Hash :
8fd34bd6
Author :
Date :
2011-02-18T02:52:14
Move geometry files. TRAC #15649 Signed-off-by: Daniel Koch Author: Nicolas Capens git-svn-id: https://angleproject.googlecode.com/svn/trunk@564 736b8ea6-26fd-11df-bfd4-992fa37f6226
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// VertexDataManager.h: Defines the VertexDataManager, a class that
// runs the Buffer translation process.
#include "libGLESv2/VertexDataManager.h"
#include "common/debug.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/main.h"
#include "libGLESv2/vertexconversion.h"
#include "libGLESv2/IndexDataManager.h"
namespace
{
enum { INITIAL_STREAM_BUFFER_SIZE = 1024*1024 };
}
namespace gl
{
VertexDataManager::VertexDataManager(Context *context, IDirect3DDevice9 *device) : mContext(context), mDevice(device)
{
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mDirtyCurrentValue[i] = true;
mCurrentValueBuffer[i] = NULL;
}
const D3DCAPS9 &caps = context->getDeviceCaps();
checkVertexCaps(caps.DeclTypes);
mStreamingBuffer = new StreamingVertexBuffer(mDevice, INITIAL_STREAM_BUFFER_SIZE);
}
VertexDataManager::~VertexDataManager()
{
delete mStreamingBuffer;
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
delete mCurrentValueBuffer[i];
}
}
UINT VertexDataManager::writeAttributeData(ArrayVertexBuffer *vertexBuffer, GLint start, GLsizei count, const VertexAttribute &attribute)
{
Buffer *buffer = attribute.mBoundBuffer.get();
int inputStride = attribute.stride();
int elementSize = attribute.typeSize();
const FormatConverter &converter = formatConverter(attribute);
UINT streamOffset = 0;
void *output = NULL;
if (vertexBuffer)
{
output = vertexBuffer->map(attribute, spaceRequired(attribute, count), &streamOffset);
}
if (output == NULL)
{
ERR("Failed to map vertex buffer.");
return -1;
}
const char *input = NULL;
if (buffer)
{
int offset = attribute.mOffset;
input = static_cast<const char*>(buffer->data()) + offset;
}
else
{
input = static_cast<const char*>(attribute.mPointer);
}
input += inputStride * start;
if (converter.identity && inputStride == elementSize)
{
memcpy(output, input, count * inputStride);
}
else
{
converter.convertArray(input, inputStride, count, output);
}
vertexBuffer->unmap();
return streamOffset;
}
GLenum VertexDataManager::prepareVertexData(GLint start, GLsizei count, TranslatedAttribute *translated)
{
GLenum error = GL_NO_ERROR;
const VertexAttributeArray &attribs = mContext->getVertexAttributes();
Program *program = mContext->getCurrentProgram();
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
translated[attributeIndex].active = (program->getSemanticIndex(attributeIndex) != -1);
}
// Determine the required storage size per used buffer
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
Buffer *buffer = attribs[i].mBoundBuffer.get();
if (translated[i].active && attribs[i].mArrayEnabled && (buffer || attribs[i].mPointer))
{
StaticVertexBuffer *staticBuffer = buffer ? buffer->getVertexBuffer() : NULL;
if (staticBuffer && staticBuffer->size() == 0)
{
int totalCount = buffer->size() / attribs[i].stride();
staticBuffer->addRequiredSpace(spaceRequired(attribs[i], totalCount));
}
else if (!staticBuffer || staticBuffer->lookupAttribute(attribs[i]) == -1)
{
if (mStreamingBuffer)
{
mStreamingBuffer->addRequiredSpace(spaceRequired(attribs[i], count));
}
}
}
}
// Invalidate static buffers if the attribute formats no longer match
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
Buffer *buffer = attribs[i].mBoundBuffer.get();
if (translated[i].active && attribs[i].mArrayEnabled && buffer)
{
StaticVertexBuffer *staticBuffer = buffer->getVertexBuffer();
if (staticBuffer && staticBuffer->size() != 0)
