Hash :
b980c563
Author :
Date :
2018-11-27T11:34:27
Reformat all cpp and h files. This applies git cl format --full to all ANGLE sources. Bug: angleproject:2986 Change-Id: Ib504e618c1589332a37e97696cdc3515d739308f Reviewed-on: https://chromium-review.googlesource.com/c/1351367 Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
//
// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// mathutil.h: Math and bit manipulation functions.
#ifndef COMMON_MATHUTIL_H_
#define COMMON_MATHUTIL_H_
#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <limits>
#include <anglebase/numerics/safe_math.h>
#include "common/debug.h"
#include "common/platform.h"
namespace angle
{
using base::CheckedNumeric;
using base::IsValueInRangeForNumericType;
} // namespace angle
namespace gl
{
const unsigned int Float32One = 0x3F800000;
const unsigned short Float16One = 0x3C00;
template <typename T>
inline bool isPow2(T x)
{
static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type.");
return (x & (x - 1)) == 0 && (x != 0);
}
inline int log2(int x)
{
int r = 0;
while ((x >> r) > 1)
r++;
return r;
}
inline unsigned int ceilPow2(unsigned int x)
{
if (x != 0)
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x++;
return x;
}
template <typename DestT, typename SrcT>
inline DestT clampCast(SrcT value)
{
// For floating-point types with denormalization, min returns the minimum positive normalized
// value. To find the value that has no values less than it, use numeric_limits::lowest.
constexpr const long double destLo =
static_cast<long double>(std::numeric_limits<DestT>::lowest());
constexpr const long double destHi =
static_cast<long double>(std::numeric_limits<DestT>::max());
constexpr const long double srcLo =
static_cast<long double>(std::numeric_limits<SrcT>::lowest());
constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max());
if (destHi < srcHi)
{
DestT destMax = std::numeric_limits<DestT>::max();
if (value >= static_cast<SrcT>(destMax))
{
return destMax;
}
}
if (destLo > srcLo)
{
DestT destLow = std::numeric_limits<DestT>::lowest();
if (value <= static_cast<SrcT>(destLow))
{
return destLow;
}
}
return static_cast<DestT>(value);
}
// Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max
// value is casted to the source type.
template <>
inline unsigned int clampCast(bool value)
{
return static_cast<unsigned int>(value);
}
template <>
inline int clampCast(bool value)
{
return static_cast<int>(value);
}
template <typename T, typename MIN, typename MAX>
inline T clamp(T x, MIN min, MAX max)
{
// Since NaNs fail all comparison tests, a NaN value will default to min
return x > min ? (x > max ? max : x) : min;
}
inline float clamp01(float x)
{
return clamp(x, 0.0f, 1.0f);
}
template <const int n>
inline unsigned int unorm(float x)
{
const unsigned int max = 0xFFFFFFFF >> (32 - n);
if (x > 1)
{
return max;
}
else if (x < 0)
{
return 0;
}
else
{
return (unsigned int)(max * x + 0.5f);
}
}
inline bool supportsSSE2()
{
#if defined(ANGLE_USE_SSE)
static bool checked = false;
static bool supports = false;
if (checked)
{
return supports;
}
# if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
{
int info[4];
__cpuid(info, 0);
if (info[0] >= 1)
{
__cpuid(info, 1);
supports = (info[3] >> 26) & 1;
}
}
# endif // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
checked = true;
return supports;
#else // defined(ANGLE_USE_SSE)
return false;
#endif
}
template <typename destType, typename sourceType>
destType bitCast(const sourceType &source)
{
size_t copySize = std::min(sizeof(destType), sizeof(sourceType));
destType output;
memcpy(&output, &source, copySize);
return output;
}
inline unsigned short float32ToFloat16(float fp32)
{
unsigned int fp32i = bitCast<unsigned int>(fp32);
unsigned int sign = (fp32i & 0x80000000) >> 16;
unsigned int abs = fp32i & 0x7FFFFFFF;
if (abs > 0x47FFEFFF) // Infinity
{
return static_cast<unsigned short>(sign | 0x7FFF);
}
else if (abs < 0x38800000) // Denormal
{
unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000;
