t xfbBufferCount = glExecutable.getTransformFeedbackBufferCount();
TransformFeedbackVk *transformFeedbackVk = vk::GetImpl(transformFeedback);
transformFeedbackVk->updateDescriptorSetLayout(contextVk, mVariableInfoMap, xfbBufferCount,
&uniformsAndXfbSetDesc);
}
ANGLE_TRY(contextVk->getDescriptorSetLayoutCache().getDescriptorSetLayout(
contextVk, uniformsAndXfbSetDesc,
&mDescriptorSetLayouts[DescriptorSetIndex::UniformsAndXfb]));
// Uniform and storage buffers, atomic counter buffers and images:
vk::DescriptorSetLayoutDesc resourcesSetDesc;
// Count the number of active uniform buffer descriptors.
uint32_t numActiveUniformBufferDescriptors = 0;
for (gl::ShaderType shaderType : linkedShaderStages)
{
const std::vector<gl::InterfaceBlock> &blocks = glExecutable.getUniformBlocks();
for (uint32_t bufferIndex = 0; bufferIndex < blocks.size();)
{
const gl::InterfaceBlock &block = blocks[bufferIndex];
const uint32_t arraySize = GetInterfaceBlockArraySize(blocks, bufferIndex);
bufferIndex += arraySize;
if (!block.isActive(shaderType))
{
continue;
}
numActiveUniformBufferDescriptors += arraySize;
}
}
// Decide if we should use dynamic or fixed descriptor types.
VkPhysicalDeviceLimits limits = contextVk->getRenderer()->getPhysicalDeviceProperties().limits;
uint32_t totalDynamicUniformBufferCount = numActiveUniformBufferDescriptors +
mNumDefaultUniformDescriptors +
kReservedDriverUniformBindingCount;
if (totalDynamicUniformBufferCount <= limits.maxDescriptorSetUniformBuffersDynamic)
{
mUniformBufferDescriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
}
else
{
mUniformBufferDescriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
}
for (gl::ShaderType shaderType : linkedShaderStages)
{
addInterfaceBlockDescriptorSetDesc(glExecutable.getUniformBlocks(), shaderType,
ShaderVariableType::UniformBuffer,
mUniformBufferDescriptorType, &resourcesSetDesc);
addInterfaceBlockDescriptorSetDesc(glExecutable.getShaderStorageBlocks(), shaderType,
ShaderVariableType::ShaderStorageBuffer,
vk::kStorageBufferDescriptorType, &resourcesSetDesc);
addAtomicCounterBufferDescriptorSetDesc(glExecutable.getAtomicCounterBuffers(), shaderType,
&resourcesSetDesc);
}
for (gl::ShaderType shaderType : linkedShaderStages)
{
addImageDescriptorSetDesc(glExecutable, &resourcesSetDesc);
addInputAttachmentDescriptorSetDesc(glExecutable, shaderType, &resourcesSetDesc);
}
ANGLE_TRY(contextVk->getDescriptorSetLayoutCache().getDescriptorSetLayout(
contextVk, resourcesSetDesc, &mDescriptorSetLayouts[DescriptorSetIndex::ShaderResource]));
// Textures:
vk::DescriptorSetLayoutDesc texturesSetDesc;
ANGLE_TRY(
addTextureDescriptorSetDesc(contextVk, glExecutable, activeTextures, &texturesSetDesc));
ANGLE_TRY(contextVk->getDescriptorSetLayoutCache().getDescriptorSetLayout(
contextVk, texturesSetDesc, &mDescriptorSetLayouts[DescriptorSetIndex::Texture]));
// Driver uniforms
vk::DescriptorSetLayoutDesc driverUniformsSetDesc =
contextVk->getDriverUniformsDescriptorSetDesc();
ANGLE_TRY(contextVk->getDescriptorSetLayoutCache().getDescriptorSetLayout(
contextVk, driverUniformsSetDesc, &mDescriptorSetLayouts[DescriptorSetIndex::Internal]));
// Create pipeline layout with these 4 descriptor sets.
vk::PipelineLayoutDesc pipelineLayoutDesc;
pipelineLayoutDesc.updateDescriptorSetLayout(DescriptorSetIndex::UniformsAndXfb,
uniformsAndXfbSetDesc);
pipelineLayoutDesc.updateDescriptorSetLayout(DescriptorSetIndex::ShaderResource,
resourcesSetDesc);
pipelineLayoutDesc.updateDescriptorSetLayout(DescriptorSetIndex::Texture, texturesSetDesc);
pipelineLayoutDesc.updateDescriptorSetLayout(DescriptorSetIndex::Internal,
driverUniformsSetDesc);
ANGLE_TRY(contextVk->getPipelineLayoutCache().getPipelineLayout(
contextVk, pipelineLayoutDesc, mDescriptorSetLayouts, &mPipelineLayout));
// Initialize descriptor pools.
