Hash :
e794cd86
Author :
Date :
2017-01-13T17:29:51
Vulkan: Implement new GLSL translator back-end. The Vulkan GLSL translator back-end will handle validating and translating our WebGL/ESSL shaders into Vulkan-specific GLSL. glslang (the Vulkan one) accepts both GLSL and GLSL ES shaders as inputs, and both the desktop and ESSL back-ends give incompleteness warnings when used. For now, use the desktop GL 450 as a target for Vulkan GLSL. The Vulkan-specific changes are currently only to add locations to every vertex input and fragment output. BUG=angleproject:1575 Change-Id: I7c3f32f522e9d18e5f8618eb7927336bf4fbdcf2 Reviewed-on: https://chromium-review.googlesource.com/412266 Reviewed-by: Geoff Lang <geofflang@chromium.org> Commit-Queue: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
//
// Copyright (c) 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Compiler.cpp: implements the gl::Compiler class.
#include "libANGLE/Compiler.h"
#include "common/debug.h"
#include "libANGLE/ContextState.h"
#include "libANGLE/renderer/CompilerImpl.h"
#include "libANGLE/renderer/GLImplFactory.h"
namespace gl
{
namespace
{
// Global count of active shader compiler handles. Needed to know when to call sh::Initialize and
// sh::Finalize.
size_t activeCompilerHandles = 0;
ShShaderSpec SelectShaderSpec(GLint majorVersion, GLint minorVersion, bool isWebGL)
{
if (majorVersion >= 3)
{
if (minorVersion == 1)
{
return isWebGL ? SH_WEBGL3_SPEC : SH_GLES3_1_SPEC;
}
else
{
return isWebGL ? SH_WEBGL2_SPEC : SH_GLES3_SPEC;
}
}
return isWebGL ? SH_WEBGL_SPEC : SH_GLES2_SPEC;
}
} // anonymous namespace
Compiler::Compiler(rx::GLImplFactory *implFactory, const ContextState &state)
: mImplementation(implFactory->createCompiler()),
mSpec(SelectShaderSpec(state.getClientMajorVersion(),
state.getClientMinorVersion(),
state.getExtensions().webglCompatibility)),
mOutputType(mImplementation->getTranslatorOutputType()),
mResources(),
mFragmentCompiler(nullptr),
mVertexCompiler(nullptr),
mComputeCompiler(nullptr)
{
ASSERT(state.getClientMajorVersion() == 2 || state.getClientMajorVersion() == 3);
const gl::Caps &caps = state.getCaps();
const gl::Extensions &extensions = state.getExtensions();
sh::InitBuiltInResources(&mResources);
mResources.MaxVertexAttribs = caps.maxVertexAttributes;
mResources.MaxVertexUniformVectors = caps.maxVertexUniformVectors;
mResources.MaxVaryingVectors = caps.maxVaryingVectors;
mResources.MaxVertexTextureImageUnits = caps.maxVertexTextureImageUnits;
mResources.MaxCombinedTextureImageUnits = caps.maxCombinedTextureImageUnits;
mResources.MaxTextureImageUnits = caps.maxTextureImageUnits;
mResources.MaxFragmentUniformVectors = caps.maxFragmentUniformVectors;
mResources.MaxDrawBuffers = caps.maxDrawBuffers;
mResources.OES_standard_derivatives = extensions.standardDerivatives;
mResources.EXT_draw_buffers = extensions.drawBuffers;
mResources.EXT_shader_texture_lod = extensions.shaderTextureLOD;
mResources.OES_EGL_image_external = extensions.eglImageExternal;
mResources.OES_EGL_image_external_essl3 = extensions.eglImageExternalEssl3;
mResources.NV_EGL_stream_consumer_external = extensions.eglStreamConsumerExternal;
// TODO: use shader precision caps to determine if high precision is supported?
