Hash :
5d91dda9
Author :
Date :
2015-06-18T15:47:46
Remove dynamic indexing of matrices and vectors in HLSL
Re-re-relanding after clang warning fix.
Re-re-landing with fix to setting qualifiers on generated nodes. The
previous version failed when a uniform was indexed, because it would
set the uniform qualifier on some of the generated nodes and that
interfered with the operation of UniformsHLSL.
Re-landing after fixing D3D9 specific issues.
HLSL doesn't support dynamic indexing of matrices and vectors, so replace
that with helper functions that unroll dynamic indexing into switch/case
and static indexing.
Both the indexed vector/matrix expression and the index may have side
effects, and these will be evaluated correctly. If necessary, index
expressions that have side effects will be written to a temporary
variable that will replace the index.
Besides dEQP tests, this change is tested by a WebGL 2 conformance test.
In the case that a dynamic index is out-of-range, the base ESSL 3.00 spec
allows undefined behavior. KHR_robust_buffer_access_behavior adds the
requirement that program termination should not occur and that
out-of-range reads must return either a value from the active program's
memory or zero, and out-of-range writes should only affect the active
program's memory or do nothing. This patch clamps out-of-range indices so
that either the first or last item of the matrix/vector is accessed.
The code is not transformed in case the it fits within the limited subset
of ESSL 1.00 given in Appendix A of the spec. If the code isn't within
the restricted subset, even ESSL 1.00 shaders may require this
workaround.
BUG=angleproject:1116
TEST=dEQP-GLES3.functional.shaders.indexing.* (all pass after change)
WebGL 2 conformance tests (glsl3/vector-dynamic-indexing.html)
Change-Id: I9f6d7c7ecda8ac4dc3c30b39e15a9a0b5381c5a8
Reviewed-on: https://chromium-review.googlesource.com/310010
Reviewed-by: Geoff Lang <geofflang@chromium.org>
Tested-by: Geoff Lang <geofflang@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
//
// Copyright (c) 2002-2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RemoveDynamicIndexing is an AST traverser to remove dynamic indexing of vectors and matrices,
// replacing them with calls to functions that choose which component to return or write.
//
#include "compiler/translator/RemoveDynamicIndexing.h"
#include "compiler/translator/InfoSink.h"
#include "compiler/translator/IntermNode.h"
#include "compiler/translator/SymbolTable.h"
namespace
{
TName GetIndexFunctionName(const TType &type, bool write)
{
TInfoSinkBase nameSink;
nameSink << "dyn_index_";
if (write)
{
nameSink << "write_";
}
if (type.isMatrix())
{
nameSink << "mat" << type.getCols() << "x" << type.getRows();
}
else
{
switch (type.getBasicType())
{
case EbtInt:
nameSink << "ivec";
break;
case EbtBool:
nameSink << "bvec";
break;
case EbtUInt:
nameSink << "uvec";
break;
case EbtFloat:
nameSink << "vec";
break;
default:
UNREACHABLE();
}
nameSink << type.getNominalSize();
}
TString nameString = TFunction::mangleName(nameSink.c_str());
TName name(nameString);
name.setInternal(true);
return name;
}
TIntermSymbol *CreateBaseSymbol(const TType &type, TQualifier qualifier)
{
TIntermSymbol *symbol = new TIntermSymbol(0, "base", type);
symbol->setInternal(true);
symbol->getTypePointer()->setQualifier(qualifier);
return symbol;
}
TIntermSymbol *CreateIndexSymbol()
{
