Hash :
3de2703d
Author :
Date :
2017-11-30T12:16:47
Fix handling matrix qualifiers on block members
Individual block member row_major/column_major layout qualifiers may
override the qualifiers set on the block. During parsing, this was
already being handled correctly, so that the qualifier is resolved for
each block member and recorded for each TField / InterfaceBlockField.
Now we always write the qualifiers on a per-member granularity to the
output GLSL shaders, so that the native driver gets the correct
per-member qualifiers. This replaces earlier behavior where the matrix
qualifiers were only written per-block.
Also only use qualifiers from individual members in block layout.
Since the block-level qualifier information is no longer used after
parsing, it is no longer kept in the AST. A dummy value is still set
to the InterfaceBlock structs exposed through the ShaderVars
interface, since that has existing usage in Chromium that needs to be
removed before the field can be removed.
Some AMD OpenGL drivers don't seem to handle matrix layout qualifiers
correctly, so most of the added tests need to be skipped for AMD GL.
On NVIDIA and Intel the tests pass.
BUG=angleproject:2271
TEST=angle_unittests, angle_end2end_tests,
dEQP-GLES31.functional.program_interface_query.uniform.matrix*
Change-Id: I1baa7a633bc2da548743c2190cb72db491b5227a
Reviewed-on: https://chromium-review.googlesource.com/800174
Reviewed-by: Jamie Madill <jmadill@chromium.org>
Reviewed-by: Corentin Wallez <cwallez@chromium.org>
Commit-Queue: Olli Etuaho <oetuaho@nvidia.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
//
// Copyright (c) 2013-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// blocklayout.cpp:
// Implementation for block layout classes and methods.
//
#include "compiler/translator/blocklayout.h"
#include "common/mathutil.h"
#include "common/utilities.h"
namespace sh
{
namespace
{
bool IsRowMajorLayout(const InterfaceBlockField &var)
{
return var.isRowMajorLayout;
}
bool IsRowMajorLayout(const ShaderVariable &var)
{
return false;
}
template <typename VarT>
void GetUniformBlockInfo(const std::vector<VarT> &fields,
const std::string &prefix,
sh::BlockLayoutEncoder *encoder,
bool inRowMajorLayout,
BlockLayoutMap *blockInfoOut);
template <typename VarT>
void GetUniformBlockStructMemberInfo(const std::vector<VarT> &fields,
const std::string &fieldName,
sh::BlockLayoutEncoder *encoder,
bool inRowMajorLayout,
BlockLayoutMap *blockInfoOut)
{
encoder->enterAggregateType();
GetUniformBlockInfo(fields, fieldName, encoder, inRowMajorLayout, blockInfoOut);
encoder->exitAggregateType();
}
template <typename VarT>
void GetUniformBlockStructArrayMemberInfo(const VarT &field,
unsigned int arrayNestingIndex,
const std::string &arrayName,
sh::BlockLayoutEncoder *encoder,
bool inRowMajorLayout,
BlockLayoutMap *blockInfoOut)
{
// Nested arrays are processed starting from outermost (arrayNestingIndex 0u) and ending at the
// innermost.
const unsigned int currentArraySize = field.getNestedArraySize(arrayNestingIndex);
for (unsigned int arrayElement = 0u; arrayElement < currentArraySize; ++arrayElement)
{
const std::string elementName = arrayName + ArrayString(arrayElement);
if (arrayNestingIndex + 1u < field.arraySizes.size())
{
GetUniformBlockStructArrayMemberInfo(field, arrayNestingIndex + 1u, elementName,
encoder, inRowMajorLayout, blockInfoOut);
}
else
{
GetUniformBlockStructMemberInfo(field.fields, elementName, encoder, inRowMajorLayout,
blockInfoOut);
}
}
}
template <typename VarT>
void GetUniformBlockArrayOfArraysMemberInfo(const VarT &field,
unsigned int arrayNestingIndex,
const std::string &arrayName,
sh::BlockLayoutEncoder *encoder,
bool isRowMajorMatrix,
BlockLayoutMap *blockInfoOut)
{
const unsigned int currentArraySize = field.getNestedArraySize(arrayNestingIndex);
for (unsigned int arrayElement = 0u; arrayElement < currentArraySize; ++arrayElement)
{
const std::string elementName = arrayName + ArrayString(arrayElement);
if (arrayNestingIndex + 2u < field.arraySizes.size())
{
GetUniformBlockArrayOfArraysMemberInfo(field, arrayNestingIndex + 1u, elementName,
encoder, isRowMajorMatrix, blockInfoOut);
}
else
{
std::vector<unsigned int> innermostArraySize(
1u, field.getNestedArraySize(arrayNestingIndex + 1u));
(*blockInfoOut)[elementName] =
encoder->encodeType(field.type, innermostArraySize, isRowMajorMatrix);
}
}
}
template <typename VarT>
void GetUniformBlockInfo(const std::vector<VarT> &fields,
const std::string &prefix,
sh::BlockLayoutEncoder *encoder,
bool inRowMajorLayout,
BlockLayoutMap *blockInfoOut)
{
for (const VarT &field : fields)
{
// Skip samplers. On Vulkan we use this for the default uniform block, so samplers may be
// included.