ANGLE_TRY(contextVk->bindCachedDescriptorPool(
DescriptorSetIndex::UniformsAndXfb, uniformsAndXfbSetDesc, 1,
&mDescriptorPools[DescriptorSetIndex::UniformsAndXfb]));
ANGLE_TRY(contextVk->bindCachedDescriptorPool(DescriptorSetIndex::Texture, texturesSetDesc,
mImmutableSamplersMaxDescriptorCount,
&mDescriptorPools[DescriptorSetIndex::Texture]));
ANGLE_TRY(
contextVk->bindCachedDescriptorPool(DescriptorSetIndex::ShaderResource, resourcesSetDesc, 1,
&mDescriptorPools[DescriptorSetIndex::ShaderResource]));
mDynamicUniformDescriptorOffsets.clear();
mDynamicUniformDescriptorOffsets.resize(glExecutable.getLinkedShaderStageCount(), 0);
return angle::Result::Continue;
}
void ProgramExecutableVk::resolvePrecisionMismatch(const gl::ProgramMergedVaryings &mergedVaryings)
{
for (const gl::ProgramVaryingRef &mergedVarying : mergedVaryings)
{
if (!mergedVarying.frontShader || !mergedVarying.backShader)
{
continue;
}
GLenum frontPrecision = mergedVarying.frontShader->precision;
GLenum backPrecision = mergedVarying.backShader->precision;
if (frontPrecision == backPrecision)
{
continue;
}
ASSERT(frontPrecision >= GL_LOW_FLOAT && frontPrecision <= GL_HIGH_INT);
ASSERT(backPrecision >= GL_LOW_FLOAT && backPrecision <= GL_HIGH_INT);
if (frontPrecision > backPrecision)
{
// The output is higher precision than the input
ShaderInterfaceVariableInfo &info = mVariableInfoMap.getMutable(
mergedVarying.frontShaderStage, ShaderVariableType::Varying,
mergedVarying.frontShader->mappedName);
info.varyingIsOutput = true;
info.useRelaxedPrecision = true;
}
else
{
// The output is lower precision than the input, adjust the input
ASSERT(backPrecision > frontPrecision);
ShaderInterfaceVariableInfo &info = mVariableInfoMap.getMutable(
mergedVarying.backShaderStage, ShaderVariableType::Varying,
mergedVarying.backShader->mappedName);
info.varyingIsInput = true;
info.useRelaxedPrecision = true;
}
}
}
angle::Result ProgramExecutableVk::getOrAllocateDescriptorSet(
vk::Context *context,
UpdateDescriptorSetsBuilder *updateBuilder,
vk::ResourceUseList *resourceUseList,
const vk::DescriptorSetDescBuilder &descriptorSetDesc,
DescriptorSetIndex setIndex)
{
vk::DescriptorCacheResult cacheResult;
ANGLE_TRY(mDescriptorPools[setIndex].get().getOrAllocateDescriptorSet(
context, resourceUseList, descriptorSetDesc.getDesc(),
mDescriptorSetLayouts[setIndex].get(), &mDescriptorPoolBindings[setIndex],
&mDescriptorSets[setIndex], &cacheResult));
ASSERT(mDescriptorSets[setIndex] != VK_NULL_HANDLE);
if (cacheResult == vk::DescriptorCacheResult::NewAllocation)
{
descriptorSetDesc.updateDescriptorSet(updateBuilder, mDescriptorSets[setIndex]);
}
else
{
mDescriptorPoolBindings[setIndex].get().retain(resourceUseList);
}
return angle::Result::Continue;
}
angle::Result ProgramExecutableVk::updateShaderResourcesDescriptorSet(
ContextVk *contextVk,
UpdateDescriptorSetsBuilder *updateBuilder,
vk::ResourceUseList *resourceUseList,
const vk::DescriptorSetDescBuilder &shaderResourcesDesc)
{
if (!mDescriptorPools[DescriptorSetIndex::ShaderResource].get().valid())
{
return angle::Result::Continue;
}
ANGLE_TRY(getOrAllocateDescriptorSet(contextVk, updateBuilder, resourceUseList,
shaderResourcesDesc, DescriptorSetIndex::ShaderResource));
size_t numOffsets = shaderResourcesDesc.getDynamicOffsetsSize();
mDynamicShaderResourceDescriptorOffsets.resize(numOffsets);
if (numOffsets > 0)
{
memcpy(mDynamicShaderResourceDescriptorOffsets.data(),
shaderResourcesDesc.getDynamicOffsets(), numOffsets * sizeof(uint32_t));