int e = 113 - (abs >> 23);
if (e < 24)
{
abs = mantissa >> e;
}
else
{
abs = 0;
}
return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
}
else
{
return static_cast<unsigned short>(
sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
}
}
float float16ToFloat32(unsigned short h);
unsigned int convertRGBFloatsTo999E5(float red, float green, float blue);
void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue);
inline unsigned short float32ToFloat11(float fp32)
{
const unsigned int float32MantissaMask = 0x7FFFFF;
const unsigned int float32ExponentMask = 0x7F800000;
const unsigned int float32SignMask = 0x80000000;
const unsigned int float32ValueMask = ~float32SignMask;
const unsigned int float32ExponentFirstBit = 23;
const unsigned int float32ExponentBias = 127;
const unsigned short float11Max = 0x7BF;
const unsigned short float11MantissaMask = 0x3F;
const unsigned short float11ExponentMask = 0x7C0;
const unsigned short float11BitMask = 0x7FF;
const unsigned int float11ExponentBias = 14;
const unsigned int float32Maxfloat11 = 0x477E0000;
const unsigned int float32Minfloat11 = 0x38800000;
const unsigned int float32Bits = bitCast<unsigned int>(fp32);
const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
unsigned int float32Val = float32Bits & float32ValueMask;
if ((float32Val & float32ExponentMask) == float32ExponentMask)
{
// INF or NAN
if ((float32Val & float32MantissaMask) != 0)
{
return float11ExponentMask |
(((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) &
float11MantissaMask);
}
else if (float32Sign)
{
// -INF is clamped to 0 since float11 is positive only
return 0;
}
else
{
return float11ExponentMask;
}
}
else if (float32Sign)
{
// float11 is positive only, so clamp to zero
return 0;
}
else if (float32Val > float32Maxfloat11)
{
// The number is too large to be represented as a float11, set to max
return float11Max;
}
else
{
if (float32Val < float32Minfloat11)
{
// The number is too small to be represented as a normalized float11
// Convert it to a denormalized value.
const unsigned int shift = (float32ExponentBias - float11ExponentBias) -
(float32Val >> float32ExponentFirstBit);
float32Val =
((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
}
else
{
// Rebias the exponent to represent the value as a normalized float11
float32Val += 0xC8000000;
}
return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask;
}
}
inline unsigned short float32ToFloat10(float fp32)
{
const unsigned int float32MantissaMask = 0x7FFFFF;
const unsigned int float32ExponentMask = 0x7F800000;
const unsigned int float32SignMask = 0x80000000;
const unsigned int float32ValueMask = ~float32SignMask;
const unsigned int float32ExponentFirstBit = 23;
const unsigned int float32ExponentBias = 127;
const unsigned short float10Max = 0x3DF;
const unsigned short float10MantissaMask = 0x1F;
const unsigned short float10ExponentMask = 0x3E0;
const unsigned short float10BitMask = 0x3FF;
const unsigned int float10ExponentBias = 14;
const unsigned int float32Maxfloat10 = 0x477C0000;
const unsigned int float32Minfloat10 = 0x38800000;
const unsigned int float32Bits = bitCast<unsigned int>(fp32);
const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
unsigned int float32Val = float32Bits & float32ValueMask;
if ((float32Val & float32ExponentMask) == float32ExponentMask)
{
// INF or NAN
if ((float32Val & float32MantissaMask) != 0)
{
return float10ExponentMask |
(((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) &
float10MantissaMask);
}
else if (float32Sign)
{
// -INF is clamped to 0 since float11 is positive only
return 0;
}
else
{
return float10ExponentMask;
}
}
else if (float32Sign)
{
// float10 is positive only, so clamp to zero
return 0;
}
else if (float32Val > float32Maxfloat10)
{
// The number is too large to be represented as a float11, set to max
return float10Max;
}
else
{
if (float32Val < float32Minfloat10)
{
// The number is too small to be represented as a normalized float11
// Convert it to a denormalized value.
