Hash :
fc1806e1
Author :
Date :
2015-03-17T13:03:11
Move most of addBinaryMath from Intermediate to ParseContext Some type checks for binary math will be different based on the shading language version, which is easily accessible in ParseContext. Because of this and also for architectural simplicity it makes more sense to have the checks in ParseContext. BUG=angle:941 TEST=angle_unittests, WebGL conformance tests Change-Id: I92a499f47e1cbc6a7b6391ce0fa04284803e7140 Reviewed-on: https://chromium-review.googlesource.com/260570 Tested-by: Olli Etuaho <oetuaho@nvidia.com> Reviewed-by: Zhenyao Mo <zmo@chromium.org> Reviewed-by: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
//
// Build the intermediate representation.
//
#include <float.h>
#include <limits.h>
#include <algorithm>
#include "compiler/translator/Intermediate.h"
#include "compiler/translator/SymbolTable.h"
////////////////////////////////////////////////////////////////////////////
//
// First set of functions are to help build the intermediate representation.
// These functions are not member functions of the nodes.
// They are called from parser productions.
//
/////////////////////////////////////////////////////////////////////////////
//
// Add a terminal node for an identifier in an expression.
//
// Returns the added node.
//
TIntermSymbol *TIntermediate::addSymbol(
int id, const TString &name, const TType &type, const TSourceLoc &line)
{
TIntermSymbol *node = new TIntermSymbol(id, name, type);
node->setLine(line);
return node;
}
//
// Connect two nodes with a new parent that does a binary operation on the nodes.
//
// Returns the added node.
//
TIntermTyped *TIntermediate::addBinaryMath(
TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &line)
{
//
// Need a new node holding things together then. Make
// one and promote it to the right type.
//
TIntermBinary *node = new TIntermBinary(op);
node->setLine(line);
node->setLeft(left);
node->setRight(right);
if (!node->promote(mInfoSink))
return NULL;
//
// See if we can fold constants.
//
TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
if (leftTempConstant && rightTempConstant)
{
TIntermTyped *typedReturnNode =
leftTempConstant->fold(node->getOp(), rightTempConstant, mInfoSink);
if (typedReturnNode)
return typedReturnNode;
}
return node;
}
//
// Connect two nodes through an assignment.
//
// Returns the added node.
//
TIntermTyped *TIntermediate::addAssign(
TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &line)
{
if (left->getType().getStruct() || right->getType().getStruct())
{
if (left->getType() != right->getType())
{
return NULL;
}
}
TIntermBinary *node = new TIntermBinary(op);
node->setLine(line);
node->setLeft(left);
node->setRight(right);
if (!node->promote(mInfoSink))
return NULL;
return node;
}
//
// Connect two nodes through an index operator, where the left node is the base
// of an array or struct, and the right node is a direct or indirect offset.
//
// Returns the added node.
// The caller should set the type of the returned node.
//
TIntermTyped *TIntermediate::addIndex(
TOperator op, TIntermTyped *base, TIntermTyped *index, const TSourceLoc &line)
{
TIntermBinary *node = new TIntermBinary(op);
node->setLine(line);
node->setLeft(base);
node->setRight(index);
// caller should set the type
return node;
}
//
// Add one node as the parent of another that it operates on.
//
// Returns the added node.
//
TIntermTyped *TIntermediate::addUnaryMath(
TOperator op, TIntermNode *childNode, const TSourceLoc &line)
{
TIntermUnary *node;
TIntermTyped *child = childNode->getAsTyped();
if (child == NULL)
{
mInfoSink.info.message(EPrefixInternalError, line,
"Bad type in AddUnaryMath");
return NULL;
}
switch (op)
{
case EOpLogicalNot:
if (child->getBasicType() != EbtBool ||
child->isMatrix() ||
child->isArray() ||
child->isVector())
{
return NULL;
}
break;
case EOpBitwiseNot:
if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) ||
child->isMatrix() ||
child->isArray())
{
return NULL;
}
break;
case EOpPostIncrement:
case EOpPreIncrement:
case EOpPostDecrement:
case EOpPreDecrement:
case EOpNegative:
case EOpPositive:
if (child->getBasicType() == EbtStruct ||
child->isArray())
{
return NULL;
}
default:
break;
}
TIntermConstantUnion *childTempConstant = 0;
if (child->getAsConstantUnion())
childTempConstant = child->getAsConstantUnion();
//
// Make a new node for the operator.
