Edit

kc3-lang/angle/src/tests/test_utils/ANGLETest.h

Branch :

  • Show log

    Commit

  • Author : Alex Dean
    Date : 2025-02-10 23:01:33
    Hash : c0d806b4
    Message : CL: OpenCL support for ANGLE Capture/Replay Implementation of OpenCL Capture/Replay tool in ANGLE. Brief notes about the change: - Most meaningful changes for the capture process are made in src/libANGLE/capture/ - Most meaningful changes for replay are made in util/capture/ and src/tests/perf_tests/ - Many autogenerated files are changed/added to allow the capture of OpenCL objects & calls - The following applications were captured/replayed: benchmark_model, GeekBench Compute, GeekBench ML, AI-Benchmark, various OCL CTS tests - End2end test added to capture_tests. CapturedTestCL.MultiFrameCL/ES3_Vulkan Bug: angleproject:383841335 Change-Id: I55fdaa6cd6c7ba740aaa2351e4d29050059d6d1d Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/6102105 Commit-Queue: Cody Northrop <cnorthrop@google.com> Reviewed-by: Roman Lavrov <romanl@google.com> Reviewed-by: Cody Northrop <cnorthrop@google.com>

  • src/tests/test_utils/ANGLETest.h
  • //
    // Copyright 2012 The ANGLE Project Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style license that can be
    // found in the LICENSE file.
    //
    // ANGLETest:
    //   Implementation of common ANGLE testing fixture.
    //
    
    #ifndef ANGLE_TESTS_ANGLE_TEST_H_
    #define ANGLE_TESTS_ANGLE_TEST_H_
    
    #include <gtest/gtest.h>
    #include <algorithm>
    #include <array>
    
    #include "RenderDoc.h"
    #include "angle_test_configs.h"
    #include "angle_test_platform.h"
    #include "common/angleutils.h"
    #include "common/system_utils.h"
    #include "common/vector_utils.h"
    #include "platform/PlatformMethods.h"
    #include "test_expectations/GPUTestConfig.h"
    #include "util/EGLWindow.h"
    #include "util/shader_utils.h"
    #include "util/util_gl.h"
    
    namespace angle
    {
    struct SystemInfo;
    class RNG;
    }  // namespace angle
    
    #define ASSERT_GL_TRUE(a) ASSERT_EQ(static_cast<GLboolean>(GL_TRUE), (a))
    #define ASSERT_GL_FALSE(a) ASSERT_EQ(static_cast<GLboolean>(GL_FALSE), (a))
    #define EXPECT_GL_TRUE(a) EXPECT_EQ(static_cast<GLboolean>(GL_TRUE), (a))
    #define EXPECT_GL_FALSE(a) EXPECT_EQ(static_cast<GLboolean>(GL_FALSE), (a))
    
    #define EXPECT_GL_ERROR(err) EXPECT_EQ(static_cast<GLenum>(err), glGetError())
    #define EXPECT_GL_NO_ERROR() EXPECT_EQ(static_cast<GLenum>(GL_NO_ERROR), glGetError())
    
    #define ASSERT_GL_ERROR(err) ASSERT_EQ(static_cast<GLenum>(err), glGetError())
    #define ASSERT_GL_NO_ERROR() ASSERT_EQ(static_cast<GLenum>(GL_NO_ERROR), glGetError())
    
    #define EXPECT_EGL_ERROR(err) EXPECT_EQ((err), eglGetError())
    #define EXPECT_EGL_SUCCESS() EXPECT_EGL_ERROR(EGL_SUCCESS)
    
    // EGLBoolean is |unsigned int| but EGL_TRUE is 0, not 0u.
    #define ASSERT_EGL_TRUE(a) ASSERT_EQ(static_cast<EGLBoolean>(EGL_TRUE), static_cast<EGLBoolean>(a))
    #define ASSERT_EGL_FALSE(a) \
        ASSERT_EQ(static_cast<EGLBoolean>(EGL_FALSE), static_cast<EGLBoolean>(a))
    #define EXPECT_EGL_TRUE(a) EXPECT_EQ(static_cast<EGLBoolean>(EGL_TRUE), static_cast<EGLBoolean>(a))
    #define EXPECT_EGL_FALSE(a) \
        EXPECT_EQ(static_cast<EGLBoolean>(EGL_FALSE), static_cast<EGLBoolean>(a))
    