{
bool matchingAttributes = true;
for (int j = 0; j < MAX_VERTEX_ATTRIBS; j++)
{
if (translated[j].active && attribs[j].mArrayEnabled && attribs[j].mBoundBuffer.get() == buffer)
{
if (staticBuffer->lookupAttribute(attribs[j]) == -1)
{
matchingAttributes = false;
break;
}
}
}
if (!matchingAttributes && mStreamingBuffer)
{
mStreamingBuffer->addRequiredSpaceFor(staticBuffer);
buffer->invalidateStaticData();
}
}
}
}
// Reserve the required space per used buffer
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
Buffer *buffer = attribs[i].mBoundBuffer.get();
if (translated[i].active && attribs[i].mArrayEnabled && (buffer || attribs[i].mPointer))
{
ArrayVertexBuffer *staticBuffer = buffer ? buffer->getVertexBuffer() : NULL;
ArrayVertexBuffer *vertexBuffer = staticBuffer ? staticBuffer : mStreamingBuffer;
if (vertexBuffer)
{
vertexBuffer->reserveRequiredSpace();
}
}
}
// Perform the vertex data translations
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
if (translated[i].active)
{
Buffer *buffer = attribs[i].mBoundBuffer.get();
if (attribs[i].mArrayEnabled)
{
if (!buffer && attribs[i].mPointer == NULL)
{
// This is an application error that would normally result in a crash, but we catch it and return an error
ERR("An enabled vertex array has no buffer and no pointer.");
return GL_INVALID_OPERATION;
}
const FormatConverter &converter = formatConverter(attribs[i]);
StaticVertexBuffer *staticBuffer = buffer ? buffer->getVertexBuffer() : NULL;
ArrayVertexBuffer *vertexBuffer = staticBuffer ? staticBuffer : static_cast<ArrayVertexBuffer*>(mStreamingBuffer);
UINT streamOffset = -1;
if (staticBuffer)
{
streamOffset = staticBuffer->lookupAttribute(attribs[i]);
if (streamOffset == -1)
{
// Convert the entire buffer
int totalCount = buffer->size() / attribs[i].stride();
int startIndex = attribs[i].mOffset / attribs[i].stride();
streamOffset = writeAttributeData(staticBuffer, -startIndex, totalCount, attribs[i]);
}
if (streamOffset != -1)
{
streamOffset += (start + attribs[i].mOffset / attribs[i].stride()) * converter.outputElementSize;
}
}
else
{
streamOffset = writeAttributeData(mStreamingBuffer, start, count, attribs[i]);
}
if (streamOffset == -1)
{
return GL_OUT_OF_MEMORY;
}
translated[i].vertexBuffer = vertexBuffer->getBuffer();
translated[i].type = converter.d3dDeclType;
translated[i].stride = converter.outputElementSize;
translated[i].offset = streamOffset;
}
else
{
if (mDirtyCurrentValue[i])
{
delete mCurrentValueBuffer[i];
mCurrentValueBuffer[i] = new ConstantVertexBuffer(mDevice, attribs[i].mCurrentValue[0], attribs[i].mCurrentValue[1], attribs[i].mCurrentValue[2], attribs[i].mCurrentValue[3]);
mDirtyCurrentValue[i] = false;
}
translated[i].vertexBuffer = mCurrentValueBuffer[i]->getBuffer();
translated[i].type = D3DDECLTYPE_FLOAT4;
translated[i].stride = 0;
translated[i].offset = 0;
}
}
}
return GL_NO_ERROR;
}
std::size_t VertexDataManager::spaceRequired(const VertexAttribute &attrib, std::size_t count) const
{
return formatConverter(attrib).outputElementSize * count;
}
// Mapping from OpenGL-ES vertex attrib type to D3D decl type:
//
// BYTE SHORT (Cast)
// BYTE-norm FLOAT (Normalize) (can't be exactly represented as SHORT-norm)
// UNSIGNED_BYTE UBYTE4 (Identity) or SHORT (Cast)
// UNSIGNED_BYTE-norm UBYTE4N (Identity) or FLOAT (Normalize)
// SHORT SHORT (Identity)
// SHORT-norm SHORT-norm (Identity) or FLOAT (Normalize)
// UNSIGNED_SHORT FLOAT (Cast)
// UNSIGNED_SHORT-norm USHORT-norm (Identity) or FLOAT (Normalize)
// FIXED (not in WebGL) FLOAT (FixedToFloat)
// FLOAT FLOAT (Identity)
// GLToCType maps from GL type (as GLenum) to the C typedef.
