Hash :
83a670ab
Author :
Date :
2021-10-29T09:12:26
Vulkan: Implement BufferPool using VMA's virtual allocator VMA's allocation calls used to be sub-allocating a pool of memory. What we really want is sub-allocate a VkBuffer object. VMA recently added support to expose the underlying range allocation algorithm via APIs, which user can use it to sub-allocate any object. This CL uses that new virtual allocation API to sub-allocate from a pool of VkBuffers. In this CL we only switched BufferVk::mBuffer to sub-allocate from the BufferPool object. Bug: b/205337962 Change-Id: Ia6ef00c22e58687e375b31bc12ac515fd89f3488 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/3266146 Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Tim Van Patten <timvp@google.com> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org> Commit-Queue: Charlie Lao <cclao@google.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
//
// Copyright 2020 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// vma_allocator_wrapper.cpp:
// Hides VMA functions so we can use separate warning sets.
//
#include "vk_mem_alloc_wrapper.h"
#include <vk_mem_alloc.h>
namespace vma
{
#define VALIDATE_BLOCK_CREATE_FLAG_BITS(x) \
static_assert(static_cast<uint32_t>(x) == \
static_cast<uint32_t>(VMA_VIRTUAL_BLOCK_CREATE_##x##_ALGORITHM_BIT), \
"VMA enum mismatch")
VALIDATE_BLOCK_CREATE_FLAG_BITS(LINEAR);
VALIDATE_BLOCK_CREATE_FLAG_BITS(BUDDY);
VkResult InitAllocator(VkPhysicalDevice physicalDevice,
VkDevice device,
VkInstance instance,
uint32_t apiVersion,
VkDeviceSize preferredLargeHeapBlockSize,
VmaAllocator *pAllocator)
{
VmaVulkanFunctions funcs = {};
funcs.vkGetPhysicalDeviceProperties = vkGetPhysicalDeviceProperties;
funcs.vkGetPhysicalDeviceMemoryProperties = vkGetPhysicalDeviceMemoryProperties;
funcs.vkAllocateMemory = vkAllocateMemory;
funcs.vkFreeMemory = vkFreeMemory;
funcs.vkMapMemory = vkMapMemory;
funcs.vkUnmapMemory = vkUnmapMemory;
funcs.vkFlushMappedMemoryRanges = vkFlushMappedMemoryRanges;
funcs.vkInvalidateMappedMemoryRanges = vkInvalidateMappedMemoryRanges;
funcs.vkBindBufferMemory = vkBindBufferMemory;
funcs.vkBindImageMemory = vkBindImageMemory;
funcs.vkGetBufferMemoryRequirements = vkGetBufferMemoryRequirements;
funcs.vkGetImageMemoryRequirements = vkGetImageMemoryRequirements;
funcs.vkCreateBuffer = vkCreateBuffer;
funcs.vkDestroyBuffer = vkDestroyBuffer;
funcs.vkCreateImage = vkCreateImage;
funcs.vkDestroyImage = vkDestroyImage;
funcs.vkCmdCopyBuffer = vkCmdCopyBuffer;
{
#if !defined(ANGLE_SHARED_LIBVULKAN)
// When the vulkan-loader is statically linked, we need to use the extension
// functions defined in ANGLE's rx namespace. When it's dynamically linked
// with volk, this will default to the function definitions with no namespace
using rx::vkBindBufferMemory2KHR;
using rx::vkBindImageMemory2KHR;
using rx::vkGetBufferMemoryRequirements2KHR;
using rx::vkGetImageMemoryRequirements2KHR;
using rx::vkGetPhysicalDeviceMemoryProperties2KHR;
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