    #define ASSERT_EGL_ERROR(err) ASSERT_EQ((err), eglGetError())
    #define ASSERT_EGL_SUCCESS() ASSERT_EGL_ERROR(EGL_SUCCESS)
    
    #define ASSERT_GLENUM_EQ(expected, actual) \
        ASSERT_EQ(static_cast<GLenum>(expected), static_cast<GLenum>(actual))
    #define EXPECT_GLENUM_EQ(expected, actual) \
        EXPECT_EQ(static_cast<GLenum>(expected), static_cast<GLenum>(actual))
    #define ASSERT_GLENUM_NE(expected, actual) \
        ASSERT_NE(static_cast<GLenum>(expected), static_cast<GLenum>(actual))
    #define EXPECT_GLENUM_NE(expected, actual) \
        EXPECT_NE(static_cast<GLenum>(expected), static_cast<GLenum>(actual))
    
    testing::AssertionResult AssertEGLEnumsEqual(const char *lhsExpr,
                                                 const char *rhsExpr,
                                                 EGLenum lhs,
                                                 EGLenum rhs);
    
    #define ASSERT_EGLENUM_EQ(expected, actual)                                  \
        ASSERT_PRED_FORMAT2(AssertEGLEnumsEqual, static_cast<EGLenum>(expected), \
                            static_cast<EGLenum>(actual))
    #define EXPECT_EGLENUM_EQ(expected, actual)                                  \
        EXPECT_PRED_FORMAT2(AssertEGLEnumsEqual, static_cast<EGLenum>(expected), \
                            static_cast<EGLenum>(actual))
    
    #define ASSERT_GL_FRAMEBUFFER_COMPLETE(framebuffer) \
        ASSERT_GLENUM_EQ(GL_FRAMEBUFFER_COMPLETE, glCheckFramebufferStatus(framebuffer))
    #define EXPECT_GL_FRAMEBUFFER_COMPLETE(framebuffer) \
        EXPECT_GLENUM_EQ(GL_FRAMEBUFFER_COMPLETE, glCheckFramebufferStatus(framebuffer))
    
    namespace angle
    {
    struct GLColorRGB
    {
        constexpr GLColorRGB() : R(0), G(0), B(0) {}
        constexpr GLColorRGB(GLubyte r, GLubyte g, GLubyte b) : R(r), G(g), B(b) {}
        GLColorRGB(const angle::Vector3 &floatColor);
    
        const GLubyte *data() const { return &R; }
        GLubyte *data() { return &R; }
    
        GLubyte R, G, B;
    
        static const GLColorRGB black;
        static const GLColorRGB blue;
        static const GLColorRGB green;
        static const GLColorRGB red;
        static const GLColorRGB yellow;
    };
    
    struct GLColorRG
    {
        constexpr GLColorRG() : R(0), G(0) {}
        constexpr GLColorRG(GLubyte r, GLubyte g) : R(r), G(g) {}
        GLColorRG(const angle::Vector2 &floatColor);
    
        const GLubyte *data() const { return &R; }
        GLubyte *data() { return &R; }
    
        GLubyte R, G;
    };
    
    struct GLColorR
    {
        constexpr GLColorR() : R(0) {}
        constexpr GLColorR(GLubyte r) : R(r) {}
        GLColorR(const float floatColor);
    
        const GLubyte *data() const { return &R; }
        GLubyte *data() { return &R; }
    
        GLubyte R;
    };
    
    struct GLColor
    {
        constexpr GLColor() : R(0), G(0), B(0), A(0) {}
        constexpr GLColor(GLubyte r, GLubyte g, GLubyte b, GLubyte a) : R(r), G(g), B(b), A(a) {}
        GLColor(const angle::Vector3 &floatColor);
        GLColor(const angle::Vector4 &floatColor);
        GLColor(GLuint colorValue);
    
        angle::Vector4 toNormalizedVector() const;
    
        GLubyte &operator[](size_t index) { return (&R)[index]; }
    
        const GLubyte &operator[](size_t index) const { return (&R)[index]; }
    
        const GLubyte *data() const { return &R; }
        GLubyte *data() { return &R; }
    