TIntermSymbol *symbol = new TIntermSymbol(0, "index", TType(EbtInt, EbpHigh));
symbol->setInternal(true);
symbol->getTypePointer()->setQualifier(EvqIn);
return symbol;
}
TIntermSymbol *CreateValueSymbol(const TType &type)
{
TIntermSymbol *symbol = new TIntermSymbol(0, "value", type);
symbol->setInternal(true);
symbol->getTypePointer()->setQualifier(EvqIn);
return symbol;
}
TIntermConstantUnion *CreateIntConstantNode(int i)
{
TConstantUnion *constant = new TConstantUnion();
constant->setIConst(i);
return new TIntermConstantUnion(constant, TType(EbtInt, EbpHigh));
}
TIntermBinary *CreateIndexDirectBaseSymbolNode(const TType &indexedType,
const TType &fieldType,
const int index,
TQualifier baseQualifier)
{
TIntermBinary *indexNode = new TIntermBinary(EOpIndexDirect);
indexNode->setType(fieldType);
TIntermSymbol *baseSymbol = CreateBaseSymbol(indexedType, baseQualifier);
indexNode->setLeft(baseSymbol);
indexNode->setRight(CreateIntConstantNode(index));
return indexNode;
}
TIntermBinary *CreateAssignValueSymbolNode(TIntermTyped *targetNode, const TType &assignedValueType)
{
TIntermBinary *assignNode = new TIntermBinary(EOpAssign);
assignNode->setType(assignedValueType);
assignNode->setLeft(targetNode);
assignNode->setRight(CreateValueSymbol(assignedValueType));
return assignNode;
}
TIntermTyped *EnsureSignedInt(TIntermTyped *node)
{
if (node->getBasicType() == EbtInt)
return node;
TIntermAggregate *convertedNode = new TIntermAggregate(EOpConstructInt);
convertedNode->setType(TType(EbtInt));
convertedNode->getSequence()->push_back(node);
convertedNode->setPrecisionFromChildren();
return convertedNode;
}
TType GetFieldType(const TType &indexedType)
{
if (indexedType.isMatrix())
{
TType fieldType = TType(indexedType.getBasicType(), indexedType.getPrecision());
fieldType.setPrimarySize(static_cast<unsigned char>(indexedType.getRows()));
return fieldType;
}
else
{
return TType(indexedType.getBasicType(), indexedType.getPrecision());
}
}
// Generate a read or write function for one field in a vector/matrix.
// Out-of-range indices are clamped. This is consistent with how ANGLE handles out-of-range
// indices in other places.
// Note that indices can be either int or uint. We create only int versions of the functions,
// and convert uint indices to int at the call site.
// read function example:
// float dyn_index_vec2(in vec2 base, in int index)
// {
// switch(index)
// {
// case (0):
// return base[0];
// case (1):
// return base[1];
// default:
// break;
// }
// if (index < 0)
// return base[0];
// return base[1];
// }
// write function example:
// void dyn_index_write_vec2(inout vec2 base, in int index, in float value)
// {
// switch(index)
// {
// case (0):
// base[0] = value;
// return;
// case (1):
// base[1] = value;
// return;
// default:
// break;
// }
// if (index < 0)
// {
// base[0] = value;
// return;
// }
// base[1] = value;
// }
// Note that else is not used in above functions to avoid the RewriteElseBlocks transformation.
TIntermAggregate *GetIndexFunctionDefinition(TType type, bool write)
{
ASSERT(!type.isArray());
// Conservatively use highp here, even if the indexed type is not highp. That way the code can't
// end up using mediump version of an indexing function for a highp value, if both mediump and
// highp values are being indexed in the shader. For HLSL precision doesn't matter, but in
// principle this code could be used with multiple backends.
