Hash :
630d85cb
Author :
Date :
2015-09-30T14:35:48
Fix an undefined behavior in clampCast This undefined behavior appeared in angle_end2end_tests compiled with clang 3.6 on Mac. BUG=angleproject:891 Change-Id: I840b40a7bd54c9cfaeb0fe6784b73f875f9d5502 Reviewed-on: https://chromium-review.googlesource.com/303337 Reviewed-by: Corentin Wallez <cwallez@chromium.org> Tested-by: Corentin Wallez <cwallez@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
//
// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// mathutil.h: Math and bit manipulation functions.
#ifndef COMMON_MATHUTIL_H_
#define COMMON_MATHUTIL_H_
#include "common/debug.h"
#include "common/platform.h"
#include <limits>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <stdint.h>
#include <stdlib.h>
namespace gl
{
const unsigned int Float32One = 0x3F800000;
const unsigned short Float16One = 0x3C00;
struct Vector4
{
Vector4() {}
Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
float x;
float y;
float z;
float w;
};
inline bool isPow2(int x)
{
return (x & (x - 1)) == 0 && (x != 0);
}
inline int log2(int x)
{
int r = 0;
while ((x >> r) > 1) r++;
return r;
}
inline unsigned int ceilPow2(unsigned int x)
{
if (x != 0) x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x++;
return x;
}
inline int clampToInt(unsigned int x)
{
return static_cast<int>(std::min(x, static_cast<unsigned int>(std::numeric_limits<int>::max())));
}
template <typename DestT, typename SrcT>
inline DestT clampCast(SrcT value)
{
static const DestT destLo = std::numeric_limits<DestT>::min();
static const DestT destHi = std::numeric_limits<DestT>::max();
static const SrcT srcLo = static_cast<SrcT>(destLo);
static const SrcT srcHi = static_cast<SrcT>(destHi);
// When value is outside of or equal to the limits for DestT we use the DestT limit directly.
// This avoids undefined behaviors due to loss of precision when converting from floats to
// integers:
// destHi for ints is 2147483647 but the closest float number is around 2147483648, so when
// doing a conversion from float to int we run into an UB because the float is outside of the
// range representable by the int.
if (value <= srcLo)
{
return destLo;
}
else if (value >= srcHi)
{
return destHi;
}
else
{
return static_cast<DestT>(value);
}
}
template<typename T, typename MIN, typename MAX>
inline T clamp(T x, MIN min, MAX max)
{
// Since NaNs fail all comparison tests, a NaN value will default to min
return x > min ? (x > max ? max : x) : min;
}
inline float clamp01(float x)
{
return clamp(x, 0.0f, 1.0f);
}
template<const int n>
inline unsigned int unorm(float x)
{
const unsigned int max = 0xFFFFFFFF >> (32 - n);
if (x > 1)
{
return max;
}
else if (x < 0)
{
return 0;
}
else
{
return (unsigned int)(max * x + 0.5f);
}
}
inline bool supportsSSE2()
{
#if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM)
static bool checked = false;
static bool supports = false;
if (checked)
{
return supports;
}
int info[4];
__cpuid(info, 0);
if (info[0] >= 1)
{
__cpuid(info, 1);
supports = (info[3] >> 26) & 1;
}
checked = true;
return supports;
#else
UNIMPLEMENTED();
return false;
#endif
}
template <typename destType, typename sourceType>
destType bitCast(const sourceType &source)
{
size_t copySize = std::min(sizeof(destType), sizeof(sourceType));
destType output;
memcpy(&output, &source, copySize);
return output;
}
inline unsigned short float32ToFloat16(float fp32)
{
unsigned int fp32i = bitCast<unsigned int>(fp32);
unsigned int sign = (fp32i & 0x80000000) >> 16;
unsigned int abs = fp32i & 0x7FFFFFFF;
if(abs > 0x47FFEFFF) // Infinity
{
return static_cast<unsigned short>(sign | 0x7FFF);
}
else if(abs < 0x38800000) // Denormal
{
unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000;
int e = 113 - (abs >> 23);
if(e < 24)
{
abs = mantissa >> e;
}
else
{
abs = 0;
}
return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