const unsigned int shift = (float32ExponentBias - float10ExponentBias) -
(float32Val >> float32ExponentFirstBit);
float32Val =
((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
}
else
{
// Rebias the exponent to represent the value as a normalized float11
float32Val += 0xC8000000;
}
return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask;
}
}
inline float float11ToFloat32(unsigned short fp11)
{
unsigned short exponent = (fp11 >> 6) & 0x1F;
unsigned short mantissa = fp11 & 0x3F;
if (exponent == 0x1F)
{
// INF or NAN
return bitCast<float>(0x7f800000 | (mantissa << 17));
}
else
{
if (exponent != 0)
{
// normalized
}
else if (mantissa != 0)
{
// The value is denormalized
exponent = 1;
do
{
exponent--;
mantissa <<= 1;
} while ((mantissa & 0x40) == 0);
mantissa = mantissa & 0x3F;
}
else // The value is zero
{
exponent = static_cast<unsigned short>(-112);
}
return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17));
}
}
inline float float10ToFloat32(unsigned short fp11)
{
unsigned short exponent = (fp11 >> 5) & 0x1F;
unsigned short mantissa = fp11 & 0x1F;
if (exponent == 0x1F)
{
// INF or NAN
return bitCast<float>(0x7f800000 | (mantissa << 17));
}
else
{
if (exponent != 0)
{
// normalized
}
else if (mantissa != 0)
{
// The value is denormalized
exponent = 1;
do
{
exponent--;
mantissa <<= 1;
} while ((mantissa & 0x20) == 0);
mantissa = mantissa & 0x1F;
}
else // The value is zero
{
exponent = static_cast<unsigned short>(-112);
}
return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18));
}
}
// Convers to and from float and 16.16 fixed point format.
inline float FixedToFloat(uint32_t fixedInput)
{
return static_cast<float>(fixedInput) / 65536.0f;
}
inline uint32_t FloatToFixed(float floatInput)
{
static constexpr uint32_t kHighest = 32767 * 65536 + 65535;
static constexpr uint32_t kLowest = static_cast<uint32_t>(-32768 * 65536 + 65535);
if (floatInput > 32767.65535)
{
return kHighest;
}
else if (floatInput < -32768.65535)
{
return kLowest;
}
else
{
return static_cast<uint32_t>(floatInput * 65536);
}
}
template <typename T>
inline float normalizedToFloat(T input)
{
static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
if (sizeof(T) > 2)
{
// float has only a 23 bit mantissa, so we need to do the calculation in double precision
constexpr double inverseMax = 1.0 / std::numeric_limits<T>::max();
return static_cast<float>(input * inverseMax);
}
else
{
constexpr float inverseMax = 1.0f / std::numeric_limits<T>::max();
return input * inverseMax;
}
}
template <unsigned int inputBitCount, typename T>
inline float normalizedToFloat(T input)
{
static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount.");
if (inputBitCount > 23)
{
// float has only a 23 bit mantissa, so we need to do the calculation in double precision
constexpr double inverseMax = 1.0 / ((1 << inputBitCount) - 1);
return static_cast<float>(input * inverseMax);
}
else
{
constexpr float inverseMax = 1.0f / ((1 << inputBitCount) - 1);
return input * inverseMax;
}
}
template <typename T>
inline T floatToNormalized(float input)
{
if (sizeof(T) > 2)
{
// float has only a 23 bit mantissa, so we need to do the calculation in double precision
return static_cast<T>(std::numeric_limits<T>::max() * static_cast<double>(input) + 0.5);
}
else
{
return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f);
}
}
template <unsigned int outputBitCount, typename T>
inline T floatToNormalized(float input)
{
static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount.");
if (outputBitCount > 23)
{
// float has only a 23 bit mantissa, so we need to do the calculation in double precision
return static_cast<T>(((1 << outputBitCount) - 1) * static_cast<double>(input) + 0.5);
}
else
{
return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f);
}
}
template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
inline T getShiftedData(T input)
{
static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
"T must have at least as many bits as inputBitCount + inputBitStart.");
const T mask = (1 << inputBitCount) - 1;
return (input >> inputBitStart) & mask;
}
template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
inline T shiftData(T input)
{
static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
"T must have at least as many bits as inputBitCount + inputBitStart.");
const T mask = (1 << inputBitCount) - 1;
return (input & mask) << inputBitStart;
}
inline unsigned int CountLeadingZeros(uint32_t x)
{
// Use binary search to find the amount of leading zeros.
