Hash :
3fed4306
Author :
Date :
2015-11-02T12:26:02
Unfold short-circuiting operators in loop conditions correctly
Sometimes short-circuiting operators need to be unfolded to if
statements. If the unfolded operator is inside a loop condition or
expression, it needs to be evaluated repeatedly inside the loop. Add
logic to UnfoldShortCircuitToIf that can move or copy the unfolded part
of loop conditions or expressions to inside the loop.
The exact changes that need to be done depend on the type of the loop.
For loops may require also moving the initializer to outside the loop.
The unfolded expression inside a loop condition or expression is moved
or copied to inside the loop on the first traversal of the loop node,
and unfolding to if is deferred until a second traversal. This keeps the
code relatively simple.
BUG=angleproject:1167
TEST=WebGL 2 conformance tests,
dEQP-GLES2.functional.shaders.*select_iteration_count*
Change-Id: Ieffc0ea858186054378d387dca9aa64a5fa95137
Reviewed-on: https://chromium-review.googlesource.com/310230
Reviewed-by: Corentin Wallez <cwallez@chromium.org>
Reviewed-by: Zhenyao Mo <zmo@chromium.org>
Tested-by: Olli Etuaho <oetuaho@nvidia.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
//
// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// UnfoldShortCircuitToIf is an AST traverser to convert short-circuiting operators to if-else statements.
// The results are assigned to s# temporaries, which are used by the main translator instead of
// the original expression.
//
#include "compiler/translator/UnfoldShortCircuitToIf.h"
#include "compiler/translator/IntermNode.h"
namespace
{
// Traverser that unfolds one short-circuiting operation at a time.
class UnfoldShortCircuitTraverser : public TIntermTraverser
{
public:
UnfoldShortCircuitTraverser();
bool visitBinary(Visit visit, TIntermBinary *node) override;
bool visitAggregate(Visit visit, TIntermAggregate *node) override;
bool visitSelection(Visit visit, TIntermSelection *node) override;
bool visitLoop(Visit visit, TIntermLoop *node) override;
void nextIteration();
bool foundShortCircuit() const { return mFoundShortCircuit; }
protected:
// Check if the traversal is inside a loop condition or expression, in which case the unfolded
// expression needs to be copied inside the loop. Returns true if the copying is done, in which
// case no further unfolding should be done on the same traversal.
// The parameters are the node that will be unfolded to multiple statements and so can't remain
// inside a loop condition, and its parent.
bool copyLoopConditionOrExpression(TIntermNode *parent, TIntermTyped *node);
// Marked to true once an operation that needs to be unfolded has been found.
// After that, no more unfolding is performed on that traversal.
bool mFoundShortCircuit;
// Set to the loop node while a loop condition or expression is being traversed.
TIntermLoop *mParentLoop;
// Parent of the loop node while a loop condition or expression is being traversed.
TIntermNode *mLoopParent;
bool mInLoopCondition;
bool mInLoopExpression;
};
UnfoldShortCircuitTraverser::UnfoldShortCircuitTraverser()
: TIntermTraverser(true, false, true),
mFoundShortCircuit(false),
mParentLoop(nullptr),
mLoopParent(nullptr),
mInLoopCondition(false),
mInLoopExpression(false)
{
}
bool UnfoldShortCircuitTraverser::visitBinary(Visit visit, TIntermBinary *node)
{
if (mFoundShortCircuit)
return false;
// If our right node doesn't have side effects, we know we don't need to unfold this
// expression: there will be no short-circuiting side effects to avoid
// (note: unfolding doesn't depend on the left node -- it will always be evaluated)
if (!node->getRight()->hasSideEffects())
{
return true;
}
switch (node->getOp())
{
case EOpLogicalOr:
mFoundShortCircuit = true;
if (!copyLoopConditionOrExpression(getParentNode(), node))
{
// "x || y" is equivalent to "x ? true : y", which unfolds to "bool s; if(x) s = true;
// else s = y;",
// and then further simplifies down to "bool s = x; if(!s) s = y;".