funcs.vkGetBufferMemoryRequirements2KHR = vkGetBufferMemoryRequirements2KHR;
funcs.vkGetImageMemoryRequirements2KHR = vkGetImageMemoryRequirements2KHR;
funcs.vkBindBufferMemory2KHR = vkBindBufferMemory2KHR;
funcs.vkBindImageMemory2KHR = vkBindImageMemory2KHR;
funcs.vkGetPhysicalDeviceMemoryProperties2KHR = vkGetPhysicalDeviceMemoryProperties2KHR;
}
VmaAllocatorCreateInfo allocatorInfo = {};
allocatorInfo.physicalDevice = physicalDevice;
allocatorInfo.device = device;
allocatorInfo.instance = instance;
allocatorInfo.pVulkanFunctions = &funcs;
allocatorInfo.vulkanApiVersion = apiVersion;
allocatorInfo.preferredLargeHeapBlockSize = preferredLargeHeapBlockSize;
return vmaCreateAllocator(&allocatorInfo, pAllocator);
}
void DestroyAllocator(VmaAllocator allocator)
{
vmaDestroyAllocator(allocator);
}
VkResult CreatePool(VmaAllocator allocator,
uint32_t memoryTypeIndex,
bool buddyAlgorithm,
VkDeviceSize blockSize,
VmaPool *pPool)
{
VmaPoolCreateInfo poolCreateInfo = {};
poolCreateInfo.memoryTypeIndex = memoryTypeIndex;
poolCreateInfo.flags = VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT;
if (buddyAlgorithm)
{
poolCreateInfo.flags |= VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT;
}
poolCreateInfo.blockSize = blockSize;
poolCreateInfo.maxBlockCount = -1; // unlimited
return vmaCreatePool(allocator, &poolCreateInfo, pPool);
}
void DestroyPool(VmaAllocator allocator, VmaPool pool)
{
vmaDestroyPool(allocator, pool);
}
void FreeMemory(VmaAllocator allocator, VmaAllocation allocation)
{
vmaFreeMemory(allocator, allocation);
}
VkResult CreateBuffer(VmaAllocator allocator,
const VkBufferCreateInfo *pBufferCreateInfo,
VkMemoryPropertyFlags requiredFlags,
VkMemoryPropertyFlags preferredFlags,
bool persistentlyMapped,
uint32_t *pMemoryTypeIndexOut,
VkBuffer *pBuffer,
VmaAllocation *pAllocation)
{
VkResult result;
VmaAllocationCreateInfo allocationCreateInfo = {};
allocationCreateInfo.requiredFlags = requiredFlags;
allocationCreateInfo.preferredFlags = preferredFlags;
allocationCreateInfo.flags = (persistentlyMapped) ? VMA_ALLOCATION_CREATE_MAPPED_BIT : 0;
VmaAllocationInfo allocationInfo = {};
result = vmaCreateBuffer(allocator, pBufferCreateInfo, &allocationCreateInfo, pBuffer,
pAllocation, &allocationInfo);
*pMemoryTypeIndexOut = allocationInfo.memoryType;
return result;
}
VkResult FindMemoryTypeIndexForBufferInfo(VmaAllocator allocator,
const VkBufferCreateInfo *pBufferCreateInfo,
VkMemoryPropertyFlags requiredFlags,
VkMemoryPropertyFlags preferredFlags,
bool persistentlyMappedBuffers,
uint32_t *pMemoryTypeIndexOut)
{
VmaAllocationCreateInfo allocationCreateInfo = {};
allocationCreateInfo.requiredFlags = requiredFlags;
allocationCreateInfo.preferredFlags = preferredFlags;
allocationCreateInfo.flags = (persistentlyMappedBuffers) ? VMA_ALLOCATION_CREATE_MAPPED_BIT : 0;
return vmaFindMemoryTypeIndexForBufferInfo(allocator, pBufferCreateInfo, &allocationCreateInfo,
pMemoryTypeIndexOut);
}
void GetMemoryTypeProperties(VmaAllocator allocator,
uint32_t memoryTypeIndex,
VkMemoryPropertyFlags *pFlags)
{