type.setPrecision(EbpHigh);
TIntermAggregate *indexingFunction = new TIntermAggregate(EOpFunction);
indexingFunction->setNameObj(GetIndexFunctionName(type, write));
TType fieldType = GetFieldType(type);
int numCases = 0;
if (type.isMatrix())
{
numCases = type.getCols();
}
else
{
numCases = type.getNominalSize();
}
if (write)
{
indexingFunction->setType(TType(EbtVoid));
}
else
{
indexingFunction->setType(fieldType);
}
TIntermAggregate *paramsNode = new TIntermAggregate(EOpParameters);
TQualifier baseQualifier = EvqInOut;
if (!write)
baseQualifier = EvqIn;
TIntermSymbol *baseParam = CreateBaseSymbol(type, baseQualifier);
paramsNode->getSequence()->push_back(baseParam);
TIntermSymbol *indexParam = CreateIndexSymbol();
paramsNode->getSequence()->push_back(indexParam);
if (write)
{
TIntermSymbol *valueParam = CreateValueSymbol(fieldType);
paramsNode->getSequence()->push_back(valueParam);
}
indexingFunction->getSequence()->push_back(paramsNode);
TIntermAggregate *statementList = new TIntermAggregate(EOpSequence);
for (int i = 0; i < numCases; ++i)
{
TIntermCase *caseNode = new TIntermCase(CreateIntConstantNode(i));
statementList->getSequence()->push_back(caseNode);
TIntermBinary *indexNode =
CreateIndexDirectBaseSymbolNode(type, fieldType, i, baseQualifier);
if (write)
{
TIntermBinary *assignNode = CreateAssignValueSymbolNode(indexNode, fieldType);
statementList->getSequence()->push_back(assignNode);
TIntermBranch *returnNode = new TIntermBranch(EOpReturn, nullptr);
statementList->getSequence()->push_back(returnNode);
}
else
{
TIntermBranch *returnNode = new TIntermBranch(EOpReturn, indexNode);
statementList->getSequence()->push_back(returnNode);
}
}
// Default case
TIntermCase *defaultNode = new TIntermCase(nullptr);
statementList->getSequence()->push_back(defaultNode);
TIntermBranch *breakNode = new TIntermBranch(EOpBreak, nullptr);
statementList->getSequence()->push_back(breakNode);
TIntermSwitch *switchNode = new TIntermSwitch(CreateIndexSymbol(), statementList);
TIntermAggregate *bodyNode = new TIntermAggregate(EOpSequence);
bodyNode->getSequence()->push_back(switchNode);
TIntermBinary *cond = new TIntermBinary(EOpLessThan);
cond->setType(TType(EbtBool, EbpUndefined));
cond->setLeft(CreateIndexSymbol());
cond->setRight(CreateIntConstantNode(0));
// Two blocks: one accesses (either reads or writes) the first element and returns,
// the other accesses the last element.
TIntermAggregate *useFirstBlock = new TIntermAggregate(EOpSequence);
TIntermAggregate *useLastBlock = new TIntermAggregate(EOpSequence);
TIntermBinary *indexFirstNode =
CreateIndexDirectBaseSymbolNode(type, fieldType, 0, baseQualifier);
TIntermBinary *indexLastNode =
CreateIndexDirectBaseSymbolNode(type, fieldType, numCases - 1, baseQualifier);
if (write)
{
TIntermBinary *assignFirstNode = CreateAssignValueSymbolNode(indexFirstNode, fieldType);
useFirstBlock->getSequence()->push_back(assignFirstNode);
TIntermBranch *returnNode = new TIntermBranch(EOpReturn, nullptr);
useFirstBlock->getSequence()->push_back(returnNode);
TIntermBinary *assignLastNode = CreateAssignValueSymbolNode(indexLastNode, fieldType);
useLastBlock->getSequence()->push_back(assignLastNode);
}
else
{
TIntermBranch *returnFirstNode = new TIntermBranch(EOpReturn, indexFirstNode);
useFirstBlock->getSequence()->push_back(returnFirstNode);
TIntermBranch *returnLastNode = new TIntermBranch(EOpReturn, indexLastNode);
useLastBlock->getSequence()->push_back(returnLastNode);
}
TIntermSelection *ifNode = new TIntermSelection(cond, useFirstBlock, nullptr);
bodyNode->getSequence()->push_back(ifNode);
bodyNode->getSequence()->push_back(useLastBlock);
indexingFunction->getSequence()->push_back(bodyNode);
return indexingFunction;
}
class RemoveDynamicIndexingTraverser : public TLValueTrackingTraverser
{
public:
RemoveDynamicIndexingTraverser(const TSymbolTable &symbolTable, int shaderVersion);
bool visitBinary(Visit visit, TIntermBinary *node) override;
void insertHelperDefinitions(TIntermNode *root);
void nextIteration();
bool usedTreeInsertion() const { return mUsedTreeInsertion; }
protected:
// Sets of types that are indexed. Note that these can not store multiple variants
// of the same type with different precisions - only one precision gets stored.
std::set<TType> mIndexedVecAndMatrixTypes;
std::set<TType> mWrittenVecAndMatrixTypes;
bool mUsedTreeInsertion;
// When true, the traverser will remove side effects from any indexing expression.