template <GLenum GLType> struct GLToCType { };
template <> struct GLToCType<GL_BYTE> { typedef GLbyte type; };
template <> struct GLToCType<GL_UNSIGNED_BYTE> { typedef GLubyte type; };
template <> struct GLToCType<GL_SHORT> { typedef GLshort type; };
template <> struct GLToCType<GL_UNSIGNED_SHORT> { typedef GLushort type; };
template <> struct GLToCType<GL_FIXED> { typedef GLuint type; };
template <> struct GLToCType<GL_FLOAT> { typedef GLfloat type; };
// This differs from D3DDECLTYPE in that it is unsized. (Size expansion is applied last.)
enum D3DVertexType
{
D3DVT_FLOAT,
D3DVT_SHORT,
D3DVT_SHORT_NORM,
D3DVT_UBYTE,
D3DVT_UBYTE_NORM,
D3DVT_USHORT_NORM
};
// D3DToCType maps from D3D vertex type (as enum D3DVertexType) to the corresponding C type.
template <unsigned int D3DType> struct D3DToCType { };
template <> struct D3DToCType<D3DVT_FLOAT> { typedef float type; };
template <> struct D3DToCType<D3DVT_SHORT> { typedef short type; };
template <> struct D3DToCType<D3DVT_SHORT_NORM> { typedef short type; };
template <> struct D3DToCType<D3DVT_UBYTE> { typedef unsigned char type; };
template <> struct D3DToCType<D3DVT_UBYTE_NORM> { typedef unsigned char type; };
template <> struct D3DToCType<D3DVT_USHORT_NORM> { typedef unsigned short type; };
// Encode the type/size combinations that D3D permits. For each type/size it expands to a widener that will provide the appropriate final size.
template <unsigned int type, int size>
struct WidenRule
{
};
template <int size> struct WidenRule<D3DVT_FLOAT, size> : gl::NoWiden<size> { };
template <int size> struct WidenRule<D3DVT_SHORT, size> : gl::WidenToEven<size> { };
template <int size> struct WidenRule<D3DVT_SHORT_NORM, size> : gl::WidenToEven<size> { };
template <int size> struct WidenRule<D3DVT_UBYTE, size> : gl::WidenToFour<size> { };
template <int size> struct WidenRule<D3DVT_UBYTE_NORM, size> : gl::WidenToFour<size> { };
template <int size> struct WidenRule<D3DVT_USHORT_NORM, size> : gl::WidenToEven<size> { };
// VertexTypeFlags encodes the D3DCAPS9::DeclType flag and vertex declaration flag for each D3D vertex type & size combination.
template <unsigned int d3dtype, int size>
struct VertexTypeFlags
{
};
template <unsigned int capflag, unsigned int declflag>
struct VertexTypeFlagsHelper
{
enum { capflag = capflag };
enum { declflag = declflag };
};
template <> struct VertexTypeFlags<D3DVT_FLOAT, 1> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT1> { };
template <> struct VertexTypeFlags<D3DVT_FLOAT, 2> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT2> { };
template <> struct VertexTypeFlags<D3DVT_FLOAT, 3> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT3> { };
template <> struct VertexTypeFlags<D3DVT_FLOAT, 4> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT4> { };
template <> struct VertexTypeFlags<D3DVT_SHORT, 2> : VertexTypeFlagsHelper<0, D3DDECLTYPE_SHORT2> { };
template <> struct VertexTypeFlags<D3DVT_SHORT, 4> : VertexTypeFlagsHelper<0, D3DDECLTYPE_SHORT4> { };
template <> struct VertexTypeFlags<D3DVT_SHORT_NORM, 2> : VertexTypeFlagsHelper<D3DDTCAPS_SHORT2N, D3DDECLTYPE_SHORT2N> { };
template <> struct VertexTypeFlags<D3DVT_SHORT_NORM, 4> : VertexTypeFlagsHelper<D3DDTCAPS_SHORT4N, D3DDECLTYPE_SHORT4N> { };
template <> struct VertexTypeFlags<D3DVT_UBYTE, 4> : VertexTypeFlagsHelper<D3DDTCAPS_UBYTE4, D3DDECLTYPE_UBYTE4> { };
template <> struct VertexTypeFlags<D3DVT_UBYTE_NORM, 4> : VertexTypeFlagsHelper<D3DDTCAPS_UBYTE4N, D3DDECLTYPE_UBYTE4N> { };
template <> struct VertexTypeFlags<D3DVT_USHORT_NORM, 2> : VertexTypeFlagsHelper<D3DDTCAPS_USHORT2N, D3DDECLTYPE_USHORT2N> { };
template <> struct VertexTypeFlags<D3DVT_USHORT_NORM, 4> : VertexTypeFlagsHelper<D3DDTCAPS_USHORT4N, D3DDECLTYPE_USHORT4N> { };
// VertexTypeMapping maps GL type & normalized flag to preferred and fallback D3D vertex types (as D3DVertexType enums).