//
node = new TIntermUnary(op);
node->setLine(line);
node->setOperand(child);
if (!node->promote(mInfoSink))
return 0;
switch (op)
{
case EOpPackSnorm2x16:
case EOpPackUnorm2x16:
case EOpPackHalf2x16:
case EOpUnpackSnorm2x16:
case EOpUnpackUnorm2x16:
node->getTypePointer()->setPrecision(EbpHigh);
break;
case EOpUnpackHalf2x16:
node->getTypePointer()->setPrecision(EbpMedium);
break;
default:
break;
}
if (childTempConstant)
{
TIntermTyped *newChild = childTempConstant->fold(op, 0, mInfoSink);
if (newChild)
return newChild;
}
return node;
}
//
// This is the safe way to change the operator on an aggregate, as it
// does lots of error checking and fixing. Especially for establishing
// a function call's operation on it's set of parameters. Sequences
// of instructions are also aggregates, but they just direnctly set
// their operator to EOpSequence.
//
// Returns an aggregate node, which could be the one passed in if
// it was already an aggregate but no operator was set.
//
TIntermAggregate *TIntermediate::setAggregateOperator(
TIntermNode *node, TOperator op, const TSourceLoc &line)
{
TIntermAggregate *aggNode;
//
// Make sure we have an aggregate. If not turn it into one.
//
if (node)
{
aggNode = node->getAsAggregate();
if (aggNode == NULL || aggNode->getOp() != EOpNull)
{
//
// Make an aggregate containing this node.
//
aggNode = new TIntermAggregate();
aggNode->getSequence()->push_back(node);
}
}
else
{
aggNode = new TIntermAggregate();
}
//
// Set the operator.
//
aggNode->setOp(op);
aggNode->setLine(line);
return aggNode;
}
//
// Safe way to combine two nodes into an aggregate. Works with null pointers,
// a node that's not a aggregate yet, etc.
//
// Returns the resulting aggregate, unless 0 was passed in for
// both existing nodes.
//
TIntermAggregate *TIntermediate::growAggregate(
TIntermNode *left, TIntermNode *right, const TSourceLoc &line)
{
if (left == NULL && right == NULL)
return NULL;
TIntermAggregate *aggNode = NULL;
if (left)
aggNode = left->getAsAggregate();
if (!aggNode || aggNode->getOp() != EOpNull)
{
aggNode = new TIntermAggregate;
if (left)
aggNode->getSequence()->push_back(left);
}
if (right)
aggNode->getSequence()->push_back(right);
aggNode->setLine(line);
return aggNode;
}
//
// Turn an existing node into an aggregate.
//
// Returns an aggregate, unless NULL was passed in for the existing node.
//
TIntermAggregate *TIntermediate::makeAggregate(
TIntermNode *node, const TSourceLoc &line)
{
if (node == NULL)
return NULL;
TIntermAggregate *aggNode = new TIntermAggregate;
aggNode->getSequence()->push_back(node);
aggNode->setLine(line);
return aggNode;
}
//
// For "if" test nodes. There are three children; a condition,
// a true path, and a false path. The two paths are in the
// nodePair.
//
// Returns the selection node created.
//
TIntermNode *TIntermediate::addSelection(
TIntermTyped *cond, TIntermNodePair nodePair, const TSourceLoc &line)
{
//
// For compile time constant selections, prune the code and
// test now.
//
if (cond->getAsTyped() && cond->getAsTyped()->getAsConstantUnion())
{
if (cond->getAsConstantUnion()->getBConst(0) == true)
{
return nodePair.node1 ? setAggregateOperator(
nodePair.node1, EOpSequence, nodePair.node1->getLine()) : NULL;
}
else
{
return nodePair.node2 ? setAggregateOperator(
nodePair.node2, EOpSequence, nodePair.node2->getLine()) : NULL;
}
}
TIntermSelection *node = new TIntermSelection(
cond, nodePair.node1, nodePair.node2);
node->setLine(line);
return node;
}
TIntermTyped *TIntermediate::addComma(
TIntermTyped *left, TIntermTyped *right, const TSourceLoc &line)
{
if (left->getType().getQualifier() == EvqConst &&
right->getType().getQualifier() == EvqConst)
{
return right;
}
else
{
TIntermTyped *commaAggregate = growAggregate(left, right, line);
commaAggregate->getAsAggregate()->setOp(EOpComma);
commaAggregate->setType(right->getType());
commaAggregate->getTypePointer()->setQualifier(EvqTemporary);
return commaAggregate;
}
}
//
// For "?:" test nodes. There are three children; a condition,
// a true path, and a false path. The two paths are specified
// as separate parameters.