        GLuint asUint() const;
    
        testing::AssertionResult ExpectNear(const GLColor &expected, const GLColor &err) const;
    
        GLubyte R, G, B, A;
    
        static const GLColor black;
        static const GLColor blue;
        static const GLColor cyan;
        static const GLColor green;
        static const GLColor red;
        static const GLColor transparentBlack;
        static const GLColor white;
        static const GLColor yellow;
        static const GLColor magenta;
    };
    
    template <typename T>
    struct GLColorT
    {
        constexpr GLColorT() : GLColorT(0, 0, 0, 0) {}
        constexpr GLColorT(T r, T g, T b, T a) : R(r), G(g), B(b), A(a) {}
    
        T R, G, B, A;
    };
    
    using GLColor16   = GLColorT<uint16_t>;
    using GLColor32F  = GLColorT<float>;
    using GLColor32I  = GLColorT<int32_t>;
    using GLColor32UI = GLColorT<uint32_t>;
    
    static constexpr GLColor32F kFloatBlack = {0.0f, 0.0f, 0.0f, 1.0f};
    static constexpr GLColor32F kFloatRed   = {1.0f, 0.0f, 0.0f, 1.0f};
    static constexpr GLColor32F kFloatGreen = {0.0f, 1.0f, 0.0f, 1.0f};
    static constexpr GLColor32F kFloatBlue  = {0.0f, 0.0f, 1.0f, 1.0f};
    
    // The input here for pixelPoints are the expected integer window coordinates, we add .5 to every
    // one of them and re-scale the numbers to be between [-1,1]. Using this technique, we can make
    // sure the rasterization stage will end up drawing pixels at the expected locations.
    void CreatePixelCenterWindowCoords(const std::vector<Vector2> &pixelPoints,
                                       int windowWidth,
                                       int windowHeight,
                                       std::vector<Vector3> *outVertices);
    
    // Useful to cast any type to GLubyte.
    template <typename TR, typename TG, typename TB, typename TA>
    GLColor MakeGLColor(TR r, TG g, TB b, TA a)
    {
        return GLColor(static_cast<GLubyte>(r), static_cast<GLubyte>(g), static_cast<GLubyte>(b),
                       static_cast<GLubyte>(a));
    }
    
    GLColor RandomColor(angle::RNG *rng);
    
    bool operator==(const GLColor &a, const GLColor &b);
    bool operator!=(const GLColor &a, const GLColor &b);
    std::ostream &operator<<(std::ostream &ostream, const GLColor &color);
    GLColor ReadColor(GLint x, GLint y);
    
    bool operator==(const GLColorRGB &a, const GLColorRGB &b);
    bool operator!=(const GLColorRGB &a, const GLColorRGB &b);
    std::ostream &operator<<(std::ostream &ostream, const GLColorRGB &color);
    
    // Useful to cast any type to GLfloat.
    template <typename TR, typename TG, typename TB, typename TA>
    GLColor32F MakeGLColor32F(TR r, TG g, TB b, TA a)
    {
        return GLColor32F(static_cast<GLfloat>(r), static_cast<GLfloat>(g), static_cast<GLfloat>(b),
                          static_cast<GLfloat>(a));
    }
    
    template <typename T>
    bool operator==(const GLColorT<T> &a, const GLColorT<T> &b)
    {
        return a.R == b.R && a.G == b.G && a.B == b.B && a.A == b.A;
    }
    
    std::ostream &operator<<(std::ostream &ostream, const GLColor32F &color);
    GLColor32F ReadColor32F(GLint x, GLint y);
    
    constexpr std::array<GLenum, 6> kCubeFaces = {
        {GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
         GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
         GL_TEXTURE_CUBE_MAP_NEGATIVE_Z}};
    
    void LoadEntryPointsWithUtilLoader(angle::GLESDriverType driver);
    
    bool IsFormatEmulated(GLenum target);
    
    GPUTestConfig::API GetTestConfigAPIFromRenderer(angle::GLESDriverType driverType,
                                                    EGLenum renderer,
                                                    EGLenum deviceType);
    }  // namespace angle
    
    #define EXPECT_PIXEL_EQ(x, y, r, g, b, a) \
        EXPECT_EQ(angle::MakeGLColor(r, g, b, a), angle::ReadColor(x, y))
    