}
else
{
return static_cast<unsigned short>(sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
}
}
float float16ToFloat32(unsigned short h);
unsigned int convertRGBFloatsTo999E5(float red, float green, float blue);
void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue);
inline unsigned short float32ToFloat11(float fp32)
{
const unsigned int float32MantissaMask = 0x7FFFFF;
const unsigned int float32ExponentMask = 0x7F800000;
const unsigned int float32SignMask = 0x80000000;
const unsigned int float32ValueMask = ~float32SignMask;
const unsigned int float32ExponentFirstBit = 23;
const unsigned int float32ExponentBias = 127;
const unsigned short float11Max = 0x7BF;
const unsigned short float11MantissaMask = 0x3F;
const unsigned short float11ExponentMask = 0x7C0;
const unsigned short float11BitMask = 0x7FF;
const unsigned int float11ExponentBias = 14;
const unsigned int float32Maxfloat11 = 0x477E0000;
const unsigned int float32Minfloat11 = 0x38800000;
const unsigned int float32Bits = bitCast<unsigned int>(fp32);
const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
unsigned int float32Val = float32Bits & float32ValueMask;
if ((float32Val & float32ExponentMask) == float32ExponentMask)
{
// INF or NAN
if ((float32Val & float32MantissaMask) != 0)
{
return float11ExponentMask | (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) & float11MantissaMask);
}
else if (float32Sign)
{
// -INF is clamped to 0 since float11 is positive only
return 0;
}
else
{
return float11ExponentMask;
}
}
else if (float32Sign)
{
// float11 is positive only, so clamp to zero
return 0;
}
else if (float32Val > float32Maxfloat11)
{
// The number is too large to be represented as a float11, set to max
return float11Max;
}
else
{
if (float32Val < float32Minfloat11)
{
// The number is too small to be represented as a normalized float11
// Convert it to a denormalized value.
const unsigned int shift = (float32ExponentBias - float11ExponentBias) - (float32Val >> float32ExponentFirstBit);
float32Val = ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
}
else
{
// Rebias the exponent to represent the value as a normalized float11
float32Val += 0xC8000000;
}
return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask;
}
}
inline unsigned short float32ToFloat10(float fp32)
{
const unsigned int float32MantissaMask = 0x7FFFFF;
const unsigned int float32ExponentMask = 0x7F800000;
const unsigned int float32SignMask = 0x80000000;
const unsigned int float32ValueMask = ~float32SignMask;
const unsigned int float32ExponentFirstBit = 23;
const unsigned int float32ExponentBias = 127;
const unsigned short float10Max = 0x3DF;
const unsigned short float10MantissaMask = 0x1F;
const unsigned short float10ExponentMask = 0x3E0;
const unsigned short float10BitMask = 0x3FF;
const unsigned int float10ExponentBias = 14;
const unsigned int float32Maxfloat10 = 0x477C0000;
const unsigned int float32Minfloat10 = 0x38800000;
const unsigned int float32Bits = bitCast<unsigned int>(fp32);
const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
unsigned int float32Val = float32Bits & float32ValueMask;
if ((float32Val & float32ExponentMask) == float32ExponentMask)
{
// INF or NAN
if ((float32Val & float32MantissaMask) != 0)
{
return float10ExponentMask | (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) & float10MantissaMask);
}
else if (float32Sign)
{
// -INF is clamped to 0 since float11 is positive only
return 0;
}
else
{
return float10ExponentMask;
}
}
else if (float32Sign)
{
// float10 is positive only, so clamp to zero
return 0;
}
else if (float32Val > float32Maxfloat10)
{
// The number is too large to be represented as a float11, set to max
return float10Max;
}
else
{
if (float32Val < float32Minfloat10)
{
// The number is too small to be represented as a normalized float11
// Convert it to a denormalized value.