vmaGetMemoryTypeProperties(allocator, memoryTypeIndex, pFlags);
}
VkResult MapMemory(VmaAllocator allocator, VmaAllocation allocation, void **ppData)
{
return vmaMapMemory(allocator, allocation, ppData);
}
void UnmapMemory(VmaAllocator allocator, VmaAllocation allocation)
{
return vmaUnmapMemory(allocator, allocation);
}
void FlushAllocation(VmaAllocator allocator,
VmaAllocation allocation,
VkDeviceSize offset,
VkDeviceSize size)
{
vmaFlushAllocation(allocator, allocation, offset, size);
}
void InvalidateAllocation(VmaAllocator allocator,
VmaAllocation allocation,
VkDeviceSize offset,
VkDeviceSize size)
{
vmaInvalidateAllocation(allocator, allocation, offset, size);
}
void BuildStatsString(VmaAllocator allocator, char **statsString, VkBool32 detailedMap)
{
vmaBuildStatsString(allocator, statsString, detailedMap);
}
void FreeStatsString(VmaAllocator allocator, char *statsString)
{
vmaFreeStatsString(allocator, statsString);
}
// VmaVirtualBlock implementation
VkResult CreateVirtualBlock(VkDeviceSize size,
VirtualBlockCreateFlags flags,
VmaVirtualBlock *pVirtualBlock)
{
VmaVirtualBlockCreateInfo virtualBlockCreateInfo = {};
virtualBlockCreateInfo.size = size;
virtualBlockCreateInfo.flags = (VmaVirtualBlockCreateFlagBits)flags;
return vmaCreateVirtualBlock(&virtualBlockCreateInfo, pVirtualBlock);
}
void DestroyVirtualBlock(VmaVirtualBlock virtualBlock)
{
vmaDestroyVirtualBlock(virtualBlock);
}
VkResult VirtualAllocate(VmaVirtualBlock virtualBlock,
VkDeviceSize size,
VkDeviceSize alignment,
VkDeviceSize *pOffset)
{
VmaVirtualAllocationCreateInfo createInfo = {};
createInfo.size = size;
createInfo.alignment = alignment;
createInfo.flags = 0;
return vmaVirtualAllocate(virtualBlock, &createInfo, pOffset);
}
void VirtualFree(VmaVirtualBlock virtualBlock, VkDeviceSize offset)
{
vmaVirtualFree(virtualBlock, offset);
}
VkBool32 IsVirtualBlockEmpty(VmaVirtualBlock virtualBlock)
{
return vmaIsVirtualBlockEmpty(virtualBlock);
}
void GetVirtualAllocationInfo(VmaVirtualBlock virtualBlock,
VkDeviceSize offset,
VkDeviceSize *sizeOut,
void **pUserDataOut)
{
VmaVirtualAllocationInfo virtualAllocInfo = {};
vmaGetVirtualAllocationInfo(virtualBlock, offset, &virtualAllocInfo);
*sizeOut = virtualAllocInfo.size;
*pUserDataOut = virtualAllocInfo.pUserData;
}
void ClearVirtualBlock(VmaVirtualBlock virtualBlock)
{
vmaClearVirtualBlock(virtualBlock);
}
void SetVirtualAllocationUserData(VmaVirtualBlock virtualBlock,
VkDeviceSize offset,
void *pUserData)
{
vmaSetVirtualAllocationUserData(virtualBlock, offset, pUserData);
}
void CalculateVirtualBlockStats(VmaVirtualBlock virtualBlock, StatInfo *pStatInfo)
{
vmaCalculateVirtualBlockStats(virtualBlock, reinterpret_cast<VmaStatInfo *>(pStatInfo));
}
void BuildVirtualBlockStatsString(VmaVirtualBlock virtualBlock,
char **ppStatsString,
VkBool32 detailedMap)
{
vmaBuildVirtualBlockStatsString(virtualBlock, ppStatsString, detailedMap);
}
void FreeVirtualBlockStatsString(VmaVirtualBlock virtualBlock, char *pStatsString)
{
vmaFreeVirtualBlockStatsString(virtualBlock, pStatsString);
}
} // namespace vma