    #define EXPECT_PIXEL_NE(x, y, r, g, b, a) \
        EXPECT_NE(angle::MakeGLColor(r, g, b, a), angle::ReadColor(x, y))
    
    #define EXPECT_PIXEL_32F_EQ(x, y, r, g, b, a) \
        EXPECT_EQ(angle::MakeGLColor32F(r, g, b, a), angle::ReadColor32F(x, y))
    
    #define EXPECT_PIXEL_ALPHA_EQ(x, y, a) EXPECT_EQ(a, angle::ReadColor(x, y).A)
    
    #define EXPECT_PIXEL_ALPHA_NEAR(x, y, a, abs_error) \
        EXPECT_NEAR(a, angle::ReadColor(x, y).A, abs_error);
    
    #define EXPECT_PIXEL_ALPHA32F_EQ(x, y, a) EXPECT_EQ(a, angle::ReadColor32F(x, y).A)
    
    #define EXPECT_PIXEL_COLOR_EQ(x, y, angleColor) EXPECT_EQ(angleColor, angle::ReadColor(x, y))
    #define EXPECT_PIXEL_COLOR_EQ_VEC2(vec2, angleColor) \
        EXPECT_EQ(angleColor,                            \
                  angle::ReadColor(static_cast<GLint>(vec2.x()), static_cast<GLint>(vec2.y())))
    
    #define EXPECT_PIXEL_COLOR32F_EQ(x, y, angleColor) EXPECT_EQ(angleColor, angle::ReadColor32F(x, y))
    
    #define EXPECT_PIXEL_RECT_T_EQ(T, x, y, width, height, format, type, color)           \
        do                                                                                \
        {                                                                                 \
            std::vector<T> actualColors((width) * (height));                              \
            glReadPixels((x), (y), (width), (height), format, type, actualColors.data()); \
            std::vector<T> expectedColors((width) * (height), color);                     \
            EXPECT_EQ(expectedColors, actualColors);                                      \
        } while (0)
    
    #define EXPECT_PIXEL_RECT_EQ(x, y, width, height, color) \
        EXPECT_PIXEL_RECT_T_EQ(GLColor, x, y, width, height, GL_RGBA, GL_UNSIGNED_BYTE, color)
    
    #define EXPECT_PIXEL_RECT32F_EQ(x, y, width, height, color) \
        EXPECT_PIXEL_RECT_T_EQ(GLColor32F, x, y, width, height, GL_RGBA, GL_FLOAT, color)
    
    #define EXPECT_PIXEL_RECT32I_EQ(x, y, width, height, color) \
        EXPECT_PIXEL_RECT_T_EQ(GLColor32I, x, y, width, height, GL_RGBA_INTEGER, GL_INT, color)
    
    #define EXPECT_PIXEL_RECT32UI_EQ(x, y, width, height, color)                                   \
        EXPECT_PIXEL_RECT_T_EQ(GLColor32UI, x, y, width, height, GL_RGBA_INTEGER, GL_UNSIGNED_INT, \
                               color)
    
    #define EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, ctype, format, type) \
        do                                                                             \
        {                                                                              \
            ctype pixel[4];                                                            \
            glReadPixels((x), (y), 1, 1, format, type, pixel);                         \
            EXPECT_GL_NO_ERROR();                                                      \
            EXPECT_NEAR((r), pixel[0], abs_error);                                     \
            EXPECT_NEAR((g), pixel[1], abs_error);                                     \
            EXPECT_NEAR((b), pixel[2], abs_error);                                     \
            EXPECT_NEAR((a), pixel[3], abs_error);                                     \
        } while (0)
    
    #define EXPECT_PIXEL_EQ_HELPER(x, y, r, g, b, a, ctype, format, type) \
        do                                                                \
        {                                                                 \
            ctype pixel[4];                                               \
            glReadPixels((x), (y), 1, 1, format, type, pixel);            \
            EXPECT_GL_NO_ERROR();                                         \
            EXPECT_EQ((r), pixel[0]);                                     \
            EXPECT_EQ((g), pixel[1]);                                     \
            EXPECT_EQ((b), pixel[2]);                                     \
            EXPECT_EQ((a), pixel[3]);                                     \
        } while (0)
    