}
return angle::Result::Continue;
}
angle::Result ProgramExecutableVk::updateUniformsAndXfbDescriptorSet(
vk::Context *context,
UpdateDescriptorSetsBuilder *updateBuilder,
vk::ResourceUseList *resourceUseList,
vk::BufferHelper *defaultUniformBuffer,
const vk::DescriptorSetDescBuilder &uniformsAndXfbDesc)
{
mCurrentDefaultUniformBufferSerial =
defaultUniformBuffer ? defaultUniformBuffer->getBufferSerial() : vk::kInvalidBufferSerial;
return getOrAllocateDescriptorSet(context, updateBuilder, resourceUseList, uniformsAndXfbDesc,
DescriptorSetIndex::UniformsAndXfb);
}
angle::Result ProgramExecutableVk::updateTexturesDescriptorSet(
vk::Context *context,
const gl::ProgramExecutable &executable,
const gl::ActiveTextureArray<TextureVk *> &textures,
const gl::SamplerBindingVector &samplers,
bool emulateSeamfulCubeMapSampling,
PipelineType pipelineType,
UpdateDescriptorSetsBuilder *updateBuilder,
vk::ResourceUseList *resourceUseList,
const vk::DescriptorSetDesc &texturesDesc)
{
vk::DescriptorCacheResult cacheResult;
ANGLE_TRY(mDescriptorPools[DescriptorSetIndex::Texture].get().getOrAllocateDescriptorSet(
context, resourceUseList, texturesDesc,
mDescriptorSetLayouts[DescriptorSetIndex::Texture].get(),
&mDescriptorPoolBindings[DescriptorSetIndex::Texture],
&mDescriptorSets[DescriptorSetIndex::Texture], &cacheResult));
ASSERT(mDescriptorSets[DescriptorSetIndex::Texture] != VK_NULL_HANDLE);
if (cacheResult == vk::DescriptorCacheResult::NewAllocation)
{
vk::DescriptorSetDescBuilder fullDesc;
ANGLE_TRY(fullDesc.updateFullActiveTextures(context, mVariableInfoMap, executable, textures,
samplers, emulateSeamfulCubeMapSampling,
pipelineType));
fullDesc.updateDescriptorSet(updateBuilder, mDescriptorSets[DescriptorSetIndex::Texture]);
}
else
{
mDescriptorPoolBindings[DescriptorSetIndex::Texture].get().retain(resourceUseList);
}
return angle::Result::Continue;
}
template <typename CommandBufferT>
angle::Result ProgramExecutableVk::bindDescriptorSets(vk::Context *context,
vk::ResourceUseList *resourceUseList,
CommandBufferT *commandBuffer,
PipelineType pipelineType)
{
// Can probably use better dirty bits here.
// Find the maximum non-null descriptor set. This is used in conjunction with a driver
// workaround to bind empty descriptor sets only for gaps in between 0 and max and avoid
// binding unnecessary empty descriptor sets for the sets beyond max.
DescriptorSetIndex lastNonNullDescriptorSetIndex = DescriptorSetIndex::InvalidEnum;
for (DescriptorSetIndex descriptorSetIndex : angle::AllEnums<DescriptorSetIndex>())
{
if (descriptorSetIndex == DescriptorSetIndex::Internal)
{
continue;
}
if (mDescriptorSets[descriptorSetIndex] != VK_NULL_HANDLE)
{
lastNonNullDescriptorSetIndex = descriptorSetIndex;
}
}
const VkPipelineBindPoint pipelineBindPoint = pipelineType == PipelineType::Compute
? VK_PIPELINE_BIND_POINT_COMPUTE
: VK_PIPELINE_BIND_POINT_GRAPHICS;
for (DescriptorSetIndex descriptorSetIndex : angle::AllEnums<DescriptorSetIndex>())
{
if (descriptorSetIndex == DescriptorSetIndex::Internal ||
ToUnderlying(descriptorSetIndex) > ToUnderlying(lastNonNullDescriptorSetIndex))
{
continue;
}
VkDescriptorSet descSet = mDescriptorSets[descriptorSetIndex];
if (descSet == VK_NULL_HANDLE)
{
if (!context->getRenderer()->getFeatures().bindEmptyForUnusedDescriptorSets.enabled)
{
continue;
}
// Workaround a driver bug where missing (though unused) descriptor sets indices cause
// later sets to misbehave.