TIntermSequence insertions;
TType boolType(EbtBool, EbpUndefined, EvqTemporary);
ASSERT(node->getLeft()->getType() == boolType);
insertions.push_back(createTempInitDeclaration(node->getLeft()));
TIntermAggregate *assignRightBlock = new TIntermAggregate(EOpSequence);
ASSERT(node->getRight()->getType() == boolType);
assignRightBlock->getSequence()->push_back(createTempAssignment(node->getRight()));
TIntermUnary *notTempSymbol = new TIntermUnary(EOpLogicalNot, boolType);
notTempSymbol->setOperand(createTempSymbol(boolType));
TIntermSelection *ifNode = new TIntermSelection(notTempSymbol, assignRightBlock, nullptr);
insertions.push_back(ifNode);
insertStatementsInParentBlock(insertions);
NodeUpdateEntry replaceVariable(getParentNode(), node, createTempSymbol(boolType), false);
mReplacements.push_back(replaceVariable);
}
return false;
case EOpLogicalAnd:
mFoundShortCircuit = true;
if (!copyLoopConditionOrExpression(getParentNode(), node))
{
// "x && y" is equivalent to "x ? y : false", which unfolds to "bool s; if(x) s = y;
// else s = false;",
// and then further simplifies down to "bool s = x; if(s) s = y;".
TIntermSequence insertions;
TType boolType(EbtBool, EbpUndefined, EvqTemporary);
ASSERT(node->getLeft()->getType() == boolType);
insertions.push_back(createTempInitDeclaration(node->getLeft()));
TIntermAggregate *assignRightBlock = new TIntermAggregate(EOpSequence);
ASSERT(node->getRight()->getType() == boolType);
assignRightBlock->getSequence()->push_back(createTempAssignment(node->getRight()));
TIntermSelection *ifNode = new TIntermSelection(createTempSymbol(boolType), assignRightBlock, nullptr);
insertions.push_back(ifNode);
insertStatementsInParentBlock(insertions);
NodeUpdateEntry replaceVariable(getParentNode(), node, createTempSymbol(boolType), false);
mReplacements.push_back(replaceVariable);
}
return false;
default:
return true;
}
}
bool UnfoldShortCircuitTraverser::visitSelection(Visit visit, TIntermSelection *node)
{
if (mFoundShortCircuit)
return false;
// Unfold "b ? x : y" into "type s; if(b) s = x; else s = y;"
if (visit == PreVisit && node->usesTernaryOperator())
{
mFoundShortCircuit = true;
if (!copyLoopConditionOrExpression(getParentNode(), node))
{
TIntermSequence insertions;
TIntermSymbol *tempSymbol = createTempSymbol(node->getType());
TIntermAggregate *tempDeclaration = new TIntermAggregate(EOpDeclaration);
tempDeclaration->getSequence()->push_back(tempSymbol);
insertions.push_back(tempDeclaration);
TIntermAggregate *trueBlock = new TIntermAggregate(EOpSequence);
TIntermBinary *trueAssignment =
createTempAssignment(node->getTrueBlock()->getAsTyped());
trueBlock->getSequence()->push_back(trueAssignment);
TIntermAggregate *falseBlock = new TIntermAggregate(EOpSequence);
TIntermBinary *falseAssignment =
createTempAssignment(node->getFalseBlock()->getAsTyped());
falseBlock->getSequence()->push_back(falseAssignment);
TIntermSelection *ifNode =
new TIntermSelection(node->getCondition()->getAsTyped(), trueBlock, falseBlock);
insertions.push_back(ifNode);
insertStatementsInParentBlock(insertions);
TIntermSymbol *ternaryResult = createTempSymbol(node->getType());
NodeUpdateEntry replaceVariable(getParentNode(), node, ternaryResult, false);
mReplacements.push_back(replaceVariable);
}
return false;
}
return true;
}
bool UnfoldShortCircuitTraverser::visitAggregate(Visit visit, TIntermAggregate *node)
{
if (visit == PreVisit && mFoundShortCircuit)
return false; // No need to traverse further
if (node->getOp() == EOpComma)
{
ASSERT(visit != PreVisit || !mFoundShortCircuit);
if (visit == PostVisit && mFoundShortCircuit)
{
// We can be sure that we arrived here because there was a short-circuiting operator
// inside the sequence operator since we only start traversing the sequence operator in
// case a short-circuiting operator has not been found so far.
// We need to unfold the sequence (comma) operator, otherwise the evaluation order of
// statements would be messed up by unfolded operations inside.