unsigned int zeros = 32u;
uint32_t y;
y = x >> 16u;
if (y != 0)
{
zeros = zeros - 16u;
x = y;
}
y = x >> 8u;
if (y != 0)
{
zeros = zeros - 8u;
x = y;
}
y = x >> 4u;
if (y != 0)
{
zeros = zeros - 4u;
x = y;
}
y = x >> 2u;
if (y != 0)
{
zeros = zeros - 2u;
x = y;
}
y = x >> 1u;
if (y != 0)
{
return zeros - 2u;
}
return zeros - x;
}
inline unsigned char average(unsigned char a, unsigned char b)
{
return ((a ^ b) >> 1) + (a & b);
}
inline signed char average(signed char a, signed char b)
{
return ((short)a + (short)b) / 2;
}
inline unsigned short average(unsigned short a, unsigned short b)
{
return ((a ^ b) >> 1) + (a & b);
}
inline signed short average(signed short a, signed short b)
{
return ((int)a + (int)b) / 2;
}
inline unsigned int average(unsigned int a, unsigned int b)
{
return ((a ^ b) >> 1) + (a & b);
}
inline int average(int a, int b)
{
long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2ll;
return static_cast<int>(average);
}
inline float average(float a, float b)
{
return (a + b) * 0.5f;
}
inline unsigned short averageHalfFloat(unsigned short a, unsigned short b)
{
return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f);
}
inline unsigned int averageFloat11(unsigned int a, unsigned int b)
{
return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) +
float11ToFloat32(static_cast<unsigned short>(b))) *
0.5f);
}
inline unsigned int averageFloat10(unsigned int a, unsigned int b)
{
return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) +
float10ToFloat32(static_cast<unsigned short>(b))) *
0.5f);
}
template <typename T>
class Range
{
public:
Range() {}
Range(T lo, T hi) : mLow(lo), mHigh(hi) {}
T length() const { return (empty() ? 0 : (mHigh - mLow)); }
bool intersects(Range<T> other)
{
if (mLow <= other.mLow)
{
return other.mLow < mHigh;
}
else
{
return mLow < other.mHigh;
}
}
// Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6.
void extend(T value)
{
mLow = value < mLow ? value : mLow;
mHigh = value >= mHigh ? (value + 1) : mHigh;
}
bool empty() const { return mHigh <= mLow; }
bool contains(T value) const { return value >= mLow && value < mHigh; }
class Iterator final
{
public:
Iterator(T value) : mCurrent(value) {}
Iterator &operator++()
{
mCurrent++;
return *this;
}
bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; }
bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; }
T operator*() const { return mCurrent; }
private:
T mCurrent;
};
Iterator begin() const { return Iterator(mLow); }
Iterator end() const { return Iterator(mHigh); }
T low() const { return mLow; }
T high() const { return mHigh; }
void invalidate()
{
mLow = std::numeric_limits<T>::max();
mHigh = std::numeric_limits<T>::min();
}
private:
T mLow;
T mHigh;
};
typedef Range<int> RangeI;
typedef Range<unsigned int> RangeUI;
struct IndexRange
{
IndexRange() : IndexRange(0, 0, 0) {}
IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_)
: start(start_), end(end_), vertexIndexCount(vertexIndexCount_)
{
ASSERT(start <= end);
}
// Number of vertices in the range.
size_t vertexCount() const { return (end - start) + 1; }
// Inclusive range of indices that are not primitive restart
size_t start;
size_t end;
// Number of non-primitive restart indices
size_t vertexIndexCount;
};
// Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a
// floating-point value. As in GLSL ldexp() built-in.
inline float Ldexp(float x, int exp)
{
if (exp > 128)
{
return std::numeric_limits<float>::infinity();
}
if (exp < -126)
{
return 0.0f;
}
double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp));
return static_cast<float>(result);
}
// First, both normalized floating-point values are converted into 16-bit integer values.
// Then, the results are packed into the returned 32-bit unsigned integer.
// The first float value will be written to the least significant bits of the output;
// the last float value will be written to the most significant bits.
// The conversion of each value to fixed point is done as follows :
// packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0)
inline uint32_t packSnorm2x16(float f1, float f2)
{
int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f));
int16_t mostSignificantBits = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f));
return static_cast<uint32_t>(mostSignificantBits) << 16 |
(static_cast<uint32_t>(leastSignificantBits) & 0xFFFF);
}
// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
// each component is converted to a normalized floating-point value to generate the returned two
// float values. The first float value will be extracted from the least significant bits of the
// input; the last float value will be extracted from the most-significant bits. The conversion for
// unpacked fixed-point value to floating point is done as follows: unpackSnorm2x16 : clamp(f /
// 32767.0, -1, +1)
inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2)
{
int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF);
int16_t mostSignificantBits = static_cast<int16_t>(u >> 16);
*f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f);
*f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f);
}
// First, both normalized floating-point values are converted into 16-bit integer values.
// Then, the results are packed into the returned 32-bit unsigned integer.