//
// Returns the selection node created, or 0 if one could not be.
//
TIntermTyped *TIntermediate::addSelection(
TIntermTyped *cond, TIntermTyped *trueBlock, TIntermTyped *falseBlock,
const TSourceLoc &line)
{
if (!cond || !trueBlock || !falseBlock ||
trueBlock->getType() != falseBlock->getType())
{
return NULL;
}
//
// See if all the operands are constant, then fold it otherwise not.
//
if (cond->getAsConstantUnion() &&
trueBlock->getAsConstantUnion() &&
falseBlock->getAsConstantUnion())
{
if (cond->getAsConstantUnion()->getBConst(0))
return trueBlock;
else
return falseBlock;
}
//
// Make a selection node.
//
TIntermSelection *node = new TIntermSelection(
cond, trueBlock, falseBlock, trueBlock->getType());
node->getTypePointer()->setQualifier(EvqTemporary);
node->setLine(line);
return node;
}
TIntermSwitch *TIntermediate::addSwitch(
TIntermTyped *init, TIntermAggregate *statementList, const TSourceLoc &line)
{
TIntermSwitch *node = new TIntermSwitch(init, statementList);
node->setLine(line);
return node;
}
TIntermCase *TIntermediate::addCase(
TIntermTyped *condition, const TSourceLoc &line)
{
TIntermCase *node = new TIntermCase(condition);
node->setLine(line);
return node;
}
//
// Constant terminal nodes. Has a union that contains bool, float or int constants
//
// Returns the constant union node created.
//
TIntermConstantUnion *TIntermediate::addConstantUnion(
ConstantUnion *unionArrayPointer, const TType &t, const TSourceLoc &line)
{
TIntermConstantUnion *node = new TIntermConstantUnion(unionArrayPointer, t);
node->setLine(line);
return node;
}
TIntermTyped *TIntermediate::addSwizzle(
TVectorFields &fields, const TSourceLoc &line)
{
TIntermAggregate *node = new TIntermAggregate(EOpSequence);
node->setLine(line);
TIntermConstantUnion *constIntNode;
TIntermSequence *sequenceVector = node->getSequence();
ConstantUnion *unionArray;
for (int i = 0; i < fields.num; i++)
{
unionArray = new ConstantUnion[1];
unionArray->setIConst(fields.offsets[i]);
constIntNode = addConstantUnion(
unionArray, TType(EbtInt, EbpUndefined, EvqConst), line);
sequenceVector->push_back(constIntNode);
}
return node;
}
//
// Create loop nodes.
//
TIntermNode *TIntermediate::addLoop(
TLoopType type, TIntermNode *init, TIntermTyped *cond, TIntermTyped *expr,
TIntermNode *body, const TSourceLoc &line)
{
TIntermNode *node = new TIntermLoop(type, init, cond, expr, body);
node->setLine(line);
return node;
}
//
// Add branches.
//
TIntermBranch* TIntermediate::addBranch(
TOperator branchOp, const TSourceLoc &line)
{
return addBranch(branchOp, 0, line);
}
TIntermBranch* TIntermediate::addBranch(
TOperator branchOp, TIntermTyped *expression, const TSourceLoc &line)
{
TIntermBranch *node = new TIntermBranch(branchOp, expression);
node->setLine(line);
return node;
}
//
// This is to be executed once the final root is put on top by the parsing
// process.
//
bool TIntermediate::postProcess(TIntermNode *root)
{
if (root == NULL)
return true;
//
// First, finish off the top level sequence, if any
//
TIntermAggregate *aggRoot = root->getAsAggregate();
if (aggRoot && aggRoot->getOp() == EOpNull)
aggRoot->setOp(EOpSequence);
return true;
}