Hash :
4d61f7ed
Author :
Date :
2015-08-12T10:56:50
Reland Fixed compiler warning C4267 'conversion from 'size_t' to 'type', possible loss of data' Additional warnings found with more testing and added C4267 warning disable only for angle_libpng BUG=angleproject:1120 Change-Id: Ic403dcff5a8018056fa51a8c408e64207f3362eb Reviewed-on: https://chromium-review.googlesource.com/293028 Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Geoff Lang <geofflang@chromium.org> Tested-by: Geoff Lang <geofflang@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// matrix_utils_unittests:
// Unit tests for the matrix utils.
//
#include "matrix_utils.h"
#include <gtest/gtest.h>
using namespace angle;
namespace
{
const unsigned int minDimensions = 2;
const unsigned int maxDimensions = 4;
TEST(MatrixUtilsTest, MatrixConstructorTest)
{
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
for (unsigned int j = minDimensions; j <= maxDimensions; j++)
{
unsigned int numElements = i * j;
Matrix<float> m(std::vector<float>(numElements, 1.0f), i, j);
EXPECT_EQ(m.rows(), i);
EXPECT_EQ(m.columns(), j);
EXPECT_EQ(m.elements(), std::vector<float>(numElements, 1.0f));
}
}
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
unsigned int numElements = i * i;
Matrix<float> m(std::vector<float>(numElements, 1.0f), i);
EXPECT_EQ(m.size(), i);
EXPECT_EQ(m.columns(), m.columns());
EXPECT_EQ(m.elements(), std::vector<float>(numElements, 1.0f));
}
}
TEST(MatrixUtilsTest, MatrixCompMultTest)
{
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
unsigned int numElements = i * i;
Matrix<float> m1(std::vector<float>(numElements, 2.0f), i);
Matrix<float> actualResult = m1.compMult(m1);
std::vector<float> actualResultElements = actualResult.elements();
std::vector<float> expectedResultElements(numElements, 4.0f);
EXPECT_EQ(expectedResultElements, actualResultElements);
}
}
TEST(MatrixUtilsTest, MatrixOuterProductTest)
{
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
for (unsigned int j = minDimensions; j <= maxDimensions; j++)
{
unsigned int numElements = i * j;
Matrix<float> m1(std::vector<float>(numElements, 2.0f), i, 1);
Matrix<float> m2(std::vector<float>(numElements, 2.0f), 1, j);
Matrix<float> actualResult = m1.outerProduct(m2);
EXPECT_EQ(actualResult.rows(), i);
EXPECT_EQ(actualResult.columns(), j);
std::vector<float> actualResultElements = actualResult.elements();
std::vector<float> expectedResultElements(numElements, 4.0f);
EXPECT_EQ(expectedResultElements, actualResultElements);
}
}
}
TEST(MatrixUtilsTest, MatrixTransposeTest)
{
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
for (unsigned int j = minDimensions; j <= maxDimensions; j++)
{
unsigned int numElements = i * j;
Matrix<float> m1(std::vector<float>(numElements, 2.0f), i, j);
Matrix<float> expectedResult = Matrix<float>(std::vector<float>(numElements, 2.0f), j, i);
Matrix<float> actualResult = m1.transpose();
EXPECT_EQ(expectedResult.elements(), actualResult.elements());
EXPECT_EQ(actualResult.rows(), expectedResult.rows());
EXPECT_EQ(actualResult.columns(), expectedResult.columns());
// transpose(transpose(A)) = A
Matrix<float> m2 = actualResult.transpose();
EXPECT_EQ(m1.elements(), m2.elements());
}
}
}
TEST(MatrixUtilsTest, MatrixDeterminantTest)
{
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
unsigned int numElements = i * i;
Matrix<float> m(std::vector<float>(numElements, 2.0f), i);
EXPECT_EQ(m.determinant(), 0.0f);
}
}
TEST(MatrixUtilsTest, 2x2MatrixInverseTest)
{
float inputElements[] =
{
2.0f, 5.0f,
3.0f, 7.0f
};
unsigned int numElements = 4;
std::vector<float> input(inputElements, inputElements + numElements);
Matrix<float> inputMatrix(input, 2);
float identityElements[] =
{
1.0f, 0.0f,
0.0f, 1.0f
};
std::vector<float> identityMatrix(identityElements, identityElements + numElements);
// A * inverse(A) = I, where I is identity matrix.
Matrix<float> result = inputMatrix * inputMatrix.inverse();
EXPECT_EQ(identityMatrix, result.elements());
}
TEST(MatrixUtilsTest, 3x3MatrixInverseTest)
{
float inputElements[] =
{
11.0f, 23.0f, 37.0f,
13.0f, 29.0f, 41.0f,
19.0f, 31.0f, 43.0f
};
unsigned int numElements = 9;
std::vector<float> input(inputElements, inputElements + numElements);
Matrix<float> inputMatrix(input, 3);
float identityElements[] =
{
1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f
};
std::vector<float> identityMatrix(identityElements, identityElements + numElements);
// A * inverse(A) = I, where I is identity matrix.
Matrix<float> result = inputMatrix * inputMatrix.inverse();
std::vector<float> resultElements = result.elements();
const float floatFaultTolarance = 0.000001f;
for (size_t i = 0; i < numElements; i++)
EXPECT_NEAR(resultElements[i], identityMatrix[i], floatFaultTolarance);
}
TEST(MatrixUtilsTest, 4x4MatrixInverseTest)
{
float inputElements[] =
{
29.0f, 43.0f, 61.0f, 79.0f,
31.0f, 47.0f, 67.0f, 83.0f,
37.0f, 53.0f, 71.0f, 89.0f,
41.0f, 59.0f, 73.0f, 97.0f
};
unsigned int numElements = 16;
std::vector<float> input(inputElements, inputElements + numElements);
Matrix<float> inputMatrix(input, 4);
float identityElements[] =
{
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f,
};
std::vector<float> identityMatrix(identityElements, identityElements + numElements);
// A * inverse(A) = I, where I is identity matrix.
Matrix<float> result = inputMatrix * inputMatrix.inverse();
std::vector<float> resultElements = result.elements();
const float floatFaultTolarance = 0.00001f;
for (unsigned int i = 0; i < numElements; i++)
EXPECT_NEAR(resultElements[i], identityMatrix[i], floatFaultTolarance);
}
}