// The first float value will be written to the least significant bits of the output;
// the last float value will be written to the most significant bits.
// The conversion of each value to fixed point is done as follows:
// packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0)
inline uint32_t packUnorm2x16(float f1, float f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f));
uint16_t mostSignificantBits = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f));
return static_cast<uint32_t>(mostSignificantBits) << 16 |
static_cast<uint32_t>(leastSignificantBits);
}
// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
// each component is converted to a normalized floating-point value to generate the returned two
// float values. The first float value will be extracted from the least significant bits of the
// input; the last float value will be extracted from the most-significant bits. The conversion for
// unpacked fixed-point value to floating point is done as follows: unpackUnorm2x16 : f / 65535.0
inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
*f1 = static_cast<float>(leastSignificantBits) / 65535.0f;
*f2 = static_cast<float>(mostSignificantBits) / 65535.0f;
}
// Helper functions intended to be used only here.
namespace priv
{
inline uint8_t ToPackedUnorm8(float f)
{
return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f));
}
inline int8_t ToPackedSnorm8(float f)
{
return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f));
}
} // namespace priv
// Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works
// similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the
// unsigned integer starting from the least significant bits.
inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4)
{
uint8_t bits[4];
bits[0] = priv::ToPackedUnorm8(f1);
bits[1] = priv::ToPackedUnorm8(f2);
bits[2] = priv::ToPackedUnorm8(f3);
bits[3] = priv::ToPackedUnorm8(f4);
uint32_t result = 0u;
for (int i = 0; i < 4; ++i)
{
int shift = i * 8;
result |= (static_cast<uint32_t>(bits[i]) << shift);
}
return result;
}
// Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f.
// Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant
// bits.
inline void UnpackUnorm4x8(uint32_t u, float *f)
{
for (int i = 0; i < 4; ++i)
{
int shift = i * 8;
uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF);
f[i] = static_cast<float>(bits) / 255.0f;
}
}
// Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats
// are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least
// significant bits.
inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4)
{
int8_t bits[4];
bits[0] = priv::ToPackedSnorm8(f1);
bits[1] = priv::ToPackedSnorm8(f2);
bits[2] = priv::ToPackedSnorm8(f3);
bits[3] = priv::ToPackedSnorm8(f4);
uint32_t result = 0u;
for (int i = 0; i < 4; ++i)
{
int shift = i * 8;
result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift);
}
return result;
}
// Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f.
// Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant
// bits, and clamped to the range -1.0 to 1.0.
inline void UnpackSnorm4x8(uint32_t u, float *f)
{
for (int i = 0; i < 4; ++i)
{
int shift = i * 8;
int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF);
f[i] = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f);
}
}
// Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit
// floating-point representation found in the OpenGL ES Specification, and then packing these
// two 16-bit integers into a 32-bit unsigned integer.
// f1: The 16 least-significant bits of the result;
// f2: The 16 most-significant bits.
inline uint32_t packHalf2x16(float f1, float f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1));
uint16_t mostSignificantBits = static_cast<uint16_t>(float32ToFloat16(f2));
return static_cast<uint32_t>(mostSignificantBits) << 16 |
static_cast<uint32_t>(leastSignificantBits);
}
// Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of
// 16-bit values, interpreting those values as 16-bit floating-point numbers according to the OpenGL
// ES Specification, and converting them to 32-bit floating-point values. The first float value is
// obtained from the 16 least-significant bits of u; the second component is obtained from the 16
// most-significant bits of u.
inline void unpackHalf2x16(uint32_t u, float *f1, float *f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
*f1 = float16ToFloat32(leastSignificantBits);
*f2 = float16ToFloat32(mostSignificantBits);
}
inline uint8_t sRGBToLinear(uint8_t srgbValue)
{
float value = srgbValue / 255.0f;
if (value <= 0.04045f)
{
value = value / 12.92f;
}
else
{
value = std::pow((value + 0.055f) / 1.055f, 2.4f);
}
return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
}
inline uint8_t linearToSRGB(uint8_t linearValue)
{
float value = linearValue / 255.0f;
if (value <= 0.0f)
{
value = 0.0f;
}
else if (value < 0.0031308f)
{
value = value * 12.92f;
}
else if (value < 1.0f)
{
value = std::pow(value, 0.41666f) * 1.055f - 0.055f;
}
else
{
value = 1.0f;
}
return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
}
// Reverse the order of the bits.
inline uint32_t BitfieldReverse(uint32_t value)
{
// TODO(oetuaho@nvidia.com): Optimize this if needed. There don't seem to be compiler intrinsics
// for this, and right now it's not used in performance-critical paths.
uint32_t result = 0u;
for (size_t j = 0u; j < 32u; ++j)
{
result |= (((value >> j) & 1u) << (31u - j));
}
return result;
}
// Count the 1 bits.