mResources.FragmentPrecisionHigh = 1;
mResources.EXT_frag_depth = extensions.fragDepth;
// GLSL ES 3.0 constants
mResources.MaxVertexOutputVectors = caps.maxVertexOutputComponents / 4;
mResources.MaxFragmentInputVectors = caps.maxFragmentInputComponents / 4;
mResources.MinProgramTexelOffset = caps.minProgramTexelOffset;
mResources.MaxProgramTexelOffset = caps.maxProgramTexelOffset;
// GLSL ES 3.1 compute shader constants
mResources.MaxImageUnits = caps.maxImageUnits;
mResources.MaxVertexImageUniforms = caps.maxVertexImageUniforms;
mResources.MaxFragmentImageUniforms = caps.maxFragmentImageUniforms;
mResources.MaxComputeImageUniforms = caps.maxComputeImageUniforms;
mResources.MaxCombinedImageUniforms = caps.maxCombinedImageUniforms;
mResources.MaxCombinedShaderOutputResources = caps.maxCombinedShaderOutputResources;
for (size_t index = 0u; index < 3u; ++index)
{
mResources.MaxComputeWorkGroupCount[index] = caps.maxComputeWorkGroupCount[index];
mResources.MaxComputeWorkGroupSize[index] = caps.maxComputeWorkGroupSize[index];
}
mResources.MaxComputeUniformComponents = caps.maxComputeUniformComponents;
mResources.MaxComputeTextureImageUnits = caps.maxComputeTextureImageUnits;
mResources.MaxComputeAtomicCounters = caps.maxComputeAtomicCounters;
mResources.MaxComputeAtomicCounterBuffers = caps.maxComputeAtomicCounterBuffers;
mResources.MaxVertexAtomicCounters = caps.maxVertexAtomicCounters;
mResources.MaxFragmentAtomicCounters = caps.maxFragmentAtomicCounters;
mResources.MaxCombinedAtomicCounters = caps.maxCombinedAtomicCounters;
mResources.MaxAtomicCounterBindings = caps.maxAtomicCounterBufferBindings;
mResources.MaxVertexAtomicCounterBuffers = caps.maxVertexAtomicCounterBuffers;
mResources.MaxFragmentAtomicCounterBuffers = caps.maxFragmentAtomicCounterBuffers;
mResources.MaxCombinedAtomicCounterBuffers = caps.maxCombinedAtomicCounterBuffers;
mResources.MaxAtomicCounterBufferSize = caps.maxAtomicCounterBufferSize;
}
Compiler::~Compiler()
{
release();
SafeDelete(mImplementation);
}
Error Compiler::release()
{
if (mFragmentCompiler)
{
sh::Destruct(mFragmentCompiler);
mFragmentCompiler = nullptr;
ASSERT(activeCompilerHandles > 0);
activeCompilerHandles--;
}
if (mVertexCompiler)
{
sh::Destruct(mVertexCompiler);
mVertexCompiler = nullptr;
ASSERT(activeCompilerHandles > 0);
activeCompilerHandles--;
}
if (mComputeCompiler)
{
sh::Destruct(mComputeCompiler);
mComputeCompiler = nullptr;
ASSERT(activeCompilerHandles > 0);
activeCompilerHandles--;
}
if (activeCompilerHandles == 0)
{
sh::Finalize();
}
mImplementation->release();
return gl::NoError();
}
ShHandle Compiler::getCompilerHandle(GLenum type)
{
ShHandle *compiler = nullptr;
switch (type)
{
case GL_VERTEX_SHADER:
compiler = &mVertexCompiler;
break;
case GL_FRAGMENT_SHADER:
compiler = &mFragmentCompiler;
break;
case GL_COMPUTE_SHADER:
compiler = &mComputeCompiler;
break;
default:
UNREACHABLE();
return nullptr;
}
if (!(*compiler))
{
if (activeCompilerHandles == 0)
{
sh::Initialize();
}
*compiler = sh::ConstructCompiler(type, mSpec, mOutputType, &mResources);
ASSERT(*compiler);
activeCompilerHandles++;
}
return *compiler;
}
} // namespace gl