    #define EXPECT_PIXEL_NEAR(x, y, r, g, b, a, abs_error) \
        EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, GLubyte, GL_RGBA, GL_UNSIGNED_BYTE)
    
    #define EXPECT_PIXEL_16_NEAR(x, y, r, g, b, a, abs_error) \
        EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, GLushort, GL_RGBA, GL_UNSIGNED_SHORT)
    
    #define EXPECT_PIXEL_8S_NEAR(x, y, r, g, b, a, abs_error) \
        EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, GLbyte, GL_RGBA, GL_BYTE)
    
    #define EXPECT_PIXEL_16S_NEAR(x, y, r, g, b, a, abs_error) \
        EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, GLshort, GL_RGBA, GL_SHORT)
    
    #define EXPECT_PIXEL_32F_NEAR(x, y, r, g, b, a, abs_error) \
        EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, GLfloat, GL_RGBA, GL_FLOAT)
    
    #define EXPECT_PIXEL_8I(x, y, r, g, b, a) \
        EXPECT_PIXEL_EQ_HELPER(x, y, r, g, b, a, GLbyte, GL_RGBA_INTEGER, GL_BYTE)
    
    #define EXPECT_PIXEL_8UI(x, y, r, g, b, a) \
        EXPECT_PIXEL_EQ_HELPER(x, y, r, g, b, a, GLubyte, GL_RGBA_INTEGER, GL_UNSIGNED_BYTE)
    
    #define EXPECT_PIXEL_32UI(x, y, r, g, b, a) \
        EXPECT_PIXEL_EQ_HELPER(x, y, r, g, b, a, GLuint, GL_RGBA_INTEGER, GL_UNSIGNED_INT)
    
    #define EXPECT_PIXEL_32I(x, y, r, g, b, a) \
        EXPECT_PIXEL_EQ_HELPER(x, y, r, g, b, a, GLint, GL_RGBA_INTEGER, GL_INT)
    
    #define EXPECT_PIXEL_32UI_COLOR(x, y, color) \
        EXPECT_PIXEL_32UI(x, y, color.R, color.G, color.B, color.A)
    
    #define EXPECT_PIXEL_32I_COLOR(x, y, color) \
        EXPECT_PIXEL_32I(x, y, color.R, color.G, color.B, color.A)
    
    // TODO(jmadill): Figure out how we can use GLColor's nice printing with EXPECT_NEAR.
    #define EXPECT_PIXEL_COLOR_NEAR(x, y, angleColor, abs_error) \
        EXPECT_PIXEL_NEAR(x, y, angleColor.R, angleColor.G, angleColor.B, angleColor.A, abs_error)
    
    #define EXPECT_PIXEL_COLOR16_NEAR(x, y, angleColor, abs_error) \
        EXPECT_PIXEL_16_NEAR(x, y, angleColor.R, angleColor.G, angleColor.B, angleColor.A, abs_error)
    
    #define EXPECT_PIXEL_COLOR32F_NEAR(x, y, angleColor, abs_error) \
        EXPECT_PIXEL32F_NEAR(x, y, angleColor.R, angleColor.G, angleColor.B, angleColor.A, abs_error)
    
    #define EXPECT_COLOR_NEAR(expected, actual, abs_error) \
        do                                                 \
        {                                                  \
            EXPECT_NEAR(expected.R, actual.R, abs_error);  \
            EXPECT_NEAR(expected.G, actual.G, abs_error);  \
            EXPECT_NEAR(expected.B, actual.B, abs_error);  \
            EXPECT_NEAR(expected.A, actual.A, abs_error);  \
        } while (0)
    #define EXPECT_PIXEL32F_NEAR(x, y, r, g, b, a, abs_error)       \
        do                                                          \
        {                                                           \
            GLfloat pixel[4];                                       \
            glReadPixels((x), (y), 1, 1, GL_RGBA, GL_FLOAT, pixel); \
            EXPECT_GL_NO_ERROR();                                   \
            EXPECT_NEAR((r), pixel[0], abs_error);                  \
            EXPECT_NEAR((g), pixel[1], abs_error);                  \
            EXPECT_NEAR((b), pixel[2], abs_error);                  \
            EXPECT_NEAR((a), pixel[3], abs_error);                  \
        } while (0)
    