#if defined(_M_IX86) || defined(_M_X64)
# define ANGLE_HAS_BITCOUNT_32
inline int BitCount(uint32_t bits)
{
return static_cast<int>(__popcnt(bits));
}
# if defined(_M_X64)
# define ANGLE_HAS_BITCOUNT_64
inline int BitCount(uint64_t bits)
{
return static_cast<int>(__popcnt64(bits));
}
# endif // defined(_M_X64)
#endif // defined(_M_IX86) || defined(_M_X64)
#if defined(ANGLE_PLATFORM_POSIX)
# define ANGLE_HAS_BITCOUNT_32
inline int BitCount(uint32_t bits)
{
return __builtin_popcount(bits);
}
# if defined(ANGLE_IS_64_BIT_CPU)
# define ANGLE_HAS_BITCOUNT_64
inline int BitCount(uint64_t bits)
{
return __builtin_popcountll(bits);
}
# endif // defined(ANGLE_IS_64_BIT_CPU)
#endif // defined(ANGLE_PLATFORM_POSIX)
int BitCountPolyfill(uint32_t bits);
#if !defined(ANGLE_HAS_BITCOUNT_32)
inline int BitCount(const uint32_t bits)
{
return BitCountPolyfill(bits);
}
#endif // !defined(ANGLE_HAS_BITCOUNT_32)
#if !defined(ANGLE_HAS_BITCOUNT_64)
inline int BitCount(const uint64_t bits)
{
return BitCount(static_cast<uint32_t>(bits >> 32)) + BitCount(static_cast<uint32_t>(bits));
}
#endif // !defined(ANGLE_HAS_BITCOUNT_64)
#undef ANGLE_HAS_BITCOUNT_32
#undef ANGLE_HAS_BITCOUNT_64
inline int BitCount(uint8_t bits)
{
return BitCount(static_cast<uint32_t>(bits));
}
inline int BitCount(uint16_t bits)
{
return BitCount(static_cast<uint32_t>(bits));
}
#if defined(ANGLE_PLATFORM_WINDOWS)
// Return the index of the least significant bit set. Indexing is such that bit 0 is the least
// significant bit. Implemented for different bit widths on different platforms.
inline unsigned long ScanForward(uint32_t bits)
{
ASSERT(bits != 0u);
unsigned long firstBitIndex = 0ul;
unsigned char ret = _BitScanForward(&firstBitIndex, bits);
ASSERT(ret != 0u);
return firstBitIndex;
}
# if defined(ANGLE_IS_64_BIT_CPU)
inline unsigned long ScanForward(uint64_t bits)
{
ASSERT(bits != 0u);
unsigned long firstBitIndex = 0ul;
unsigned char ret = _BitScanForward64(&firstBitIndex, bits);
ASSERT(ret != 0u);
return firstBitIndex;
}
# endif // defined(ANGLE_IS_64_BIT_CPU)
#endif // defined(ANGLE_PLATFORM_WINDOWS)
#if defined(ANGLE_PLATFORM_POSIX)
inline unsigned long ScanForward(uint32_t bits)
{
ASSERT(bits != 0u);
return static_cast<unsigned long>(__builtin_ctz(bits));
}
# if defined(ANGLE_IS_64_BIT_CPU)
inline unsigned long ScanForward(uint64_t bits)
{
ASSERT(bits != 0u);
return static_cast<unsigned long>(__builtin_ctzll(bits));
}
# endif // defined(ANGLE_IS_64_BIT_CPU)
#endif // defined(ANGLE_PLATFORM_POSIX)
inline unsigned long ScanForward(uint8_t bits)
{
return ScanForward(static_cast<uint32_t>(bits));
}
inline unsigned long ScanForward(uint16_t bits)
{
return ScanForward(static_cast<uint32_t>(bits));
}
// Return the index of the most significant bit set. Indexing is such that bit 0 is the least
// significant bit.