if (mEmptyDescriptorSets[descriptorSetIndex] == VK_NULL_HANDLE)
{
ANGLE_TRY(mDescriptorPools[descriptorSetIndex].get().allocateDescriptorSets(
context, resourceUseList, mDescriptorSetLayouts[descriptorSetIndex].get(), 1,
&mDescriptorPoolBindings[descriptorSetIndex],
&mEmptyDescriptorSets[descriptorSetIndex]));
}
descSet = mEmptyDescriptorSets[descriptorSetIndex];
}
// Default uniforms are encompassed in a block per shader stage, and they are assigned
// through dynamic uniform buffers (requiring dynamic offsets). No other descriptor
// requires a dynamic offset.
if (descriptorSetIndex == DescriptorSetIndex::UniformsAndXfb)
{
commandBuffer->bindDescriptorSets(
getPipelineLayout(), pipelineBindPoint, descriptorSetIndex, 1, &descSet,
static_cast<uint32_t>(mDynamicUniformDescriptorOffsets.size()),
mDynamicUniformDescriptorOffsets.data());
}
else if (descriptorSetIndex == DescriptorSetIndex::ShaderResource)
{
commandBuffer->bindDescriptorSets(
getPipelineLayout(), pipelineBindPoint, descriptorSetIndex, 1, &descSet,
static_cast<uint32_t>(mDynamicShaderResourceDescriptorOffsets.size()),
mDynamicShaderResourceDescriptorOffsets.data());
}
else
{
commandBuffer->bindDescriptorSets(getPipelineLayout(), pipelineBindPoint,
descriptorSetIndex, 1, &descSet, 0, nullptr);
}
}
return angle::Result::Continue;
}
template angle::Result ProgramExecutableVk::bindDescriptorSets<vk::priv::SecondaryCommandBuffer>(
vk::Context *context,
vk::ResourceUseList *resourceUseList,
vk::priv::SecondaryCommandBuffer *commandBuffer,
PipelineType pipelineType);
template angle::Result ProgramExecutableVk::bindDescriptorSets<vk::VulkanSecondaryCommandBuffer>(
vk::Context *context,
vk::ResourceUseList *resourceUseList,
vk::VulkanSecondaryCommandBuffer *commandBuffer,
PipelineType pipelineType);
void ProgramExecutableVk::setAllDefaultUniformsDirty(const gl::ProgramExecutable &executable)
{
mDefaultUniformBlocksDirty.reset();
for (gl::ShaderType shaderType : executable.getLinkedShaderStages())
{
if (!mDefaultUniformBlocks[shaderType]->uniformData.empty())
{
mDefaultUniformBlocksDirty.set(shaderType);
}
}
}
angle::Result ProgramExecutableVk::updateUniforms(vk::Context *context,
UpdateDescriptorSetsBuilder *updateBuilder,
vk::ResourceUseList *resourceUseList,
vk::BufferHelper *emptyBuffer,
const gl::ProgramExecutable &glExecutable,
vk::DynamicBuffer *defaultUniformStorage,
bool isTransformFeedbackActiveUnpaused,
TransformFeedbackVk *transformFeedbackVk)
{
ASSERT(hasDirtyUniforms());
vk::BufferHelper *defaultUniformBuffer;
bool anyNewBufferAllocated = false;
gl::ShaderMap<VkDeviceSize> offsets = {}; // offset to the beginning of bufferData
uint32_t offsetIndex = 0;
size_t requiredSpace;
// We usually only update uniform data for shader stages that are actually dirty. But when the
// buffer for uniform data have switched, because all shader stages are using the same buffer,
// we then must update uniform data for all shader stages to keep all shader stages' uniform
// data in the same buffer.
requiredSpace = calcUniformUpdateRequiredSpace(context, glExecutable, &offsets);
ASSERT(requiredSpace > 0);
// Allocate space from dynamicBuffer. Always try to allocate from the current buffer first.