const unsigned int shift = (float32ExponentBias - float10ExponentBias) - (float32Val >> float32ExponentFirstBit);
float32Val = ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
}
else
{
// Rebias the exponent to represent the value as a normalized float11
float32Val += 0xC8000000;
}
return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask;
}
}
inline float float11ToFloat32(unsigned short fp11)
{
unsigned short exponent = (fp11 >> 6) & 0x1F;
unsigned short mantissa = fp11 & 0x3F;
if (exponent == 0x1F)
{
// INF or NAN
return bitCast<float>(0x7f800000 | (mantissa << 17));
}
else
{
if (exponent != 0)
{
// normalized
}
else if (mantissa != 0)
{
// The value is denormalized
exponent = 1;
do
{
exponent--;
mantissa <<= 1;
}
while ((mantissa & 0x40) == 0);
mantissa = mantissa & 0x3F;
}
else // The value is zero
{
exponent = static_cast<unsigned short>(-112);
}
return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17));
}
}
inline float float10ToFloat32(unsigned short fp11)
{
unsigned short exponent = (fp11 >> 5) & 0x1F;
unsigned short mantissa = fp11 & 0x1F;
if (exponent == 0x1F)
{
// INF or NAN
return bitCast<float>(0x7f800000 | (mantissa << 17));
}
else
{
if (exponent != 0)
{
// normalized
}
else if (mantissa != 0)
{
// The value is denormalized
exponent = 1;
do
{
exponent--;
mantissa <<= 1;
}
while ((mantissa & 0x20) == 0);
mantissa = mantissa & 0x1F;
}
else // The value is zero
{
exponent = static_cast<unsigned short>(-112);
}
return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18));
}
}
template <typename T>
inline float normalizedToFloat(T input)
{
static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
const float inverseMax = 1.0f / std::numeric_limits<T>::max();
return input * inverseMax;
}
template <unsigned int inputBitCount, typename T>
inline float normalizedToFloat(T input)
{
static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount.");
const float inverseMax = 1.0f / ((1 << inputBitCount) - 1);
return input * inverseMax;
}
template <typename T>
inline T floatToNormalized(float input)
{
return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f);
}
template <unsigned int outputBitCount, typename T>
inline T floatToNormalized(float input)
{
static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount.");
return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f);
}
template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
inline T getShiftedData(T input)
{
static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
"T must have at least as many bits as inputBitCount + inputBitStart.");
const T mask = (1 << inputBitCount) - 1;
return (input >> inputBitStart) & mask;
}
template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
inline T shiftData(T input)
{
static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
"T must have at least as many bits as inputBitCount + inputBitStart.");
const T mask = (1 << inputBitCount) - 1;
return (input & mask) << inputBitStart;
}
inline unsigned char average(unsigned char a, unsigned char b)
{
return ((a ^ b) >> 1) + (a & b);
}
inline signed char average(signed char a, signed char b)
{
return ((short)a + (short)b) / 2;
}
inline unsigned short average(unsigned short a, unsigned short b)
{
return ((a ^ b) >> 1) + (a & b);
}
inline signed short average(signed short a, signed short b)
{
return ((int)a + (int)b) / 2;
}
inline unsigned int average(unsigned int a, unsigned int b)
{
return ((a ^ b) >> 1) + (a & b);
}
inline signed int average(signed int a, signed int b)
{
return ((long long)a + (long long)b) / 2;
}
inline float average(float a, float b)
{
return (a + b) * 0.5f;
}
inline unsigned short averageHalfFloat(unsigned short a, unsigned short b)
{
return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f);
}
inline unsigned int averageFloat11(unsigned int a, unsigned int b)
{
return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) + float11ToFloat32(static_cast<unsigned short>(b))) * 0.5f);
}
inline unsigned int averageFloat10(unsigned int a, unsigned int b)
{
return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) + float10ToFloat32(static_cast<unsigned short>(b))) * 0.5f);
}
template <typename T>
struct Range
{
Range() {}
Range(T lo, T hi) : start(lo), end(hi) { ASSERT(lo <= hi); }
T start;
T end;
T length() const { return end - start; }
bool intersects(Range<T> other)
{
if (start <= other.start)
{
return other.start < end;
}
else
{
return start < other.end;
}
}
void extend(T value)
{
start = value > start ? value : start;
end = value < end ? value : end;
}
bool empty() const
{
return end <= start;
}
};
typedef Range<int> RangeI;
typedef Range<unsigned int> RangeUI;
struct IndexRange
{
IndexRange() : IndexRange(0, 0, 0) {}
IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_)
: start(start_), end(end_), vertexIndexCount(vertexIndexCount_)
{
ASSERT(start <= end);
}
// Number of vertices in the range.
size_t vertexCount() const { return (end - start) + 1; }
// Inclusive range of indices that are not primitive restart
size_t start;
size_t end;
// Number of non-primitive restart indices
size_t vertexIndexCount;
};
// First, both normalized floating-point values are converted into 16-bit integer values.
// Then, the results are packed into the returned 32-bit unsigned integer.
// The first float value will be written to the least significant bits of the output;
// the last float value will be written to the most significant bits.
// The conversion of each value to fixed point is done as follows :
// packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0)
inline uint32_t packSnorm2x16(float f1, float f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f));
uint16_t mostSignificantBits = static_cast<uint16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f));
return static_cast<uint32_t>(mostSignificantBits) << 16 | static_cast<uint32_t>(leastSignificantBits);
}
// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, each
// component is converted to a normalized floating-point value to generate the returned two float values.