template <GLenum GLtype, bool normalized>
struct VertexTypeMapping
{
};
template <D3DVertexType Preferred, D3DVertexType Fallback = Preferred>
struct VertexTypeMappingBase
{
enum { preferred = Preferred };
enum { fallback = Fallback };
};
template <> struct VertexTypeMapping<GL_BYTE, false> : VertexTypeMappingBase<D3DVT_SHORT> { }; // Cast
template <> struct VertexTypeMapping<GL_BYTE, true> : VertexTypeMappingBase<D3DVT_FLOAT> { }; // Normalize
template <> struct VertexTypeMapping<GL_UNSIGNED_BYTE, false> : VertexTypeMappingBase<D3DVT_UBYTE, D3DVT_FLOAT> { }; // Identity, Cast
template <> struct VertexTypeMapping<GL_UNSIGNED_BYTE, true> : VertexTypeMappingBase<D3DVT_UBYTE_NORM, D3DVT_FLOAT> { }; // Identity, Normalize
template <> struct VertexTypeMapping<GL_SHORT, false> : VertexTypeMappingBase<D3DVT_SHORT> { }; // Identity
template <> struct VertexTypeMapping<GL_SHORT, true> : VertexTypeMappingBase<D3DVT_SHORT_NORM, D3DVT_FLOAT> { }; // Cast, Normalize
template <> struct VertexTypeMapping<GL_UNSIGNED_SHORT, false> : VertexTypeMappingBase<D3DVT_FLOAT> { }; // Cast
template <> struct VertexTypeMapping<GL_UNSIGNED_SHORT, true> : VertexTypeMappingBase<D3DVT_USHORT_NORM, D3DVT_FLOAT> { }; // Cast, Normalize
template <bool normalized> struct VertexTypeMapping<GL_FIXED, normalized> : VertexTypeMappingBase<D3DVT_FLOAT> { }; // FixedToFloat
template <bool normalized> struct VertexTypeMapping<GL_FLOAT, normalized> : VertexTypeMappingBase<D3DVT_FLOAT> { }; // Identity
// Given a GL type & norm flag and a D3D type, ConversionRule provides the type conversion rule (Cast, Normalize, Identity, FixedToFloat).
// The conversion rules themselves are defined in vertexconversion.h.
// Almost all cases are covered by Cast (including those that are actually Identity since Cast<T,T> knows it's an identity mapping).
template <GLenum fromType, bool normalized, unsigned int toType>
struct ConversionRule : gl::Cast<typename GLToCType<fromType>::type, typename D3DToCType<toType>::type>
{
};
// All conversions from normalized types to float use the Normalize operator.
template <GLenum fromType> struct ConversionRule<fromType, true, D3DVT_FLOAT> : gl::Normalize<typename GLToCType<fromType>::type> { };
// Use a full specialisation for this so that it preferentially matches ahead of the generic normalize-to-float rules.
template <> struct ConversionRule<GL_FIXED, true, D3DVT_FLOAT> : gl::FixedToFloat<GLuint, 16> { };
template <> struct ConversionRule<GL_FIXED, false, D3DVT_FLOAT> : gl::FixedToFloat<GLuint, 16> { };
// A 2-stage construction is used for DefaultVertexValues because float must use SimpleDefaultValues (i.e. 0/1)
// whether it is normalized or not.