// If that failed, we deal with fall out and try again.
if (!defaultUniformStorage->allocateFromCurrentBuffer(requiredSpace, &defaultUniformBuffer))
{
setAllDefaultUniformsDirty(glExecutable);
requiredSpace = calcUniformUpdateRequiredSpace(context, glExecutable, &offsets);
ANGLE_TRY(defaultUniformStorage->allocate(context, requiredSpace, &defaultUniformBuffer,
&anyNewBufferAllocated));
}
ASSERT(defaultUniformBuffer);
uint8_t *bufferData = defaultUniformBuffer->getMappedMemory();
VkDeviceSize bufferOffset = defaultUniformBuffer->getOffset();
for (gl::ShaderType shaderType : glExecutable.getLinkedShaderStages())
{
if (mDefaultUniformBlocksDirty[shaderType])
{
const angle::MemoryBuffer &uniformData = mDefaultUniformBlocks[shaderType]->uniformData;
memcpy(&bufferData[offsets[shaderType]], uniformData.data(), uniformData.size());
mDynamicUniformDescriptorOffsets[offsetIndex] =
static_cast<uint32_t>(bufferOffset + offsets[shaderType]);
mDefaultUniformBlocksDirty.reset(shaderType);
}
++offsetIndex;
}
ANGLE_TRY(defaultUniformBuffer->flush(context->getRenderer()));
// Because the uniform buffers are per context, we can't rely on dynamicBuffer's allocate
// function to tell us if you have got a new buffer or not. Other program's use of the buffer
// might already pushed dynamicBuffer to a new buffer. We record which buffer (represented by
// the unique BufferSerial number) we were using with the current descriptor set and then we
// use that recorded BufferSerial compare to the current uniform buffer to quickly detect if
// there is a buffer switch or not. We need to retrieve from the descriptor set cache or
// allocate a new descriptor set whenever there is uniform buffer switch.
if (mCurrentDefaultUniformBufferSerial != defaultUniformBuffer->getBufferSerial())
{
// We need to reinitialize the descriptor sets if we newly allocated buffers since we can't
// modify the descriptor sets once initialized.
vk::DescriptorSetDescBuilder uniformsAndXfbDesc;
uniformsAndXfbDesc.updateUniformsAndXfb(
context, glExecutable, *this, defaultUniformBuffer, *emptyBuffer,
isTransformFeedbackActiveUnpaused,
glExecutable.hasTransformFeedbackOutput() ? transformFeedbackVk : nullptr);
ANGLE_TRY(updateUniformsAndXfbDescriptorSet(context, updateBuilder, resourceUseList,
defaultUniformBuffer, uniformsAndXfbDesc));
}
return angle::Result::Continue;
}
size_t ProgramExecutableVk::calcUniformUpdateRequiredSpace(
vk::Context *context,
const gl::ProgramExecutable &glExecutable,
gl::ShaderMap<VkDeviceSize> *uniformOffsets) const
{
size_t requiredSpace = 0;
for (gl::ShaderType shaderType : glExecutable.getLinkedShaderStages())
{
if (mDefaultUniformBlocksDirty[shaderType])
{
(*uniformOffsets)[shaderType] = requiredSpace;
requiredSpace += getDefaultUniformAlignedSize(context, shaderType);
}
}
return requiredSpace;
}
void ProgramExecutableVk::onProgramBind(const gl::ProgramExecutable &glExecutable)
{
// Because all programs share default uniform buffers, when we switch programs, we have to
// re-update all uniform data. We could do more tracking to avoid update if the context's
// current uniform buffer is still the same buffer we last time used and buffer has not been
// recycled. But statistics gathered on gfxbench shows that app always update uniform data on
// program bind anyway, so not really worth it to add more tracking logic here.
setAllDefaultUniformsDirty(glExecutable);
}
angle::Result ProgramExecutableVk::resizeUniformBlockMemory(
ContextVk *contextVk,
const gl::ProgramExecutable &glExecutable,
const gl::ShaderMap<size_t> &requiredBufferSize)
{
for (gl::ShaderType shaderType : glExecutable.getLinkedShaderStages())
{
if (requiredBufferSize[shaderType] > 0)
{
if (!mDefaultUniformBlocks[shaderType]->uniformData.resize(
requiredBufferSize[shaderType]))
{
ANGLE_VK_CHECK(contextVk, false, VK_ERROR_OUT_OF_HOST_MEMORY);
}
// Initialize uniform buffer memory to zero by default.
mDefaultUniformBlocks[shaderType]->uniformData.fill(0);
mDefaultUniformBlocksDirty.set(shaderType);
}
}
return angle::Result::Continue;
}
} // namespace rx