Hash :
59f9a641
Author :
Date :
2015-08-06T20:38:26
Remove EOpInternalFunctionCall It's cleaner to mark internal functions by using the TName class, similarly to TIntermSymbol. TEST=angle_unittests BUG=angleproject:1116 Change-Id: I12a03a3dea42b3fc571fa25a1b11d0161f24de72 Reviewed-on: https://chromium-review.googlesource.com/291621 Reviewed-by: Jamie Madill <jmadill@chromium.org> Tested-by: Olli Etuaho <oetuaho@nvidia.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/EmulatePrecision.h"
namespace
{
static void writeVectorPrecisionEmulationHelpers(
TInfoSinkBase& sink, ShShaderOutput outputLanguage, unsigned int size)
{
std::stringstream vecTypeStrStr;
if (outputLanguage == SH_ESSL_OUTPUT)
vecTypeStrStr << "highp ";
vecTypeStrStr << "vec" << size;
std::string vecType = vecTypeStrStr.str();
sink <<
vecType << " angle_frm(in " << vecType << " v) {\n"
" v = clamp(v, -65504.0, 65504.0);\n"
" " << vecType << " exponent = floor(log2(abs(v) + 1e-30)) - 10.0;\n"
" bvec" << size << " isNonZero = greaterThanEqual(exponent, vec" << size << "(-25.0));\n"
" v = v * exp2(-exponent);\n"
" v = sign(v) * floor(abs(v));\n"
" return v * exp2(exponent) * vec" << size << "(isNonZero);\n"
"}\n";
sink <<
vecType << " angle_frl(in " << vecType << " v) {\n"
" v = clamp(v, -2.0, 2.0);\n"
" v = v * 256.0;\n"
" v = sign(v) * floor(abs(v));\n"
" return v * 0.00390625;\n"
"}\n";
}
static void writeMatrixPrecisionEmulationHelper(
TInfoSinkBase& sink, ShShaderOutput outputLanguage, unsigned int size, const char *functionName)
{
std::stringstream matTypeStrStr;
if (outputLanguage == SH_ESSL_OUTPUT)
matTypeStrStr << "highp ";
matTypeStrStr << "mat" << size;
std::string matType = matTypeStrStr.str();
sink << matType << " " << functionName << "(in " << matType << " m) {\n"
" " << matType << " rounded;\n";
for (unsigned int i = 0; i < size; ++i)
{
sink << " rounded[" << i << "] = " << functionName << "(m[" << i << "]);\n";
}
sink << " return rounded;\n"
"}\n";
}
static void writeCommonPrecisionEmulationHelpers(TInfoSinkBase& sink, ShShaderOutput outputLanguage)
{
// Write the angle_frm functions that round floating point numbers to
// half precision, and angle_frl functions that round them to minimum lowp
// precision.
// Unoptimized version of angle_frm for single floats:
//
// int webgl_maxNormalExponent(in int exponentBits) {
// int possibleExponents = int(exp2(float(exponentBits)));
// int exponentBias = possibleExponents / 2 - 1;
// int allExponentBitsOne = possibleExponents - 1;
// return (allExponentBitsOne - 1) - exponentBias;
// }
//
// float angle_frm(in float x) {
// int mantissaBits = 10;
// int exponentBits = 5;
// float possibleMantissas = exp2(float(mantissaBits));
// float mantissaMax = 2.0 - 1.0 / possibleMantissas;
// int maxNE = webgl_maxNormalExponent(exponentBits);
// float max = exp2(float(maxNE)) * mantissaMax;
// if (x > max) {
// return max;
// }
// if (x < -max) {
// return -max;
// }
// float exponent = floor(log2(abs(x)));
// if (abs(x) == 0.0 || exponent < -float(maxNE)) {
// return 0.0 * sign(x)
// }
// x = x * exp2(-(exponent - float(mantissaBits)));
// x = sign(x) * floor(abs(x));
// return x * exp2(exponent - float(mantissaBits));
// }
// All numbers with a magnitude less than 2^-15 are subnormal, and are
// flushed to zero.