template <class T, bool normalized>
struct DefaultVertexValuesStage2
{
};
template <class T> struct DefaultVertexValuesStage2<T, true> : gl::NormalizedDefaultValues<T> { };
template <class T> struct DefaultVertexValuesStage2<T, false> : gl::SimpleDefaultValues<T> { };
// Work out the default value rule for a D3D type (expressed as the C type) and
template <class T, bool normalized>
struct DefaultVertexValues : DefaultVertexValuesStage2<T, normalized>
{
};
template <bool normalized> struct DefaultVertexValues<float, normalized> : gl::SimpleDefaultValues<float> { };
// Policy rules for use with Converter, to choose whether to use the preferred or fallback conversion.
// The fallback conversion produces an output that all D3D9 devices must support.
template <class T> struct UsePreferred { enum { type = T::preferred }; };
template <class T> struct UseFallback { enum { type = T::fallback }; };
// Converter ties it all together. Given an OpenGL type/norm/size and choice of preferred/fallback conversion,
// it provides all the members of the appropriate VertexDataConverter, the D3DCAPS9::DeclTypes flag in cap flag
// and the D3DDECLTYPE member needed for the vertex declaration in declflag.
template <GLenum fromType, bool normalized, int size, template <class T> class PreferenceRule>
struct Converter
: gl::VertexDataConverter<typename GLToCType<fromType>::type,
WidenRule<PreferenceRule< VertexTypeMapping<fromType, normalized> >::type, size>,
ConversionRule<fromType,
normalized,
PreferenceRule< VertexTypeMapping<fromType, normalized> >::type>,
DefaultVertexValues<typename D3DToCType<PreferenceRule< VertexTypeMapping<fromType, normalized> >::type>::type, normalized > >
{
private:
enum { d3dtype = PreferenceRule< VertexTypeMapping<fromType, normalized> >::type };
enum { d3dsize = WidenRule<d3dtype, size>::finalWidth };
public:
enum { capflag = VertexTypeFlags<d3dtype, d3dsize>::capflag };
enum { declflag = VertexTypeFlags<d3dtype, d3dsize>::declflag };
};
// Initialise a TranslationInfo
#define TRANSLATION(type, norm, size, preferred) \
{ \
Converter<type, norm, size, preferred>::identity, \
Converter<type, norm, size, preferred>::finalSize, \
Converter<type, norm, size, preferred>::convertArray, \
static_cast<D3DDECLTYPE>(Converter<type, norm, size, preferred>::declflag) \
}
#define TRANSLATION_FOR_TYPE_NORM_SIZE(type, norm, size) \
{ \
Converter<type, norm, size, UsePreferred>::capflag, \
TRANSLATION(type, norm, size, UsePreferred), \
TRANSLATION(type, norm, size, UseFallback) \
}
#define TRANSLATIONS_FOR_TYPE(type) \
{ \
{ TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 4) }, \
{ TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 4) }, \
}
const VertexDataManager::TranslationDescription VertexDataManager::mPossibleTranslations[NUM_GL_VERTEX_ATTRIB_TYPES][2][4] = // [GL types as enumerated by typeIndex()][normalized][size-1]
{
TRANSLATIONS_FOR_TYPE(GL_BYTE),
TRANSLATIONS_FOR_TYPE(GL_UNSIGNED_BYTE),
TRANSLATIONS_FOR_TYPE(GL_SHORT),
TRANSLATIONS_FOR_TYPE(GL_UNSIGNED_SHORT),
TRANSLATIONS_FOR_TYPE(GL_FIXED),
TRANSLATIONS_FOR_TYPE(GL_FLOAT)
};
void VertexDataManager::checkVertexCaps(DWORD declTypes)
{
for (unsigned int i = 0; i < NUM_GL_VERTEX_ATTRIB_TYPES; i++)
{
for (unsigned int j = 0; j < 2; j++)
{
for (unsigned int k = 0; k < 4; k++)
{
if (mPossibleTranslations[i][j][k].capsFlag == 0 || (declTypes & mPossibleTranslations[i][j][k].capsFlag) != 0)
{
mAttributeTypes[i][j][k] = mPossibleTranslations[i][j][k].preferredConversion;
}
else
{
mAttributeTypes[i][j][k] = mPossibleTranslations[i][j][k].fallbackConversion;
}
}
}
}
}
// This is used to index mAttributeTypes and mPossibleTranslations.