// This is done so that in code like
// V[j++][i]++.
// where V is an array of vectors, j++ will only be evaluated once.
bool mRemoveIndexSideEffectsInSubtree;
};
RemoveDynamicIndexingTraverser::RemoveDynamicIndexingTraverser(const TSymbolTable &symbolTable,
int shaderVersion)
: TLValueTrackingTraverser(true, false, false, symbolTable, shaderVersion),
mUsedTreeInsertion(false),
mRemoveIndexSideEffectsInSubtree(false)
{
}
void RemoveDynamicIndexingTraverser::insertHelperDefinitions(TIntermNode *root)
{
TIntermAggregate *rootAgg = root->getAsAggregate();
ASSERT(rootAgg != nullptr && rootAgg->getOp() == EOpSequence);
TIntermSequence insertions;
for (TType type : mIndexedVecAndMatrixTypes)
{
insertions.push_back(GetIndexFunctionDefinition(type, false));
}
for (TType type : mWrittenVecAndMatrixTypes)
{
insertions.push_back(GetIndexFunctionDefinition(type, true));
}
mInsertions.push_back(NodeInsertMultipleEntry(rootAgg, 0, insertions, TIntermSequence()));
}
// Create a call to dyn_index_*() based on an indirect indexing op node
TIntermAggregate *CreateIndexFunctionCall(TIntermBinary *node,
TIntermTyped *indexedNode,
TIntermTyped *index)
{
ASSERT(node->getOp() == EOpIndexIndirect);
TIntermAggregate *indexingCall = new TIntermAggregate(EOpFunctionCall);
indexingCall->setLine(node->getLine());
indexingCall->setUserDefined();
indexingCall->setNameObj(GetIndexFunctionName(indexedNode->getType(), false));
indexingCall->getSequence()->push_back(indexedNode);
indexingCall->getSequence()->push_back(index);
TType fieldType = GetFieldType(indexedNode->getType());
indexingCall->setType(fieldType);
return indexingCall;
}
TIntermAggregate *CreateIndexedWriteFunctionCall(TIntermBinary *node,
TIntermTyped *index,
TIntermTyped *writtenValue)
{
// Deep copy the left node so that two pointers to the same node don't end up in the tree.
TIntermNode *leftCopy = node->getLeft()->deepCopy();
ASSERT(leftCopy != nullptr && leftCopy->getAsTyped() != nullptr);
TIntermAggregate *indexedWriteCall =
CreateIndexFunctionCall(node, leftCopy->getAsTyped(), index);
indexedWriteCall->setNameObj(GetIndexFunctionName(node->getLeft()->getType(), true));
indexedWriteCall->setType(TType(EbtVoid));
indexedWriteCall->getSequence()->push_back(writtenValue);
return indexedWriteCall;
}
bool RemoveDynamicIndexingTraverser::visitBinary(Visit visit, TIntermBinary *node)
{
if (mUsedTreeInsertion)
return false;
if (node->getOp() == EOpIndexIndirect)
{
if (mRemoveIndexSideEffectsInSubtree)
{
ASSERT(node->getRight()->hasSideEffects());
// In case we're just removing index side effects, convert
// v_expr[index_expr]
// to this:
// int s0 = index_expr; v_expr[s0];
// Now v_expr[s0] can be safely executed several times without unintended side effects.