// Note the constant numbers below:
// a) 65504 is the maximum possible mantissa (1.1111111111 in binary) times
// 2^15, the maximum normal exponent.
// b) 10.0 is the number of mantissa bits.
// c) -25.0 is the minimum normal half-float exponent -15.0 minus the number
// of mantissa bits.
// d) + 1e-30 is to make sure the argument of log2() won't be zero. It can
// only affect the result of log2 on x where abs(x) < 1e-22. Since these
// numbers will be flushed to zero either way (2^-15 is the smallest
// normal positive number), this does not introduce any error.
std::string floatType = "float";
if (outputLanguage == SH_ESSL_OUTPUT)
floatType = "highp float";
sink <<
floatType << " angle_frm(in " << floatType << " x) {\n"
" x = clamp(x, -65504.0, 65504.0);\n"
" " << floatType << " exponent = floor(log2(abs(x) + 1e-30)) - 10.0;\n"
" bool isNonZero = (exponent >= -25.0);\n"
" x = x * exp2(-exponent);\n"
" x = sign(x) * floor(abs(x));\n"
" return x * exp2(exponent) * float(isNonZero);\n"
"}\n";
sink <<
floatType << " angle_frl(in " << floatType << " x) {\n"
" x = clamp(x, -2.0, 2.0);\n"
" x = x * 256.0;\n"
" x = sign(x) * floor(abs(x));\n"
" return x * 0.00390625;\n"
"}\n";
writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 2);
writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 3);
writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 4);
for (unsigned int size = 2; size <= 4; ++size)
{
writeMatrixPrecisionEmulationHelper(sink, outputLanguage, size, "angle_frm");
writeMatrixPrecisionEmulationHelper(sink, outputLanguage, size, "angle_frl");
}
}
static void writeCompoundAssignmentPrecisionEmulation(
TInfoSinkBase& sink, ShShaderOutput outputLanguage,
const char *lType, const char *rType, const char *opStr, const char *opNameStr)
{
std::string lTypeStr = lType;
std::string rTypeStr = rType;
if (outputLanguage == SH_ESSL_OUTPUT)
{
std::stringstream lTypeStrStr;
lTypeStrStr << "highp " << lType;
lTypeStr = lTypeStrStr.str();
std::stringstream rTypeStrStr;
rTypeStrStr << "highp " << rType;
rTypeStr = rTypeStrStr.str();
}
// Note that y should be passed through angle_frm at the function call site,
// but x can't be passed through angle_frm there since it is an inout parameter.
// So only pass x and the result through angle_frm here.
sink <<
lTypeStr << " angle_compound_" << opNameStr << "_frm(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n"
" x = angle_frm(angle_frm(x) " << opStr << " y);\n"
" return x;\n"
"}\n";
sink <<
lTypeStr << " angle_compound_" << opNameStr << "_frl(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n"
" x = angle_frl(angle_frm(x) " << opStr << " y);\n"
" return x;\n"
"}\n";
}
const char *getFloatTypeStr(const TType& type)
{
switch (type.getNominalSize())
{
case 1:
return "float";
case 2:
switch(type.getSecondarySize())
{
case 1:
return "vec2";
case 2:
return "mat2";
case 3:
return "mat2x3";
case 4:
return "mat2x4";
default:
UNREACHABLE();
return NULL;
}
case 3:
switch(type.getSecondarySize())
{
case 1:
return "vec3";
case 2:
return "mat3x2";
case 3:
return "mat3";
case 4:
return "mat3x4";
default:
UNREACHABLE();
return NULL;
}
case 4:
switch(type.getSecondarySize())
{
case 1:
return "vec4";
case 2:
return "mat4x2";
case 3:
return "mat4x3";
case 4:
return "mat4";
default:
UNREACHABLE();
return NULL;
}
default:
UNREACHABLE();
return NULL;
}
}
bool canRoundFloat(const TType &type)
{
return type.getBasicType() == EbtFloat && !type.isNonSquareMatrix() && !type.isArray() &&