    #define EXPECT_PIXEL_COLOR32F_NEAR(x, y, angleColor, abs_error) \
        EXPECT_PIXEL32F_NEAR(x, y, angleColor.R, angleColor.G, angleColor.B, angleColor.A, abs_error)
    
    #define EXPECT_PIXEL_STENCIL_EQ(x, y, expected)                                    \
        do                                                                             \
        {                                                                              \
            GLubyte actual;                                                            \
            glReadPixels((x), (y), 1, 1, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, &actual); \
            EXPECT_GL_NO_ERROR();                                                      \
            EXPECT_EQ((expected), actual);                                             \
        } while (0)
    
    class ANGLETestBase;
    class EGLWindow;
    class GLWindowBase;
    class OSWindow;
    class WGLWindow;
    
    struct TestPlatformContext final : private angle::NonCopyable
    {
        bool ignoreMessages        = false;
        bool warningsAsErrors      = false;
        ANGLETestBase *currentTest = nullptr;
    };
    
    class ANGLETestBase
    {
      protected:
        ANGLETestBase(const angle::PlatformParameters &params);
        virtual ~ANGLETestBase();
    
      public:
        void setWindowVisible(OSWindow *osWindow, bool isVisible);
    
        static void ReleaseFixtures();
    
        bool isSwiftshader() const
        {
            // Renderer might be swiftshader even if local swiftshader not used.
            return mCurrentParams->isSwiftshader() || angle::IsSwiftshaderDevice();
        }
    
        bool enableDebugLayers() const
        {
            return mCurrentParams->eglParameters.debugLayersEnabled != EGL_FALSE;
        }
    
        void *operator new(size_t size);
        void operator delete(void *ptr);
    
      protected:
        void ANGLETestSetUp();
        void ANGLETestSetUpCL();
        void ANGLETestPreTearDown();
        void ANGLETestTearDown();
        void ANGLETestTearDownCL();
    
        virtual void swapBuffers();
    
        void setupQuadVertexBuffer(GLfloat positionAttribZ, GLfloat positionAttribXYScale);
        void setupIndexedQuadVertexBuffer(GLfloat positionAttribZ, GLfloat positionAttribXYScale);
        void setupIndexedQuadIndexBuffer();
    
        void drawQuad(GLuint program, const std::string &positionAttribName, GLfloat positionAttribZ);
        void drawQuad(GLuint program,
                      const std::string &positionAttribName,
                      GLfloat positionAttribZ,
                      GLfloat positionAttribXYScale);
        void drawQuad(GLuint program,
                      const std::string &positionAttribName,
                      GLfloat positionAttribZ,
                      GLfloat positionAttribXYScale,
                      bool useVertexBuffer);
        void drawQuadInstanced(GLuint program,
                               const std::string &positionAttribName,
                               GLfloat positionAttribZ,
                               GLfloat positionAttribXYScale,
                               bool useVertexBuffer,
                               GLuint numInstances);
        void drawPatches(GLuint program,
                         const std::string &positionAttribName,
                         GLfloat positionAttribZ,
                         GLfloat positionAttribXYScale,
                         bool useVertexBuffer);
    
        void drawQuadPPO(GLuint vertProgram,
                         const std::string &positionAttribName,
                         const GLfloat positionAttribZ,
                         const GLfloat positionAttribXYScale);
    
        static std::array<angle::Vector3, 6> GetQuadVertices();
        static std::array<GLushort, 6> GetQuadIndices();
        static std::array<angle::Vector3, 4> GetIndexedQuadVertices();
    
        void drawIndexedQuad(GLuint program,
                             const std::string &positionAttribName,
                             GLfloat positionAttribZ);
        void drawIndexedQuad(GLuint program,
                             const std::string &positionAttribName,
                             GLfloat positionAttribZ,
                             GLfloat positionAttribXYScale);
        void drawIndexedQuad(GLuint program,
                             const std::string &positionAttribName,
                             GLfloat positionAttribZ,
                             GLfloat positionAttribXYScale,
                             bool useBufferObject);
    
        void drawIndexedQuad(GLuint program,
                             const std::string &positionAttribName,
                             GLfloat positionAttribZ,
                             GLfloat positionAttribXYScale,
                             bool useBufferObject,
                             bool restrictedRange);
    
        void draw2DTexturedQuad(GLfloat positionAttribZ,
                                GLfloat positionAttribXYScale,
                                bool useVertexBuffer);
    