unsigned int VertexDataManager::typeIndex(GLenum type) const
{
switch (type)
{
case GL_BYTE: return 0;
case GL_UNSIGNED_BYTE: return 1;
case GL_SHORT: return 2;
case GL_UNSIGNED_SHORT: return 3;
case GL_FIXED: return 4;
case GL_FLOAT: return 5;
default: UNREACHABLE(); return 5;
}
}
void VertexDataManager::setupAttributes(const TranslatedAttribute *attributes)
{
D3DVERTEXELEMENT9 elements[MAX_VERTEX_ATTRIBS];
D3DVERTEXELEMENT9 *element = &elements[0];
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
if (attributes[i].active)
{
mDevice->SetStreamSource(i, attributes[i].vertexBuffer, attributes[i].offset, attributes[i].stride);
element->Stream = i;
element->Offset = 0;
element->Type = attributes[i].type;
element->Method = D3DDECLMETHOD_DEFAULT;
element->Usage = D3DDECLUSAGE_TEXCOORD;
element->UsageIndex = attributes[i].semanticIndex;
element++;
}
}
static const D3DVERTEXELEMENT9 end = D3DDECL_END();
*element = end;
IDirect3DVertexDeclaration9 *vertexDeclaration;
mDevice->CreateVertexDeclaration(elements, &vertexDeclaration);
mDevice->SetVertexDeclaration(vertexDeclaration);
vertexDeclaration->Release();
}
VertexBuffer::VertexBuffer(IDirect3DDevice9 *device, std::size_t size, DWORD usageFlags) : mDevice(device), mVertexBuffer(NULL)
{
if (size > 0)
{
D3DPOOL pool = getDisplay()->getBufferPool(usageFlags);
HRESULT result = device->CreateVertexBuffer(size, usageFlags, 0, pool, &mVertexBuffer, NULL);
if (FAILED(result))
{
ERR("Out of memory allocating a vertex buffer of size %lu.", size);
}
}
}
VertexBuffer::~VertexBuffer()
{
if (mVertexBuffer)
{
mVertexBuffer->Release();
}
}
void VertexBuffer::unmap()
{
if (mVertexBuffer)
{
mVertexBuffer->Unlock();
}
}
IDirect3DVertexBuffer9 *VertexBuffer::getBuffer() const
{
return mVertexBuffer;
}
ConstantVertexBuffer::ConstantVertexBuffer(IDirect3DDevice9 *device, float x, float y, float z, float w) : VertexBuffer(device, 4 * sizeof(float), D3DUSAGE_WRITEONLY)
{
void *buffer = NULL;
if (mVertexBuffer)
{
HRESULT result = mVertexBuffer->Lock(0, 0, &buffer, 0);
if (FAILED(result))
{
ERR("Lock failed with error 0x%08x", result);
}
}
if (buffer)
{
float *vector = (float*)buffer;
vector[0] = x;
vector[1] = y;
vector[2] = z;
vector[3] = w;
mVertexBuffer->Unlock();
}
}
ConstantVertexBuffer::~ConstantVertexBuffer()
{
}
ArrayVertexBuffer::ArrayVertexBuffer(IDirect3DDevice9 *device, std::size_t size, DWORD usageFlags) : VertexBuffer(device, size, usageFlags)
{
mBufferSize = size;
mWritePosition = 0;
mRequiredSpace = 0;
}
ArrayVertexBuffer::~ArrayVertexBuffer()
{
}
void ArrayVertexBuffer::addRequiredSpace(UINT requiredSpace)
{
mRequiredSpace += requiredSpace;
}
void ArrayVertexBuffer::addRequiredSpaceFor(ArrayVertexBuffer *buffer)
{
mRequiredSpace += buffer->mRequiredSpace;
}
StreamingVertexBuffer::StreamingVertexBuffer(IDirect3DDevice9 *device, std::size_t initialSize) : ArrayVertexBuffer(device, initialSize, D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY)
{
}
StreamingVertexBuffer::~StreamingVertexBuffer()
{
}
void *StreamingVertexBuffer::map(const VertexAttribute &attribute, std::size_t requiredSpace, std::size_t *offset)
{
void *mapPtr = NULL;
if (mVertexBuffer)
{
HRESULT result = mVertexBuffer->Lock(mWritePosition, requiredSpace, &mapPtr, D3DLOCK_NOOVERWRITE);
if (FAILED(result))
{
ERR("Lock failed with error 0x%08x", result);
return NULL;
}
*offset = mWritePosition;
mWritePosition += requiredSpace;
}
return mapPtr;
}
void StreamingVertexBuffer::reserveRequiredSpace()
{
if (mRequiredSpace > mBufferSize)
{
if (mVertexBuffer)
{
mVertexBuffer->Release();
mVertexBuffer = NULL;
}
mBufferSize = std::max(mRequiredSpace, 3 * mBufferSize / 2); // 1.5 x mBufferSize is arbitrary and should be checked to see we don't have too many reallocations.