(type.getPrecision() == EbpLow || type.getPrecision() == EbpMedium);
}
TIntermAggregate *createInternalFunctionCallNode(TString name, TIntermNode *child)
{
TIntermAggregate *callNode = new TIntermAggregate();
callNode->setOp(EOpFunctionCall);
TName nameObj(TFunction::mangleName(name));
nameObj.setInternal(true);
callNode->setNameObj(nameObj);
callNode->getSequence()->push_back(child);
return callNode;
}
TIntermAggregate *createRoundingFunctionCallNode(TIntermTyped *roundedChild)
{
TString roundFunctionName;
if (roundedChild->getPrecision() == EbpMedium)
roundFunctionName = "angle_frm";
else
roundFunctionName = "angle_frl";
return createInternalFunctionCallNode(roundFunctionName, roundedChild);
}
TIntermAggregate *createCompoundAssignmentFunctionCallNode(TIntermTyped *left, TIntermTyped *right, const char *opNameStr)
{
std::stringstream strstr;
if (left->getPrecision() == EbpMedium)
strstr << "angle_compound_" << opNameStr << "_frm";
else
strstr << "angle_compound_" << opNameStr << "_frl";
TString functionName = strstr.str().c_str();
TIntermAggregate *callNode = createInternalFunctionCallNode(functionName, left);
callNode->getSequence()->push_back(right);
return callNode;
}
bool parentUsesResult(TIntermNode* parent, TIntermNode* node)
{
if (!parent)
{
return false;
}
TIntermAggregate *aggParent = parent->getAsAggregate();
// If the parent's op is EOpSequence, the result is not assigned anywhere,
// so rounding it is not needed. In particular, this can avoid a lot of
// unnecessary rounding of unused return values of assignment.
if (aggParent && aggParent->getOp() == EOpSequence)
{
return false;
}
if (aggParent && aggParent->getOp() == EOpComma && (aggParent->getSequence()->back() != node))
{
return false;
}
return true;
}
} // namespace anonymous
EmulatePrecision::EmulatePrecision(const TSymbolTable &symbolTable, int shaderVersion)
: TLValueTrackingTraverser(true, true, true, symbolTable, shaderVersion),
mDeclaringVariables(false)
{}
void EmulatePrecision::visitSymbol(TIntermSymbol *node)
{
if (canRoundFloat(node->getType()) && !mDeclaringVariables && !isLValueRequiredHere())
{
TIntermNode *parent = getParentNode();
TIntermNode *replacement = createRoundingFunctionCallNode(node);
mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
}
}
bool EmulatePrecision::visitBinary(Visit visit, TIntermBinary *node)
{
bool visitChildren = true;
TOperator op = node->getOp();
// RHS of initialize is not being declared.
if (op == EOpInitialize && visit == InVisit)
mDeclaringVariables = false;
if ((op == EOpIndexDirectStruct || op == EOpVectorSwizzle) && visit == InVisit)
visitChildren = false;
if (visit != PreVisit)
return visitChildren;
const TType& type = node->getType();
bool roundFloat = canRoundFloat(type);
if (roundFloat) {
switch (op) {
// Math operators that can result in a float may need to apply rounding to the return
// value. Note that in the case of assignment, the rounding is applied to its return
// value here, not the value being assigned.
case EOpAssign:
case EOpAdd:
case EOpSub:
case EOpMul:
case EOpDiv:
case EOpVectorTimesScalar:
case EOpVectorTimesMatrix:
case EOpMatrixTimesVector:
case EOpMatrixTimesScalar:
case EOpMatrixTimesMatrix:
{
TIntermNode *parent = getParentNode();
if (!parentUsesResult(parent, node))
{
break;
}
TIntermNode *replacement = createRoundingFunctionCallNode(node);
mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
break;
}
// Compound assignment cases need to replace the operator with a function call.