        // The layer parameter chooses the 3D texture layer to sample from.
        void draw3DTexturedQuad(GLfloat positionAttribZ,
                                GLfloat positionAttribXYScale,
                                bool useVertexBuffer,
                                float layer);
    
        // The layer parameter chooses the 2DArray texture layer to sample from.
        void draw2DArrayTexturedQuad(GLfloat positionAttribZ,
                                     GLfloat positionAttribXYScale,
                                     bool useVertexBuffer,
                                     float layer);
    
        void setWindowWidth(int width);
        void setWindowHeight(int height);
        void setConfigRedBits(int bits);
        void setConfigGreenBits(int bits);
        void setConfigBlueBits(int bits);
        void setConfigAlphaBits(int bits);
        void setConfigDepthBits(int bits);
        void setConfigStencilBits(int bits);
        void setConfigComponentType(EGLenum componentType);
        void setMultisampleEnabled(bool enabled);
        void setSamples(EGLint samples);
        void setDebugEnabled(bool enabled);
        void setNoErrorEnabled(bool enabled);
        void setWebGLCompatibilityEnabled(bool webglCompatibility);
        void setExtensionsEnabled(bool extensionsEnabled);
        void setRobustAccess(bool enabled);
        void setBindGeneratesResource(bool bindGeneratesResource);
        void setClientArraysEnabled(bool enabled);
        void setRobustResourceInit(bool enabled);
        void setMutableRenderBuffer(bool enabled);
        void setContextProgramCacheEnabled(bool enabled);
        void setContextResetStrategy(EGLenum resetStrategy);
        void forceNewDisplay();
    
        // Some EGL extension tests would like to defer the Context init until the test body.
        void setDeferContextInit(bool enabled);
    
        int getClientMajorVersion() const;
        int getClientMinorVersion() const;
    
        GLWindowBase *getGLWindow() const;
        EGLWindow *getEGLWindow() const;
        int getWindowWidth() const;
        int getWindowHeight() const;
    
        EGLint getPlatformRenderer() const;
    
        void ignoreD3D11SDKLayersWarnings();
    
        OSWindow *getOSWindow() { return mFixture->osWindow; }
    
        GLuint get2DTexturedQuadProgram();
    
        // Has a float uniform "u_layer" to choose the 3D texture layer.
        GLuint get3DTexturedQuadProgram();
    
        // Has a float uniform "u_layer" to choose the 2DArray texture layer.
        GLuint get2DArrayTexturedQuadProgram();
    
        class [[nodiscard]] ScopedIgnorePlatformMessages : angle::NonCopyable
        {
          public:
            ScopedIgnorePlatformMessages();
            ~ScopedIgnorePlatformMessages();
        };
    
        // Can be used before we get a GL context.
        bool isGLRenderer() const
        {
            return mCurrentParams->getRenderer() == EGL_PLATFORM_ANGLE_TYPE_OPENGL_ANGLE;
        }
    
        bool isGLESRenderer() const
        {
            return mCurrentParams->getRenderer() == EGL_PLATFORM_ANGLE_TYPE_OPENGLES_ANGLE;
        }
    
        bool isD3D11Renderer() const
        {
            return mCurrentParams->getRenderer() == EGL_PLATFORM_ANGLE_TYPE_D3D11_ANGLE;
        }
    
        bool isVulkanRenderer() const
        {
            return mCurrentParams->getRenderer() == EGL_PLATFORM_ANGLE_TYPE_VULKAN_ANGLE;
        }
    
        bool isVulkanSwiftshaderRenderer() const
        {
            return mCurrentParams->getRenderer() == EGL_PLATFORM_ANGLE_TYPE_VULKAN_ANGLE &&
                   mCurrentParams->isSwiftshader();
        }
    
        bool platformSupportsMultithreading() const;
    
        bool mIsSetUp = false;
    
      private:
        void checkD3D11SDKLayersMessages();
    
        void drawQuad(GLuint program,
                      const std::string &positionAttribName,
                      GLfloat positionAttribZ,
                      GLfloat positionAttribXYScale,
                      bool useVertexBuffer,
                      bool useInstancedDrawCalls,
                      bool useTessellationPatches,
                      GLuint numInstances);
    
        void initOSWindow();
    
        struct TestFixture
        {
            TestFixture();
            ~TestFixture();
    