if (gl::IsSamplerType(field.type))
{
continue;
}
const std::string &fieldName = (prefix.empty() ? field.name : prefix + "." + field.name);
bool rowMajorLayout = (inRowMajorLayout || IsRowMajorLayout(field));
if (field.isStruct())
{
if (field.isArray())
{
GetUniformBlockStructArrayMemberInfo(field, 0u, fieldName, encoder, rowMajorLayout,
blockInfoOut);
}
else
{
GetUniformBlockStructMemberInfo(field.fields, fieldName, encoder, rowMajorLayout,
blockInfoOut);
}
}
else if (field.isArrayOfArrays())
{
GetUniformBlockArrayOfArraysMemberInfo(field, 0u, fieldName, encoder,
rowMajorLayout && gl::IsMatrixType(field.type),
blockInfoOut);
}
else
{
(*blockInfoOut)[fieldName] = encoder->encodeType(
field.type, field.arraySizes, rowMajorLayout && gl::IsMatrixType(field.type));
}
}
}
} // anonymous namespace
BlockLayoutEncoder::BlockLayoutEncoder() : mCurrentOffset(0)
{
}
BlockMemberInfo BlockLayoutEncoder::encodeType(GLenum type,
const std::vector<unsigned int> &arraySizes,
bool isRowMajorMatrix)
{
int arrayStride;
int matrixStride;
getBlockLayoutInfo(type, arraySizes, isRowMajorMatrix, &arrayStride, &matrixStride);
const BlockMemberInfo memberInfo(static_cast<int>(mCurrentOffset * BytesPerComponent),
static_cast<int>(arrayStride * BytesPerComponent),
static_cast<int>(matrixStride * BytesPerComponent),
isRowMajorMatrix);
advanceOffset(type, arraySizes, isRowMajorMatrix, arrayStride, matrixStride);
return memberInfo;
}
// static
size_t BlockLayoutEncoder::getBlockRegister(const BlockMemberInfo &info)
{
return (info.offset / BytesPerComponent) / ComponentsPerRegister;
}
// static
size_t BlockLayoutEncoder::getBlockRegisterElement(const BlockMemberInfo &info)
{
return (info.offset / BytesPerComponent) % ComponentsPerRegister;
}
void BlockLayoutEncoder::nextRegister()
{
mCurrentOffset = rx::roundUp<size_t>(mCurrentOffset, ComponentsPerRegister);
}
Std140BlockEncoder::Std140BlockEncoder()
{
}
void Std140BlockEncoder::enterAggregateType()
{
nextRegister();
}
void Std140BlockEncoder::exitAggregateType()
{
nextRegister();
}
void Std140BlockEncoder::getBlockLayoutInfo(GLenum type,
const std::vector<unsigned int> &arraySizes,
bool isRowMajorMatrix,
int *arrayStrideOut,
int *matrixStrideOut)
{
// We assume we are only dealing with 4 byte components (no doubles or half-words currently)
ASSERT(gl::VariableComponentSize(gl::VariableComponentType(type)) == BytesPerComponent);
size_t baseAlignment = 0;
int matrixStride = 0;
int arrayStride = 0;
if (gl::IsMatrixType(type))
{
baseAlignment = ComponentsPerRegister;
matrixStride = ComponentsPerRegister;
if (!arraySizes.empty())
{
const int numRegisters = gl::MatrixRegisterCount(type, isRowMajorMatrix);
arrayStride = ComponentsPerRegister * numRegisters;
}
}
else if (!arraySizes.empty())
{
baseAlignment = ComponentsPerRegister;
arrayStride = ComponentsPerRegister;
}
else
{
const int numComponents = gl::VariableComponentCount(type);
baseAlignment = (numComponents == 3 ? 4u : static_cast<size_t>(numComponents));
}
mCurrentOffset = rx::roundUp(mCurrentOffset, baseAlignment);
*matrixStrideOut = matrixStride;
*arrayStrideOut = arrayStride;
}
void Std140BlockEncoder::advanceOffset(GLenum type,
const std::vector<unsigned int> &arraySizes,
bool isRowMajorMatrix,
int arrayStride,
int matrixStride)
{
if (!arraySizes.empty())
{
mCurrentOffset += arrayStride * gl::ArraySizeProduct(arraySizes);
}
else if (gl::IsMatrixType(type))
{
ASSERT(matrixStride == ComponentsPerRegister);
const int numRegisters = gl::MatrixRegisterCount(type, isRowMajorMatrix);
mCurrentOffset += ComponentsPerRegister * numRegisters;
}
else
{
mCurrentOffset += gl::VariableComponentCount(type);
}
}
void GetUniformBlockInfo(const std::vector<InterfaceBlockField> &fields,
const std::string &prefix,
sh::BlockLayoutEncoder *encoder,
BlockLayoutMap *blockInfoOut)
{
// Matrix packing is always recorded in individual fields, so they'll set the row major layout
// flag to true if needed.
GetUniformBlockInfo(fields, prefix, encoder, false, blockInfoOut);
}
void GetUniformBlockInfo(const std::vector<Uniform> &uniforms,
const std::string &prefix,
sh::BlockLayoutEncoder *encoder,
BlockLayoutMap *blockInfoOut)
{
// Matrix packing is always recorded in individual fields, so they'll set the row major layout
// flag to true if needed.
GetUniformBlockInfo(uniforms, prefix, encoder, false, blockInfoOut);
}
} // namespace sh