D3DPOOL pool = getDisplay()->getBufferPool(D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY);
HRESULT result = mDevice->CreateVertexBuffer(mBufferSize, D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY, 0, pool, &mVertexBuffer, NULL);
if (FAILED(result))
{
ERR("Out of memory allocating a vertex buffer of size %lu.", mBufferSize);
}
mWritePosition = 0;
}
else if (mWritePosition + mRequiredSpace > mBufferSize) // Recycle
{
if (mVertexBuffer)
{
void *dummy;
mVertexBuffer->Lock(0, 1, &dummy, D3DLOCK_DISCARD);
mVertexBuffer->Unlock();
}
mWritePosition = 0;
}
mRequiredSpace = 0;
}
StaticVertexBuffer::StaticVertexBuffer(IDirect3DDevice9 *device) : ArrayVertexBuffer(device, 0, D3DUSAGE_WRITEONLY)
{
}
StaticVertexBuffer::~StaticVertexBuffer()
{
}
void *StaticVertexBuffer::map(const VertexAttribute &attribute, std::size_t requiredSpace, UINT *streamOffset)
{
void *mapPtr = NULL;
if (mVertexBuffer)
{
HRESULT result = mVertexBuffer->Lock(mWritePosition, requiredSpace, &mapPtr, 0);
if (FAILED(result))
{
ERR("Lock failed with error 0x%08x", result);
return NULL;
}
int attributeOffset = attribute.mOffset % attribute.stride();
VertexElement element = {attribute.mType, attribute.mSize, attribute.mNormalized, attributeOffset, mWritePosition};
mCache.push_back(element);
*streamOffset = mWritePosition;
mWritePosition += requiredSpace;
}
return mapPtr;
}
void StaticVertexBuffer::reserveRequiredSpace()
{
if (!mVertexBuffer && mBufferSize == 0)
{
D3DPOOL pool = getDisplay()->getBufferPool(D3DUSAGE_WRITEONLY);
HRESULT result = mDevice->CreateVertexBuffer(mRequiredSpace, D3DUSAGE_WRITEONLY, 0, pool, &mVertexBuffer, NULL);
if (FAILED(result))
{
ERR("Out of memory allocating a vertex buffer of size %lu.", mRequiredSpace);
}
mBufferSize = mRequiredSpace;
}
else if (mVertexBuffer && mBufferSize >= mRequiredSpace)
{
// Already allocated
}
else UNREACHABLE(); // Static vertex buffers can't be resized
mRequiredSpace = 0;
}
UINT StaticVertexBuffer::lookupAttribute(const VertexAttribute &attribute)
{
for (unsigned int element = 0; element < mCache.size(); element++)
{
if (mCache[element].type == attribute.mType && mCache[element].size == attribute.mSize && mCache[element].normalized == attribute.mNormalized)
{
if (mCache[element].attributeOffset == attribute.mOffset % attribute.stride())
{
return mCache[element].streamOffset;
}
}
}
return -1;
}
const VertexDataManager::FormatConverter &VertexDataManager::formatConverter(const VertexAttribute &attribute) const
{
return mAttributeTypes[typeIndex(attribute.mType)][attribute.mNormalized][attribute.mSize - 1];
}
}