inline unsigned long ScanReverse(unsigned long bits)
{
ASSERT(bits != 0u);
#if defined(ANGLE_PLATFORM_WINDOWS)
unsigned long lastBitIndex = 0ul;
unsigned char ret = _BitScanReverse(&lastBitIndex, bits);
ASSERT(ret != 0u);
return lastBitIndex;
#elif defined(ANGLE_PLATFORM_POSIX)
return static_cast<unsigned long>(sizeof(unsigned long) * CHAR_BIT - 1 - __builtin_clzl(bits));
#else
# error Please implement bit-scan-reverse for your platform!
#endif
}
// Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL.
template <typename T>
int FindLSB(T bits)
{
static_assert(std::is_integral<T>::value, "must be integral type.");
if (bits == 0u)
{
return -1;
}
else
{
return static_cast<int>(ScanForward(bits));
}
}
// Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL.
template <typename T>
int FindMSB(T bits)
{
static_assert(std::is_integral<T>::value, "must be integral type.");
if (bits == 0u)
{
return -1;
}
else
{
return static_cast<int>(ScanReverse(bits));
}
}
// Returns whether the argument is Not a Number.
// IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
// non-zero.
inline bool isNaN(float f)
{
// Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
// Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
(bitCast<uint32_t>(f) & 0x7fffffu);
}
// Returns whether the argument is infinity.
// IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
// zero.
inline bool isInf(float f)
{
// Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
// Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
!(bitCast<uint32_t>(f) & 0x7fffffu);
}
namespace priv
{
template <unsigned int N, unsigned int R>
struct iSquareRoot
{
static constexpr unsigned int solve()
{
return (R * R > N)
? 0
: ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value));
}
enum Result
{
value = iSquareRoot::solve()
};
};
template <unsigned int N>
struct iSquareRoot<N, N>
{
enum result
{
value = N
};
};
} // namespace priv
template <unsigned int N>
constexpr unsigned int iSquareRoot()
{
return priv::iSquareRoot<N, 1>::value;
}
// Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow.
//
// Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow
// behavior is undefined.
template <typename T>
inline T WrappingSum(T lhs, T rhs)
{
uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
return static_cast<T>(lhsUnsigned + rhsUnsigned);
}
template <typename T>
inline T WrappingDiff(T lhs, T rhs)
{
uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
return static_cast<T>(lhsUnsigned - rhsUnsigned);
}
inline int32_t WrappingMul(int32_t lhs, int32_t rhs)
{
int64_t lhsWide = static_cast<int64_t>(lhs);
int64_t rhsWide = static_cast<int64_t>(rhs);
// The multiplication is guaranteed not to overflow.
int64_t resultWide = lhsWide * rhsWide;
// Implement the desired wrapping behavior by masking out the high-order 32 bits.
resultWide = resultWide & 0xffffffffll;
// Casting to a narrower signed type is fine since the casted value is representable in the
// narrower type.
return static_cast<int32_t>(resultWide);
}
inline float scaleScreenDimensionToNdc(float dimensionScreen, float viewportDimension)
{
return 2.0f * dimensionScreen / viewportDimension;
}
inline float scaleScreenCoordinateToNdc(float coordinateScreen, float viewportDimension)
{
float halfShifted = coordinateScreen / viewportDimension;
return 2.0f * (halfShifted - 0.5f);
}
} // namespace gl
namespace rx
{
template <typename T>
T roundUp(const T value, const T alignment)
{
auto temp = value + alignment - static_cast<T>(1);
return temp - temp % alignment;
}
template <typename T>
angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment)
{
angle::CheckedNumeric<T> checkedValue(value);
angle::CheckedNumeric<T> checkedAlignment(alignment);
return roundUp(checkedValue, checkedAlignment);
}
inline unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor)
{
unsigned int divided = value / divisor;
return (divided + ((value % divisor == 0) ? 0 : 1));
}
#if defined(_MSC_VER)
# define ANGLE_ROTL(x, y) _rotl(x, y)
# define ANGLE_ROTR16(x, y) _rotr16(x, y)
#else
inline uint32_t RotL(uint32_t x, int8_t r)
{
return (x << r) | (x >> (32 - r));
}
inline uint16_t RotR16(uint16_t x, int8_t r)
{
return (x >> r) | (x << (16 - r));
}
# define ANGLE_ROTL(x, y) ::rx::RotL(x, y)
# define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y)
#endif // namespace rx
} // namespace rx
#endif // COMMON_MATHUTIL_H_