            EGLWindow *eglWindow = nullptr;
            WGLWindow *wglWindow = nullptr;
            OSWindow *osWindow   = nullptr;
            ConfigParameters configParams;
            uint32_t reuseCounter = 0;
        };
    
        int mWidth;
        int mHeight;
    
        bool mIgnoreD3D11SDKLayersWarnings;
    
        // Used for indexed quad rendering
        GLuint mQuadVertexBuffer;
        GLuint mQuadIndexBuffer;
    
        // Used for texture rendering.
        GLuint m2DTexturedQuadProgram;
        GLuint m3DTexturedQuadProgram;
        GLuint m2DArrayTexturedQuadProgram;
    
        bool mDeferContextInit;
        bool mAlwaysForceNewDisplay;
        bool mForceNewDisplay;
    
        bool mSetUpCalled;
        bool mTearDownCalled;
    
        // Usually, we use an OS Window per "fixture" (a frontend and backend combination).
        // This allows:
        // 1. Reusing EGL Display on Windows.
        //    Other platforms have issues with display reuse even if a window per fixture is used.
        // 2. Hiding only SwiftShader OS Window on Linux.
        //    OS Windows for other backends must be visible, to allow driver to communicate with X11.
        // However, we must use a single OS Window for all backends on Android,
        // since test Application can have only one window.
        static OSWindow *mOSWindowSingleton;
    
        static std::map<angle::PlatformParameters, TestFixture> gFixtures;
        const angle::PlatformParameters *mCurrentParams;
        TestFixture *mFixture;
    
        RenderDoc mRenderDoc;
    
        // Workaround for NVIDIA not being able to share a window with OpenGL and Vulkan.
        static Optional<EGLint> mLastRendererType;
        static Optional<angle::GLESDriverType> mLastLoadedDriver;
    };
    
    template <typename Params = angle::PlatformParameters>
    class ANGLETest : public ANGLETestBase, public ::testing::TestWithParam<Params>
    {
      protected:
        ANGLETest();
    
        virtual void testSetUp() {}
        virtual void testTearDown() {}
    
        void recreateTestFixture()
        {
            TearDown();
            SetUp();
        }
    
      private:
        void SetUp() final
        {
            ANGLETestBase::ANGLETestSetUp();
    
            if (mIsSetUp)
            {
                testSetUp();
            }
        }
    
        void TearDown() final
        {
            ANGLETestBase::ANGLETestPreTearDown();
            if (mIsSetUp)
            {
                testTearDown();
            }
            ANGLETestBase::ANGLETestTearDown();
        }
    };
    
    enum class APIExtensionVersion
    {
        Core,
        OES,
        EXT,
        KHR,
    };
    
    template <typename Params>
    ANGLETest<Params>::ANGLETest()
        : ANGLETestBase(std::get<angle::PlatformParameters>(this->GetParam()))
    {}
    
    template <>
    inline ANGLETest<angle::PlatformParameters>::ANGLETest() : ANGLETestBase(this->GetParam())
    {}
    
    class ANGLETestEnvironment : public testing::Environment
    {
      public:
        void SetUp() override;
        void TearDown() override;
    
        static angle::Library *GetDriverLibrary(angle::GLESDriverType driver);
    
      private:
        static angle::Library *GetAngleEGLLibrary();
        static angle::Library *GetAngleVulkanSecondariesEGLLibrary();
        static angle::Library *GetMesaEGLLibrary();
        static angle::Library *GetSystemEGLLibrary();
        static angle::Library *GetSystemWGLLibrary();
    
        // For loading entry points.
        static std::unique_ptr<angle::Library> gAngleEGLLibrary;
        static std::unique_ptr<angle::Library> gAngleVulkanSecondariesEGLLibrary;
        static std::unique_ptr<angle::Library> gMesaEGLLibrary;
        static std::unique_ptr<angle::Library> gSystemEGLLibrary;
        static std::unique_ptr<angle::Library> gSystemWGLLibrary;
    };
    
    extern angle::PlatformMethods gDefaultPlatformMethods;
    
    int GetTestStartDelaySeconds();
    
    #endif  // ANGLE_TESTS_ANGLE_TEST_H_