// Don't do any other unfolding on this round of traversal.
mReplacements.clear();
mMultiReplacements.clear();
mInsertions.clear();
if (!copyLoopConditionOrExpression(getParentNode(), node))
{
TIntermSequence insertions;
TIntermSequence *seq = node->getSequence();
TIntermSequence::size_type i = 0;
ASSERT(!seq->empty());
while (i < seq->size() - 1)
{
TIntermTyped *child = (*seq)[i]->getAsTyped();
insertions.push_back(child);
++i;
}
insertStatementsInParentBlock(insertions);
NodeUpdateEntry replaceVariable(getParentNode(), node, (*seq)[i], false);
mReplacements.push_back(replaceVariable);
}
}
}
return true;
}
bool UnfoldShortCircuitTraverser::visitLoop(Visit visit, TIntermLoop *node)
{
if (visit == PreVisit)
{
if (mFoundShortCircuit)
return false; // No need to traverse further
mLoopParent = getParentNode();
mParentLoop = node;
incrementDepth(node);
if (node->getInit())
{
node->getInit()->traverse(this);
if (mFoundShortCircuit)
{
decrementDepth();
return false;
}
}
if (node->getCondition())
{
mInLoopCondition = true;
node->getCondition()->traverse(this);
mInLoopCondition = false;
if (mFoundShortCircuit)
{
decrementDepth();
return false;
}
}
if (node->getExpression())
{
mInLoopExpression = true;
node->getExpression()->traverse(this);
mInLoopExpression = false;
if (mFoundShortCircuit)
{
decrementDepth();
return false;
}
}
if (node->getBody())
node->getBody()->traverse(this);
decrementDepth();
}
return false;
}
bool UnfoldShortCircuitTraverser::copyLoopConditionOrExpression(TIntermNode *parent,
TIntermTyped *node)
{
if (mInLoopCondition)
{
mReplacements.push_back(
NodeUpdateEntry(parent, node, createTempSymbol(node->getType()), false));
TIntermAggregate *body = mParentLoop->getBody();
TIntermSequence empty;
if (mParentLoop->getType() == ELoopDoWhile)
{
// Declare the temporary variable before the loop.
TIntermSequence insertionsBeforeLoop;
insertionsBeforeLoop.push_back(createTempDeclaration(node->getType()));
insertStatementsInParentBlock(insertionsBeforeLoop);
// Move a part of do-while loop condition to inside the loop.
TIntermSequence insertionsInLoop;
insertionsInLoop.push_back(createTempAssignment(node));
mInsertions.push_back(NodeInsertMultipleEntry(body, body->getSequence()->size() - 1,
empty, insertionsInLoop));
}
else
{
// The loop initializer expression and one copy of the part of the loop condition are
// executed before the loop. They need to be in a new scope.
TIntermAggregate *loopScope = new TIntermAggregate(EOpSequence);
TIntermNode *initializer = mParentLoop->getInit();
if (initializer != nullptr)
{
// Move the initializer to the newly created outer scope, so that condition can
// depend on it.
mReplacements.push_back(NodeUpdateEntry(mParentLoop, initializer, nullptr, false));
loopScope->getSequence()->push_back(initializer);
}
loopScope->getSequence()->push_back(createTempInitDeclaration(node));
loopScope->getSequence()->push_back(mParentLoop);
mReplacements.push_back(NodeUpdateEntry(mLoopParent, mParentLoop, loopScope, true));
// The second copy of the part of the loop condition is executed inside the loop.
TIntermSequence insertionsInLoop;
insertionsInLoop.push_back(createTempAssignment(node->deepCopy()));
mInsertions.push_back(NodeInsertMultipleEntry(body, body->getSequence()->size() - 1,
empty, insertionsInLoop));
}
return true;
}
if (mInLoopExpression)
{
TIntermTyped *movedExpression = mParentLoop->getExpression();
mReplacements.push_back(NodeUpdateEntry(mParentLoop, movedExpression, nullptr, false));
TIntermAggregate *body = mParentLoop->getBody();
TIntermSequence empty;
TIntermSequence insertions;
insertions.push_back(movedExpression);
mInsertions.push_back(
NodeInsertMultipleEntry(body, body->getSequence()->size() - 1, empty, insertions));
return true;
}
return false;
}
void UnfoldShortCircuitTraverser::nextIteration()
{
mFoundShortCircuit = false;
nextTemporaryIndex();
}
} // namespace
void UnfoldShortCircuitToIf(TIntermNode *root, unsigned int *temporaryIndex)
{
UnfoldShortCircuitTraverser traverser;
ASSERT(temporaryIndex != nullptr);
traverser.useTemporaryIndex(temporaryIndex);
// Unfold one operator at a time, and reset the traverser between iterations.
do
{
traverser.nextIteration();
root->traverse(&traverser);
if (traverser.foundShortCircuit())
traverser.updateTree();
}
while (traverser.foundShortCircuit());
}