// The first float value will be extracted from the least significant bits of the input;
// the last float value will be extracted from the most-significant bits.
// The conversion for unpacked fixed-point value to floating point is done as follows:
// unpackSnorm2x16 : clamp(f / 32767.0, -1, +1)
inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2)
{
int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF);
int16_t mostSignificantBits = static_cast<int16_t>(u >> 16);
*f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f);
*f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f);
}
// First, both normalized floating-point values are converted into 16-bit integer values.
// Then, the results are packed into the returned 32-bit unsigned integer.
// The first float value will be written to the least significant bits of the output;
// the last float value will be written to the most significant bits.
// The conversion of each value to fixed point is done as follows:
// packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0)
inline uint32_t packUnorm2x16(float f1, float f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f));
uint16_t mostSignificantBits = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f));
return static_cast<uint32_t>(mostSignificantBits) << 16 | static_cast<uint32_t>(leastSignificantBits);
}
// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, each
// component is converted to a normalized floating-point value to generate the returned two float values.
// The first float value will be extracted from the least significant bits of the input;
// the last float value will be extracted from the most-significant bits.
// The conversion for unpacked fixed-point value to floating point is done as follows:
// unpackUnorm2x16 : f / 65535.0
inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
*f1 = static_cast<float>(leastSignificantBits) / 65535.0f;
*f2 = static_cast<float>(mostSignificantBits) / 65535.0f;
}
// Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit
// floating-point representation found in the OpenGL ES Specification, and then packing these
// two 16-bit integers into a 32-bit unsigned integer.
// f1: The 16 least-significant bits of the result;
// f2: The 16 most-significant bits.
inline uint32_t packHalf2x16(float f1, float f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1));
uint16_t mostSignificantBits = static_cast<uint16_t>(float32ToFloat16(f2));
return static_cast<uint32_t>(mostSignificantBits) << 16 | static_cast<uint32_t>(leastSignificantBits);
}
// Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of 16-bit values,
// interpreting those values as 16-bit floating-point numbers according to the OpenGL ES Specification,
// and converting them to 32-bit floating-point values.
// The first float value is obtained from the 16 least-significant bits of u;
// the second component is obtained from the 16 most-significant bits of u.
inline void unpackHalf2x16(uint32_t u, float *f1, float *f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
*f1 = float16ToFloat32(leastSignificantBits);
*f2 = float16ToFloat32(mostSignificantBits);
}
// Returns whether the argument is Not a Number.
// IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) - non-zero.
inline bool isNaN(float f)
{
// Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
// Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) && (bitCast<uint32_t>(f) & 0x7fffffu);
}
// Returns whether the argument is infinity.
// IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) - zero.
inline bool isInf(float f)
{
// Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
// Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) && !(bitCast<uint32_t>(f) & 0x7fffffu);
}
}
namespace rx
{
template <typename T>
T roundUp(const T value, const T alignment)
{
return value + alignment - 1 - (value - 1) % alignment;
}
inline unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor)
{
unsigned int divided = value / divisor;
return (divided + ((value % divisor == 0) ? 0 : 1));
}
template <class T>
inline bool IsUnsignedAdditionSafe(T lhs, T rhs)
{
static_assert(!std::numeric_limits<T>::is_signed, "T must be unsigned.");
return (rhs <= std::numeric_limits<T>::max() - lhs);
}
template <class T>
inline bool IsUnsignedMultiplicationSafe(T lhs, T rhs)
{
static_assert(!std::numeric_limits<T>::is_signed, "T must be unsigned.");
return (lhs == T(0) || rhs == T(0) || (rhs <= std::numeric_limits<T>::max() / lhs));
}
template <class SmallIntT, class BigIntT>
inline bool IsIntegerCastSafe(BigIntT bigValue)
{
return (static_cast<BigIntT>(static_cast<SmallIntT>(bigValue)) == bigValue);
}
#if defined(_MSC_VER)
#define ANGLE_ROTL(x,y) _rotl(x,y)
#define ANGLE_ROTR16(x,y) _rotr16(x,y)
#else
inline uint32_t RotL(uint32_t x, int8_t r)
{
return (x << r) | (x >> (32 - r));
}
inline uint16_t RotR16(uint16_t x, int8_t r)
{
return (x >> r) | (x << (16 - r));
}
#define ANGLE_ROTL(x,y) RotL(x,y)
#define ANGLE_ROTR16(x,y) RotR16(x,y)
#endif // namespace rx
}
#endif // COMMON_MATHUTIL_H_