// Init the temp variable holding the index
TIntermAggregate *initIndex = createTempInitDeclaration(node->getRight());
TIntermSequence insertions;
insertions.push_back(initIndex);
insertStatementsInParentBlock(insertions);
mUsedTreeInsertion = true;
// Replace the index with the temp variable
TIntermSymbol *tempIndex = createTempSymbol(node->getRight()->getType());
NodeUpdateEntry replaceIndex(node, node->getRight(), tempIndex, false);
mReplacements.push_back(replaceIndex);
}
else if (!node->getLeft()->isArray() && node->getLeft()->getBasicType() != EbtStruct)
{
bool write = isLValueRequiredHere();
TType type = node->getLeft()->getType();
mIndexedVecAndMatrixTypes.insert(type);
if (write)
{
// Convert:
// v_expr[index_expr]++;
// to this:
// int s0 = index_expr; float s1 = dyn_index(v_expr, s0); s1++;
// dyn_index_write(v_expr, s0, s1);
// This works even if index_expr has some side effects.
if (node->getLeft()->hasSideEffects())
{
// If v_expr has side effects, those need to be removed before proceeding.
// Otherwise the side effects of v_expr would be evaluated twice.
// The only case where an l-value can have side effects is when it is
// indexing. For example, it can be V[j++] where V is an array of vectors.
mRemoveIndexSideEffectsInSubtree = true;
return true;
}
// TODO(oetuaho@nvidia.com): This is not optimal if the expression using the value
// only writes it and doesn't need the previous value. http://anglebug.com/1116
mWrittenVecAndMatrixTypes.insert(type);
TType fieldType = GetFieldType(type);
TIntermSequence insertionsBefore;
TIntermSequence insertionsAfter;
// Store the index in a temporary signed int variable.
TIntermTyped *indexInitializer = EnsureSignedInt(node->getRight());
TIntermAggregate *initIndex = createTempInitDeclaration(indexInitializer);
initIndex->setLine(node->getLine());
insertionsBefore.push_back(initIndex);
TIntermAggregate *indexingCall = CreateIndexFunctionCall(
node, node->getLeft(), createTempSymbol(indexInitializer->getType()));
// Create a node for referring to the index after the nextTemporaryIndex() call
// below.
TIntermSymbol *tempIndex = createTempSymbol(indexInitializer->getType());
nextTemporaryIndex(); // From now on, creating temporary symbols that refer to the
// field value.
insertionsBefore.push_back(createTempInitDeclaration(indexingCall));
TIntermAggregate *indexedWriteCall =
CreateIndexedWriteFunctionCall(node, tempIndex, createTempSymbol(fieldType));
insertionsAfter.push_back(indexedWriteCall);
insertStatementsInParentBlock(insertionsBefore, insertionsAfter);
NodeUpdateEntry replaceIndex(getParentNode(), node, createTempSymbol(fieldType),
false);
mReplacements.push_back(replaceIndex);
mUsedTreeInsertion = true;
}
else
{
// The indexed value is not being written, so we can simply convert
// v_expr[index_expr]
// into
// dyn_index(v_expr, index_expr)
// If the index_expr is unsigned, we'll convert it to signed.
ASSERT(!mRemoveIndexSideEffectsInSubtree);
TIntermAggregate *indexingCall = CreateIndexFunctionCall(
node, node->getLeft(), EnsureSignedInt(node->getRight()));
NodeUpdateEntry replaceIndex(getParentNode(), node, indexingCall, false);
mReplacements.push_back(replaceIndex);
}
}
}
return !mUsedTreeInsertion;
}
void RemoveDynamicIndexingTraverser::nextIteration()
{
mUsedTreeInsertion = false;
mRemoveIndexSideEffectsInSubtree = false;
nextTemporaryIndex();
}
} // namespace
void RemoveDynamicIndexing(TIntermNode *root,
unsigned int *temporaryIndex,
const TSymbolTable &symbolTable,
int shaderVersion)
{
RemoveDynamicIndexingTraverser traverser(symbolTable, shaderVersion);
ASSERT(temporaryIndex != nullptr);
traverser.useTemporaryIndex(temporaryIndex);
do
{
traverser.nextIteration();
root->traverse(&traverser);
traverser.updateTree();
} while (traverser.usedTreeInsertion());
traverser.insertHelperDefinitions(root);
traverser.updateTree();
}