case EOpAddAssign:
{
mEmulateCompoundAdd.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
TIntermNode *parent = getParentNode();
TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "add");
mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
break;
}
case EOpSubAssign:
{
mEmulateCompoundSub.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
TIntermNode *parent = getParentNode();
TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "sub");
mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
break;
}
case EOpMulAssign:
case EOpVectorTimesMatrixAssign:
case EOpVectorTimesScalarAssign:
case EOpMatrixTimesScalarAssign:
case EOpMatrixTimesMatrixAssign:
{
mEmulateCompoundMul.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
TIntermNode *parent = getParentNode();
TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "mul");
mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
break;
}
case EOpDivAssign:
{
mEmulateCompoundDiv.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
TIntermNode *parent = getParentNode();
TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "div");
mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
break;
}
default:
// The rest of the binary operations should not need precision emulation.
break;
}
}
return visitChildren;
}
bool EmulatePrecision::visitAggregate(Visit visit, TIntermAggregate *node)
{
bool visitChildren = true;
switch (node->getOp())
{
case EOpSequence:
case EOpConstructStruct:
case EOpFunction:
break;
case EOpPrototype:
visitChildren = false;
break;
case EOpParameters:
visitChildren = false;
break;
case EOpInvariantDeclaration:
visitChildren = false;
break;
case EOpDeclaration:
// Variable declaration.
if (visit == PreVisit)
{
mDeclaringVariables = true;
}
else if (visit == InVisit)
{
mDeclaringVariables = true;
}
else
{
mDeclaringVariables = false;
}
break;
case EOpFunctionCall:
{
// Function call.
if (visit == PreVisit)
{
// User-defined function return values are not rounded, this relies on that
// calculations producing the value were rounded.
TIntermNode *parent = getParentNode();
if (canRoundFloat(node->getType()) && !isInFunctionMap(node) &&
parentUsesResult(parent, node))
{
TIntermNode *replacement = createRoundingFunctionCallNode(node);
mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
}
}
break;
}
default:
TIntermNode *parent = getParentNode();
if (canRoundFloat(node->getType()) && visit == PreVisit && parentUsesResult(parent, node))
{
TIntermNode *replacement = createRoundingFunctionCallNode(node);
mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
}
break;
}
return visitChildren;
}
bool EmulatePrecision::visitUnary(Visit visit, TIntermUnary *node)
{
switch (node->getOp())
{
case EOpNegative:
case EOpVectorLogicalNot:
case EOpLogicalNot:
case EOpPostIncrement:
case EOpPostDecrement:
case EOpPreIncrement:
case EOpPreDecrement:
break;
default:
if (canRoundFloat(node->getType()) && visit == PreVisit)
{
TIntermNode *parent = getParentNode();
TIntermNode *replacement = createRoundingFunctionCallNode(node);
mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
}
break;
}
return true;
}
void EmulatePrecision::writeEmulationHelpers(TInfoSinkBase& sink, ShShaderOutput outputLanguage)
{
// Other languages not yet supported
ASSERT(outputLanguage == SH_GLSL_COMPATIBILITY_OUTPUT ||
IsGLSL130OrNewer(outputLanguage) ||
outputLanguage == SH_ESSL_OUTPUT);
writeCommonPrecisionEmulationHelpers(sink, outputLanguage);
EmulationSet::const_iterator it;
for (it = mEmulateCompoundAdd.begin(); it != mEmulateCompoundAdd.end(); it++)
writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "+", "add");
for (it = mEmulateCompoundSub.begin(); it != mEmulateCompoundSub.end(); it++)
writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "-", "sub");
for (it = mEmulateCompoundDiv.begin(); it != mEmulateCompoundDiv.end(); it++)
writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "/", "div");
for (it = mEmulateCompoundMul.begin(); it != mEmulateCompoundMul.end(); it++)
writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "*", "mul");
}